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In this work, we use the concept of quaternion time and demonstrate that it can be applied
for description of four-dimensional space-time intervals. Real quaternions form a normed division
algebra and we suggest that this is the main advantage of quaternions over other mathematical
representations of space-time. First, we use the quaternion norm for the description of the
measurement process. We demonstrate that the quaternion time interval together with the finite
speed of light signal propagation allow for a simple intuitive understanding of the time interval
measurement by a moving observer. We derive a quaternion form of Lorentz time dilation and
show that the norm of the quaternion time corresponds to the traditional expression of the
Lorentz transformation. We determine that the space-time interval in the observer reference
frame is given by a conjugate quaternion expression, which is essential for proper definition of the
quaternion derivative in the observer reference frame. Then, we use quaternion division to define
the four-dimensional differentiation. Finally, we apply quaternion gradients of the commutator and
anti-commutator types to an arbitrary quaternion potential, which leads to generic quaternion field
expressions. We apply the resulting formalism to the electromagnetic and gravitational potentials
and show that the traditional field expressions are obtained under simplifying assumptions, while
the new additional field terms need further study and experimental verification.

I. INTRODUCTION

We begin by proposing the real quaternions [1], [2],
[3], [4], [5], [6], as an alternative to the traditional math-
ematical formalism of four-dimensional space-time used
in special relativity theory [7], [8], [9], [10], [11], which at-
tempted to describe time dilation and space contraction
predicted by Lorentz [12], [13].

Previously, bi-quaternions were applied to special rela-
tivity [14] and showed initial promise in developing a uni-
fied field theory [15]. However, unlike real quaternions,
bi-quaternion mathematics is not a division algebra.

We develop a complex polar form of the quaternion
time interval and demonstrate that it describes transition
time from one physical state to another, while the norm of
the quaternion time interval describes the experimentally
measured value of the time interval, which corresponds
to the Lorentz time dilation.

We deduce that the conjugate quaternion time inter-
val corresponds to the time interval in the observer ref-
erence frame, which is essential for the correct definition
of quaternion differentiation by the observer.

We use quaternion differentiation of a generic quater-
nion potential in order to define the quaternion form of
a generic quaternion field.

Jack [16], [17] demonstrated a new approach of ap-
plying quaternion differentiation to derive quaternion
Maxwell equations, then, Dunning-Davies and Norman
[18] suggested using a similar method for the gravita-
tional field. Application of electromagnetic analogy to
gravitational fields and forces was previously extensively
studied [19], [20], [21], [22].
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We apply the new definition of the generic quater-
nion field to electromagnetic and gravitational interac-
tions and show that it reproduces the known results for
the vector fields, while introducing additional scalar and
vector components that need further investigation.

II. QUATERNION SPACE-TIME

Historically, Rodrigues [1] introduced quaternions
while searching for a method to describe rotation of
three-dimensional solids. His discovery can be consid-
ered the precursor to quaternion algebra, which was for-
mally introduced and extensively studied by Hamilton
[2], [3], who came across quaternions while searching
for well-defined division in the three-dimensional space.
Hamilton was quoted saying ”Time is said to have only
one dimension, and space to have three dimensions...
The mathematical quaternion partakes of both these ele-
ments” [4]. In Hamilton’s definition of quaternions, time
is real scalar and space is a three-dimensional imaginary
vector.

The key advantages of real quaternion algebra over
other mathematical approaches is that it has a positive
Euclidean norm, it describes both rotation and propa-
gation in three-dimensional space, and constitutes a di-
vision algebra with well-defined multiplication and di-
vision. This is fundamentally different from the four-
dimensional mathematics of Poincare [7], Minkowski [8],
[9], and Einstein [10] used in the special theory of rel-
ativity, where only one-dimensional inertial motion is
described, no rotation is present, negative norm of the
space-time interval is possible, and no four-dimensional
division is defined. Consequently, quaternion algebra de-
serves further investigation as an alternative mathemat-
ical formalism of space-time physics.
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Since the algebra of real quaternions is the only four-
dimensional division algebra, we introduce the four-
dimensional quaternion manifold,

T4 = ( τ̂0 , ~τ1, ~τ2, ~τ3) = ( ı̂0τ0 ,~ı1τ1,~ı2τ2,~ı3τ3) , (1)

which we identify with time in order to facilitate an in-
tuitive physical interpretation of the quaternion mathe-
matics [5].

