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Abstract

Within the background field formalism of quantum gravity, I show that if the quantum fluctua-

tions are limited to diffeomorphic transformations, all the quantum corrections vanish on shell and

the effective action is equivalent to the classical action. I also show that this choice of fields ren-

ders the path integral independent of the on-shell condition for the background field, and therefore

incorporates a form of background independence. The proposed approach may provide insight into

the development of a finite and background independent description of quantum gravity.
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INTRODUCTION

The development of a quantum field theory of gravitation remains a challenge. Since

the gravitational coupling constant has units of length, the quantum corrections correspond

to higher-derivative terms with divergent coefficients [1–3]. In order to renormalize these

terms, counterterms of a similar form must also be included in the bare classical action [4–7].

However, the addition of higher derivative terms leads to ghosts and a violation of unitarity

in flat space perturbation theory [4, 5, 8].

On the other hand, it is well known that pure quantum gravity is finite at one loop order

[1, 2, 9]. The one-loop divergence vanishes on shell, i.e., when the classical equations of

motion are imposed on the background fields. Equivalently, it can absorbed by a background

field redefinition [3, 10, 11] or suitable choice of gauge parameters [9, 12]. Unfortunately,

this approach does not work when coupled to matter [1, 13] or at two-loop order, where a

divergent term cubic in the curvature tensor remains on shell [14–17].

The dependence of the divergences on the choice of background fields is also problematic

from the point of view of background independence, which is generally believed to be an

essential component of quantum gravity [18]. In classical general relativity, background

independence follows from diffeomorphism invariance and results in a lack of dependence

on a fixed, non-dynamical background metric [19, 20]. In the background field method,

background dependence arises through the perturbative expansion [3, 21, 22]. The expansion

around a classical background leads to dependence of the effective action on the choice of

on-shell conditions for the background fields [9, 12]. Ultimately, a proper incorporation of

background independence should lead to an effective action which is independent of the

choice of on shell conditions.

A related aspect is the dependence of the effective action on the choice of gauge and

parameterization of the quantum field [9, 23–29]. While on shell the effective action is

independent of the parameterization and gauge choice, off shell the effective action depends

on both. This dependence has been shown both generally [9, 25, 30] and explicitly in

several cases [27, 31–34]. The vanishing of the gauge and parameterization dependence on

shell implies that if the quantum corrections are constrained to such variations, they would

vanish on shell. Shifting the quantum corrections off shell would preclude nonrenormalizable

higher derivative terms and ghosts and guarantee unitarity of the S-matrix.
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In this Letter, I show that this situation can occur if the quantum fluctuations of the

background field are constrained to diffeomorphic gauge transformations. In this case, all of

the quantum corrections reduce to a delta function in the on shell condition, so the on-shell

effective action is equal to the classical action with no quantum corrections. In principle, the

resulting theory is finite and requires no renormalization. I also show that this choice of fields

renders the effective action independent of the on shell condition for the background fields,

and thus incorporates a form of background independence. Lastly, I discuss the implications

of associating quantum fluctuations with gauge transformations and the relation to other

renormalizable field theories.

APPROACH

The classical Einstein-Hilbert action for the gravitational field gµν is

S[gµν ] =
1

16πG

∫
d4x
√
−ggµνRµν , (1)

where G is Newton’s constant and Rµν is the Ricci tensor. The corresponding quantum

theory is described by the effective action Γ[ḡµν ], a functional of the classical mean field

ḡµν [23–26, 28]. In the background field method, the effective action is obtained from a

functional integral [23–26]

exp

(
i

~
Γ[ḡµν ]

)
=

∫
Dhµν exp

(
i

~
S[ḡµν + hµν ]−

i

~

∫
d4x
√
−ḡhµν δΓ[ḡµν ]

δḡµν

)
. (2)

where gµν has been divided into the sum of ḡµν and the quantum fluctuation hµν as [3, 21, 22]

gµν = ḡµν + hµν . (3)

At this stage, one normally proceeds by expanding S[ḡµν + hµν ], adding gauge fixing and

ghost terms, and performing the functional integral over hµν [23–26, 35]. However, there are

several issues with this approach. First, it is not background independent. The linear term in

the expansion is proportional to the classical equations of motion for the background fields,

so in general the effective action depends on the choice of on-shell conditions. Second, the

functional integral is not renormalizable. This can be seen mathematically by recognizing

that Eq. (2) represents the functional Fourier transform of exp
(
i
~S[ḡµν + hµν ]

)
with respect

to the conjugate variables hµν and δΓ[ḡµν ]/δḡ
µν . Thus, in the absence of S, the functional
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integral over hµν results in a delta functional in the on shell condition as δ [δΓ[ḡµν ]/δḡ
µν ].