Here, ı̂0, is a real scalar unity interval and, ~ı1,~ı2,~ı3,
are purely imaginary unit vectors, and τ0, τ1, τ2, τ3 ∈ R,
are real scalars. The relationships between the Euclidean
quaternion units, ı̂0,~ı1,~ı2,~ı3, are essential for the present
theory and are defined according to Hamilton [2] as,

ı̂0 ı̂0 = ı̂0 = 1 ,

~ı1~ı1 =~ı2~ı2 =~ı3~ı3 =~ı1~ı2~ı3 = −ı0 = −1 ,

~ı1~ı2 =~ı3, ~ı2~ı3 =~ı1, ~ı3~ı1 =~ı2 ,

~ı2~ı1 = −~ı3, ~ı3~ı2 = −~ı1, ~ı1~ı3 = −~ı2 .

(2)

In the current work, we develop the quaternion for-
malism in vacuum, therefore, we use the absolute value
of the speed of light in vacuum, c, as a scalar coefficient of
proportionality between space and time. This allows us
to express four-dimensional space-time in terms of four-
dimensional quaternion time,

T4 =
(
ı̂0τ0 ,~ı1

x1
c
,~ı2

x2
c
,~ı3

x3
c

)
. (3)

Thus, using quaternion unit intervals (2) and the speed
of light in vacuum, c, we were able to express four-
dimensional space-time in terms of quaternion time.

III. QUATERNION SPACE-TIME
COORDINATES AND INTERVALS

Next, we use quaternion space-time in order to estab-
lish coordinate point locations in the space-time coordi-
nate system.

Using (3) we define a point location in the quaternion
space-time coordinate system as,

τ = (τ0, ~τv ) =

(
t0,

~x

c

)
, (4)

where we define a pure imaginary space vector location,

~x = (~ı1x1,~ı2x2,~ı3x3 ) , (5)

and the real scalar time,

τ0 = ı̂0t0 = t0 . (6)

FIG. 1. A three-dimensional representation of the quaternion
time-point.

Note from (4) that t0 is the time at the zero-point space
location, ~x = 0.

The space-time coordinate point (4) is defined relative
to the quaternion zero-point,

0 =
(

0 ,~0
)

= ( ı̂00 ,~ı10,~ı20,~ı30 ) . (7)

Consequently, the quaternion space-time coordinate
point (4) is described by a four-dimensional quaternion
interval starting at the zero-point and ending at the co-
ordinate point.

Applying the definition of the quaternion space-time
coordinates, we use the quaternion time-point (4) for de-
scription of a time event of a physical process at a space
location, ~x.

The norm of the quaternion time interval, or its abso-
lute value, can be defined as,

τ = |τ | =
√
τ τ̄ =

√
τ̄ τ , (8)

where we use the conjugate quaternion time defined as,

τ̄ = ( τ0 , −~τv ) =

(
t0, −

~x

c

)
, (9)

Since the quaternion norm is positive real scalar, we iden-
tify the length of the quaternion time interval with the
measured time duration of a physical process.

In Fig. 1, we demonstrate a diagram of a quaternion
space-time point using a three-dimensional representa-
tion, where we neglect for simplicity the fourth dimen-
sion, ~τ3 = 0.

IV. POLAR REPRESENTATION OF
QUATERNION TIME INTERVALS

Note that the quaternion time interval signifies a tran-
sition in space-time from the zero-point to a space loca-
tion, ~x.
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FIG. 2. Polar quaternion form of the Lorentz time interval
dilation.

To describe this motion, we introduce a vector velocity,

~v =
~x

τ
, (10)

where, ~x, is a space interval and, τ = |τ |, is the abso-
lute value of the time interval given by (8). Note that
we previously defined an alternative quaternion velocity
expression [5].

Then, we write quaternion time in terms of its norm
and vector velocity,


τ = (τ0, ~τv ) =

(
t0 ,

~v

c
τ

)
,

τ̄ = (τ0, −~τv ) =

(
t0 ,−

~v

c
τ

) (11)

where we note a feedback form of the quaternion time
interval with the correction term determined by the ve-
locity relative to the speed of light.

We introduce a purely imaginary unit-vector,

~ı =
~x

x
=
~v

v
, (12)

which signifies the direction of motion.
Finally from (11) and (12), we express the quaternion

time interval in polar form,

τ = τ (cos θ , ~ı sin θ) = τ exp (~ı θ) , (13)

where the angle, θ, is a function of the velocity, ~v, and is
defined as, 

cos θ =
t0
τ

=

√
1− v2

c2
,

sin θ =
v

c

(14)

FIG. 3. Conjugate polar form of the Lorentz time interval
dilation..

Then from (13) and (17), we obtained the full polar
form of the time interval transformation,

τ =
t0√

1− v2

c2

exp (~ı θ) . (15)

Similarly, we can express the quaternion conjugate
time interval as,

τ̄ =
t0√

1− v2

c2

exp (−~ı θ) . (16)

Thus, we can consider expression (15) and its conju-
gate (16) as the quaternion form of the Lorentz time di-
lation.

Now, we can easily determine the norm of the quater-
nion time interval from (15) and (16),

τ = |τ | = |τ̄ | = t0√
1− v2

c2

, (17)

which we immediately recognize as the traditional real
scalar form of the Lorentz time dilation. As can be seen
the time quaternion interval depends on both the speed,
v/c, and direction of motion, ~ı. On the other hand, the
measured time interval is a function of the speed only.

In Fig. 2 and Fig. 3, we demonstrate diagrams of a
quaternion space-time interval and its conjugate using a
three-dimensional representation.

Therefore, we were able to obtain one of the main
mathematical results of the special theory of relativity
by using quaternion formulation of the space-time inter-
val and its absolute value.

V. PHYSICAL INTERPRETATION OF
QUATERNION SPACE-TIME INTERVALS

We will now elaborate on the physical meaning of the
quaternion time interval defined by (4) and (17) . Let us
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assume the existence of time sources such as clocks, and
time detectors such as observers, with recording instru-
ments.

Assume that there is a stationary clock located on a
train platform, which we consider a signal source. First
we perform an experiment in the source reference frame
of the stationary clock, where the location of the clock
we define as the zero-point of space, ~x = 0. Also, let
us consider an observer with a video camera passing the
platform on a train at midnight, when the time on the
platform clock is zero. We assume that the train is mov-
ing along a straight track with a constant vector velocity,
~v . The observer synchronizes the camera clock with the
platform clock at midnight and then starts filming the
time on the platform clock while simultaneously record-
ing the time-stamp of the camera.

After synchronization, the starting time for both the
platform clock and the observer camera is zero. The ob-
server stops filming when the camera records time, t0,
appearing on the platform clock. Then, what is the time-
stamp on observer’s camera at the end of the record-
ing? Due to the finite speed of light propagation, we
expect that the time on the platform clock will appear
delayed relative to the time-stamp on the observer’s cam-
era. Also, we expect that the delay is a function of the
train speed relative to the speed of light as the light sig-
nal from the clock is chasing the observer on the moving
train.

Let us define the quaternion time-point at the end of
the interval as, τ = (t0, τ~v/c). The quaternion time in-
terval of the recording is given by the difference,

τ − 0 =

(
t0 , τ

~v

c

)
= τ , (18)

In Fig. 2, we demonstrate the diagram of a quaternion
space-time interval in the source reference frame.

Let us suggest that the measured time interval on the
camera time-stamp is a real scalar value, equal to the
quaternion norm of the interval (17),

|τ | =
√
τ τ̄ =

√
τ̄ τ =

t0√
1− v2

c2

= τ , (19)

which is the Lorentz time dilation generally accepted as
a verified experimental result.

Next, let us consider the same experiment in the ob-
server’s reference frame. Clearly, we expect to obtain
the same experimental result even though the platform
is now moving away from the observer with a constant ve-
locity −~v. The starting time of the measurement and the
clock synchronization time is zero, as in the source refer-
ence frame. However, the end time-point is now given by
the conjugate quaternion τ ′ = (t0,−τ~v/c) due to imag-
inary space inversion when changing from the source to
the observer reference frame,

τ ′ − 0 =

(
t0 ,− τ

~v

c

)
= τ̄ . (20)

In Fig. 3, we demonstrate a diagram of a quaternion
space-time interval in the observer reference frame.