This implies that any dependence of S[ḡµν + hµν ] on hµν will produce (nonrenormalizable)

terms on shell. The only way to ensure that all quantum corrections vanish on shell is for

S[ḡµν +hµν ] to be independent of hµν , that is hµν must correspond to a diffeomorphic gauge

transformation

hµν = ∇µξν +∇νξµ. (4)

In this case, S[ḡµν + hµν ] = S[ḡµν ] and the expression for the effective action reduces to

exp

(
i

~
Γ[ḡµν ]

)
= exp

(
i

~
S[ḡµν ]

)∫
Dξµ det

(
δhµν
δξµ

)
exp

(
− i
~

∫
d4x
√
−ḡ∇νξµ

δΓ[ḡµν ]

δḡµν

)
,

where the determinant is the Jacobian of the diffeomorphism. Since δhµν/δξµ = ∇ν , the

determinant is independent of ξµ and can be brought outside the integral. Then, performing

integration by parts on the integrand and ignoring the boundary term,

exp

(
i

~
Γ[ḡµν ]

)
= exp

(
i

~
S[ḡµν ]

)
det (∇ν)

∫
Dξµ exp

(
i

~

∫
d4x
√
−ḡξµ∇ν δΓ[ḡµν ]

δḡµν

)
. (5)

Recognizing the integral over ξµ as a functional delta function, this reduces to

exp

(
i

~
Γ[ḡµν ]

)
= exp

(
i

~
S[ḡµν ]

)
det(∇ν)δ

[
∇ν δΓ[ḡµν ]

δḡµν

]
. (6)

Applying the scaling property for delta functions, ∇ν inside the delta function cancels with

the determinant, leaving

exp

(
i

~
Γ[ḡµν ]

)
= exp

(
i

~
S[ḡµν ]

)
δ

[
δΓ[ḡµν ]

δḡµν

]
. (7)

Therefore, on shell the effective action is equal to the classical action,

δΓ[ḡµν ]

δḡµν
= 0, Γ[ḡµν ] = S[ḡµν ]. (8)

This is the main result: when the quantum fluctuations are constrained to diffeomorphic

transformations, all the quantum corrections vanish on shell. The resulting theory is finite

to all orders and requires no renormalization.

Another appealing aspect of this approach is that it incorporates a form of background

independence, namely the effective action is independent of the on shell condition for the

background fields. To see this, consider the variation of the action

S[ḡµν + hµν ] = S[ḡµν ]−
1

8πG

∫
d4x
√
−ḡḠµν(∇µξν), (9)
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where Ḡµν = R̄µν − 1
2
R̄ḡµν is the on-shell condition for the background field. Integrating by

parts, the variation can be written as a boundary term, which vanishes under reparameteri-

zation, and a term proportional to ∇µḠ
µν , which is zero by the Bianchi identity. Therefore,

when hµν is a diffeomorphism, S[ḡµν + hµν ], and thus Γ[ḡµν ], is independent of the on shell

condition for the background fields, which is a form of background independence.

From the equation of motion for the effective action δΓ[ḡµν ]/δḡ
µν = −Tµν , it follows that

Eq. (8) applies to pure gravity with no external sources. When sources are present, the

more general form in Eq. (6) must be used involving the Jacobian for diffeomorphisms. This

determinant also arises in gauge fixing of conformal field theories. It can be exponentiated

using the Faddeev-Popov determinant as [36–40]

det

(
δhµν
δξµ

)
=

∫
DbανDcα exp

(
i

∫
d4x
√
−ḡḡµνcα∇µbαν

)
, (10)

where bαν is a symmetric and traceless tensor and cα is an antisymmetric vector. Inserting

this expression into Eq. (6), and assuming a conserved stress tensor (∇νTµν = 0),

exp

(
i

~
Γ[ḡµν ]

)
= exp

(
i

~
S[ḡµν ]

)∫
DbανDcα exp

(
i

∫
d4x
√
−ḡḡµνcα∇µbαν

)
. (11)

Thus, for gravity coupled to matter with a conserved stress tensor, the effective action is

equal to the classical action with an additional reparameterization ghost. This ghost must

be included to maintain consistency of the path integral measure. Physically, they represent

the residual degrees of freedom when hµν is constrained to vector gauge transformations.

The energy momentum tensor associated with the ghosts is [40, 41]

Tµν = cα∇µbαν −
1

2
gµνc

α∇βbαβ, (12)

which in flat space perturbation theory would give rise to an additional ghost-graviton vertex

linear in the internal momenta [42]. The equations of motion for the ghosts are [38–40]

∇νbαν = 0, ∇νcα +∇αcν = 0. (13)

Importantly, since the ghost action vanishes on shell, it only impacts the vertices of internal

loop diagrams and does not affect the S-matrix.

Lastly, it is worth discussing the implications of associating quantum fluctuations with

gauge transformations. Normally, fields related by gauge transformations are regarded as

physically equivalent, and therefore considered redundant in the path integral. To resolve
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this, one fixes the gauge and limits the integration to gauge-inequivalent fields. In the ap-

proach described here, the situation is reversed: only gauge-equivalent metrics are included.

This raises the question of why only gauge-equivalent fields should be counted for grav-

itation. This clearly requires more investigation. However, it is worth noting that in a

renormalizable field theory, the quantum corrections leave the form of the action invariant.

Only fields, coupling constants, and masses are renormalized. In this sense, the proposed

approach puts gravitation on a similar footing by constraining the quantum fluctuations in

such a way that the form of the classical action is invariant after quantization.

SUMMARY

Within the background field method of quantum gravity, I have shown that if the quantum

fluctuations are limited to diffeomorphic transformations, the quantum corrections to the

effective action reduce to a delta function in the on shell condition. Therefore, on-shell the

effective action is equal to the classical action with no quantum corrections. When coupled

to matter with a conserved stress tensor, I show that an additional reparameterization ghost

must be included for consistency. In addition, I have shown that this choice of fields renders

the effective action independent of the on shell condition for the background field, which is

a form of background independence. The proposed approach may provide insight into the

development of a finite and background independent theory of quantum gravity.
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