Let us now calculate the measured time-interval dura-
tion in the observer reference frame,

|τ̄ | =
√
τ τ̄ =

√
τ̄ τ =

t0√
1− v2

c2

= τ . (21)

As expected, the measured time duration by the observer
remains the same as in the source reference frame, despite
the conjugate form of the time interval.

Therefore, the physical interpretation of the quater-
nion time interval can be deduced directly from its def-
inition. It describes the time interval measured by the
observer, moving with a constant velocity, ~v, from the
zero-point to a location, ~x. Here, t0, is time on the sta-
tionary zero-point clock and, τ = |τ |, is the time in-
terval duration measured by the moving observer. Note
that the conjugate form of the space-time interval in the
observer reference frame is critically important for the
correct definition of quaternion differentiation in the ob-
server reference frame. This physical interpretation is
similar to the relativistic Doppler effect approach [11],
however using quaternion mathematical formalism.

VI. QUATERNION POTENTIAL
DIFFERENTIATION AND GENERIC FIELDS

Next, we take advantage of quaternion division in order
to define proper quaternion differential operators in the
source and observer reference frames. Thus, using the
definition of the quaternion multiplicative inverse,


τ−1 =

τ̄

τ2

τ̄−1 =
τ

τ2
,

(22)

we define the quaternion differential operators cor-
responding to the gradient operators in the three-
dimensional space,


∇̄ =

1

c

d

dτ
=

(
∂

c∂t0
,−~ı1

∂

∂x1
,−~ı2

∂

∂x2
,−~ı3

∂

∂x3

)

∇ =
1

c

d

dτ̄
=

(
∂

c∂t0
,+~ı1

∂

∂x1
,+~ı2

∂

∂x2
,+~ı3

∂

∂x3

)
.

(23)
We can write the four-dimensional gradients in the sim-
plified quaternion notation as,

∇̄ =

(
∂

c∂t0
,−~∇

)

∇ =

(
∂

c∂t0
, ~∇

)
,

(24)
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Thus, the correct form of the quaternion differential op-
erator assumes the conjugate form, ∇̄, in the source ref-
erence frame, with a minus sign in front of the vector
part of the operator. On the other hand in the observer
reference frame, the expression for the differential oper-
ator has the traditional form , ∇, due to the conjugate
form of the space-time interval, τ̄ , in the denominator.

Since we are primarily interested in the reference frame
of the measuring apparatus, which is the observer refer-
ence frame, we will use the form of the derivative operator
given by ∇.

Let us introduce a quaternion four-potential corre-
sponding to an arbitrary physical interaction, similar to
[22],

φ = (φ0 , ~φv ) =

(
φ0 ,

~v

c
φ

)
(25)

where, φ0, is the static potential at the signal source,

while, ~φv = ~v/cφ, is the vector potential due to the mo-
tion of the source relative to the observer. As usual, we
can define the potential measured by the observer as the
quaternion norm,

φ = |φ| = |φ̄| = φ0√
1− v2

c2

. (26)

Then using the definition of quaternion multiplication
for any two quaternions, a and b,

 ab =
(
a0b0 − ~a ·~b, a0~b+ b0~a+ ~a×~b

)
ba =

(
a0b0 − ~a ·~b, a0~b+ b0~a− ~a×~b

)
,

(27)

we can define two force fields as derivatives of the poten-
tial function, 

F+ = −φ∇

F− = −∇φ.
(28)

Note that the two derivatives are due to non-
commutativity of the quaternion multiplication resulting
in the left and right derivatives.

Then applying (25) and (27) to (28), we obtain general
expressions for quaternion forces,


F+ =

(
− ∂φ0
c∂t0

+ ~∇ · ~φv, −
∂~φv
c∂t0

− ~∇φ0 + ~∇× ~φv

)

F+ =

(
− ∂φ0
c∂t0

+ ~∇ · ~φv, −
∂~φv
c∂t0

− ~∇φ0 − ~∇× ~φv

)
.

(29)

Let us look for single-valued functions defining the field
components by using commutator and anti-commutator
relations,


Fa =

1

2

(
F+ + F−

)
Fc =

1

2

(
F+ −F−

)
.

(30)

This results in two types of the generic quaternion field
components from (29) and (30),


Fa =

(
− ∂φ0
c∂t0

+ ~∇ · ~φv , −
∂~φv
c∂t0

− ~∇φ0

)

Fc = ~Fc = ~∇× ~φv ,

(31)

which can be further expanded using the velocity de-
pendent vector potential, φv = (~v/c)φ,


Fa =

(
− ∂φ0
c∂t0

+ φ~∇ · ~v
c

+ (~∇φ) · ~v
c
, −∂(~vφ)

c2∂t0
− ~∇φ0

)

Fc = ~Fc = φ

(
~∇× ~v

c

)
+ (~∇φ)× ~v

c
.

(32)
The total fields result from (30) and (32),

F+ = Fa + Fc

F− = Fa −Fc .

(33)

For the stationary case, when, ~v ∼ 0, the field compo-
nents become,

F+ = F− = Fa '
(
− ∂φ0
c∂t0

, −~∇φ0
)

Fc = ~Fc ' ~0 ,

(34)

which further reduce to the classical field expression
for the stationary static field, when ∂φ0/∂t0 ∼ 0,


F+ = F− = ~Fa ' −~∇φ0 .

Fc ' ~Fc = ~0 .

(35)

Thus, we obtained generic field equations for an ar-
bitrary physical interaction defined by a quaternion po-
tential function, φ. One of the field components, Fa, ,
is a full quaternion, with both scalar and vector parts,
which describe time-dependent fluctuations and linear
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propagation. The other field component, Fc, is a three-
dimensional pure vector, describing rotation in the pres-
ence of motion. The field components combine into two
expressions for the total quaternion field, F+ and F−,
which reduce to the classical field expression for the static
stationary case. Note that the new field expressions were
derived from a velocity dependent quaternion potential
and consequently depend on the velocity of the body un-
der investigation relative to the observer measuring ap-
paratus.

VII. QUATERNION ELECTROMAGNETIC
FIELDS

Let us consider electromagnetic interaction expressed
by a quaternion electromagnetic potential, φ, in the ob-
server reference frame, where we introduce the electric
and magnetic fields using (30),


Fa = E =

(
E0 , ~E

)
Fc = B =

(
0, ~B

)
.

(36)

As we can see, the electric field is a full quaternion,
with both the scalar and vector components. On the
other hand the magnetic field is purely a vector field.
We derive full expressions for the fields from (31) and
(36), 

E0 = − ∂φ0
c∂t0

+ ~∇ · ~φv

~E = − ∂
~φv

c∂t0
− ~∇φ0

~B = ~∇× ~φv ,

(37)

which reminds of the traditional expressions for the elec-
tric and magnetic fields, with the exception of of a scalar
component of the electric field, E0, which is not present
in the traditional approach.

Using the velocity dependent vector potential, φv =
(~v/c)φ, we obtain from (32) and (37),



E0 = − ∂φ0
c∂t0

+ φ ~∇ · ~v
c

+ (~∇φ) · ~v
c

~E = −∂(~vφ)

c2∂t0
− ~∇φ0

~B = φ

(
~∇× ~v

c

)
+ (~∇φ)× ~v

c
.

(38)

By applying (36) to the generic definition of the force
fields (33), we obtain two quaternion expressions for the

total electromagnetic fields,
F+ =

(
E0 , ~E + ~B

)
F− =

(
E0 , ~E − ~B

)
,

(39)

where the field components are given by (38). While
the first expression in (39) represents positive electric
charges, we suggest that the second expression seem to
correspond to negative electric charges.

Next using (39), we obtain two quaternion expressions
for the Lorentz electromagnetic force,

F + = q
(
E0 , ~E + ~B

)
F − = q

(
E0 , ~E − ~B

) (40)

where q is a positive unit charge and electric and mag-
netic fields are given by (38).

For the stationary case, ~v ∼ 0, the electromagnetic
fields are,

F+ = F− = E '
(
− ∂φ0
c∂t0

, −~∇φ0
)

Fc = B ' 0 ,

(41)

which further reduces to the classical field expression for
the stationary electro-static field, ∂φ0/∂t0 ∼ 0,


F+ = F− = ~E ' −~∇φ0 .

~B ' ~0 .
(42)

It seems that the quaternion form of electromagnetic
interaction demonstrates a full quaternion electric field
and a classical vector magnetic field. In addition, it pre-
dicts existence of positive and negative electric charges
that behave differently while moving in the magnetic
field, as expected from the Hall effect [13].

VIII. QUATERNION GRAVITATIONAL FIELDS

Next, let us assume that the gravitational field can be
also described by a potential function in the quaternion
form (25). Then, we apply definitions of the quaternion
field components (30) in order to derive two components
of the gravitational field,

Fa = Γ =
(
Γ0 , ~Γ

)
Fc = Ω =

(
0, ~Ω

)
.

(43)
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where the components of the gravitational field include

the novel scalar field, Γ0, as well as two vector fields, ~Γ ,

and ~Ω. Now, we can calculate the field components from
the potential using (31),



Γ0 = − ∂φ0
c∂t0

+ ~∇ · ~φv

~Γ = −~∇φ0 −
∂~φv
c∂t0

~Ω = ~∇× ~φv .

(44)

where, ~Γ , and, ~Ω, are gravitational equivalents of the
electrical and magnetic fields.

Using the velocity dependent vector potential, φv =
(~v/c)φ, we obtain,

Γ0 = − ∂φ0
c∂t0

+ φ ~∇ · ~v
c

+ (~∇φ) · ~v
c

~Γ = −∂(~vφ)

c2∂t0
− ~∇φ0

~Ω = φ

(
~∇× ~v

c

)
+ (~∇φ)× ~v

c
.

(45)

By applying (43) to the generic definition of the force
fields (33), we obtain quaternion expressions for the total
gravitational fields,


F+ =

(
Γ0 , ~Γ + ~Ω

)
F− =

(
Γ0 , ~Γ − ~Ω

)
,

(46)

which are of course equivalent to the general expressions
(29). The two expressions for the gravitational field dif-

fer by the direction of the torsion field, ~Γ , similar to the
effect of the magnetic field in the electromagnetic force.
Therefore, we interpret the two field expressions as rep-
resentation of two types of particle mass.

Then by using (46), we obtain quaternion expres-
sions for the gravitational forces for negative and positive
masses respectively,


F + = m

(
Γ0 , ~Γ + ~Ω

)
F − = m

(
Γ0 , ~Γ − ~Ω

)
,

(47)

where m is a positive unit mass.
Assuming small variations of the gravitational poten-

tial with time, ∂φ0/∂t0 ∼ 0, and ∂~φ/∂t0 ∼ 0, we obtain
the approximate form of the gravitational field,



Γ0 ' φ ~∇ ·
~v

c
+ (~∇φ) · ~v

c

~Γ ' −~∇φ0

~Ω ' φ
(
~∇× ~v

c

)
+ (~∇φ)× ~v

c
.

(48)

which is a new form of gravitational field expressions for
slow varying fields.

For the stationary case, when, ~v ∼ 0, the field expres-
sions reduce to,


F+ = F− = ~Γ ' −~∇φ0 ,

~Ω ' ~0 .
(49)

Thus we obtained quaternion expressions for the gravi-
tational fields and forces similar to the electromagnetic
expressions.

IX. CONCLUSIONS

We introduced quaternion space-time and presented a
framework for description of physical events using quater-
nion time intervals. We derived the quaternion form of
the Lorentz time transformation and presented an intu-
itive physical interpretation of the time dilation. Then,
we showed that quaternion algebra leads to well behaved
quaternion calculus, provided we choose the right deriva-
tives for the observer reference frame. Finally, we pro-
posed a general form of quaternion field expressions, by
differentiating a generic quaternion potential function,
and applied them to electromagnetic and gravitational
interactions. The resulting expressions for fields and
forces depend on the particle velocity relative to the ob-
server. The additional novel terms in the field expressions
need further study and experimental verification.
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