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Abstract : 
     [ In this work we find invariants of one dimensional dissipative harmonic oscillator 

from an elementary ansatz. It is shown that an elementary ansatz along with symmetry 

consideration yields new invariants of one dimensional dissipative harmonic oscillator.] 
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1. Introduction  

  Invariants or conservation laws are very important for investigation of mechanical 

systems. Generally knowledge of Lagrangian is essential for finding invariants of a dynamical 

system. Symmetry analysis is a very powerful tool to find invariants of a system. Among various 

symmetry approaches, Noether symmetry analysis [1] is well known for its elegance. It provides 

one to one correspondence between symmetry properties of Lagrangian and conservation laws. 

However in many cases without the knowledge of Lagrangian one can easily find conservation 

laws of the system. In this paper we shall find invariants of dissipative simple harmonic 

oscillator from an elementary ansatz. 
 

2. Time independent invariants.   

  The differential equation for linearly damped harmonic oscillator is 

    ẍ + µẋ + ω2x = 0      …(2.1) 

The Lagrangian of (2.1) is known as Caldirola-Kanai [2, 3]  Lagrangian : 

    L = eμt (
ẋ2

2
− 

x2

2
)              …(2.2) 

We shall pay no attention to the Lagrangian and assume an ansatz for invariant of (2.1) as 

    I = ẋG = Constant      …(2.3) 

             where  G = G(x, ẋ)             …(2.4) 

                 Now           Ġ = 
∂G

∂x
 ẋ +  

∂G

∂ẋ
 ẍ    

       = 
∂G

∂x
 ẋ − (μẋ +  ω2x) 

∂G

∂ẋ
  ;    using (2.1)   …(2.5) 

And from (2.3), taking derivative with respect to time  

                                                ẍG + ẋĠ = 0  

                       i,e.,  ẋĠ − (µẋ + ω2x) G = 0   ;   using  (2.1)                                                  …(2.6) 

Using (2.5) one obtains from (2.6) 

        ẋ [
∂G

∂x
 ẋ −  (μẋ + ω2x)

∂G

∂ ẋ
] − (µẋ + ω2x) G = 0  

                            i.e., 
∂G

∂x
−  

∂G

∂ẋ
(μ +  

ω2x

ẋ
) −  (

μ

ẋ
+ 

ω2x

ẋ2 ) G = 0    …(2.7) 

 

 



2 

 

 

To solve (2.7) for  G, we seek a similarity variable   defined by  

                       = xαẋβ   ;   ,  to be chosen later     …(2.8) 

 

Therefore 
∂

∂x
 ≡  αxβ−1ẋβ d

d
 

                  and 
∂

∂ẋ
≡  βẋβ−1xα d

d

}                                                                       …(2.9) 

Using (2.9), equation (2.7) can be written as 

    αxα−1ẋβ dG

d
− βẋβ−1xα  

dG

d
 (μ +  

ω2x

ẋ
) −  (

μ

ẋ
+  

ω2x

ẋ2
)  G  = 0 

    i. e. ,
dG

d
 [αxα−1ẋβ − μβẋβ−1xα −  βω2xα+1ẋβ−2  ] − (

μ

ẋ
+  

ω2x

ẋ2
)  G  = 0 

               i. e. ,
dG

d
 [1 −

μβ

α
 
x

ẋ

 
−  

βω2

α

x2

ẋ2
  ] − [

μ

α
 
x1−α

ẋβ+1

 

+ ω2  
x2−α

ẋ2+β
  ]  G  = 0              …(2.10) 

Case (i) 

 We now choose 

                                  i)    = 1 ,     = ‒1               …(2.11) 

Hence from (2.8) 

                                    = 
x

ẋ
                  …(2.12) 

Using (2.11) and (2.12), equation (2.10) assumes a simplified form : 

                 
dG

d
 [1 +  μ +  ω2

2] = [ μ +  ω2
 ]G 

Therefore 

                  
dG

G
  = 

(μ+ω2
  ) d

1+ μ + ω2
2  

Hence     lnG = µ∫
1

(1+ μ + ω2
2 )

 d + ω2∫


(1+ μ + ω2
2 )

 d 

Therefore   G = eμI1+ ω2I2                      …(2.13)  

               where  I1 =  ∫
d

1+ μ + ω2
2                                                                    ...(2.14) 

               and      I2 =  ∫
 d

1+ μ + ω2
2                                                                                     …(2.15) 

Now Handbook of integrals [4] give 

  I1 = 
1

√−
 ln 

(μ+2ω2 − √− )

(μ+2ω2 + √− )
  ;    = ω2 − µ2 < 0 

                            = 
1

√−
 ln 

(μ+2ω2x

ẋ − √− )

(μ+2ω2x

ẋ + √− )
        using (2.12)            …(2.16) 

                            = 
− 2

μ+2ω2
  ;    = 0 
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                     = 
− 2

μ+2ω2x

ẋ
 
                              using (2.12)                     …(2.17) 

                     = 
2

√
 tan‒1 

μ+2ω2

√
  ;       > 0 

   

                    = 
2

√
 tan‒1 

μ+2ω2  
x

 ẋ
√

               using (2.12)                         …(2.18) 

And        I2 = 
1

2ω2  ln (1 +  μ + ω2
2) ‒  

μ

2ω2
 I1  

                   = 
1

2ω2  ln (1 +  μ
x

ẋ  +  ω2 x2

ẋ2) ‒  
μ

2ω2
 I1           …(2.19) 

Finally from (2.3), using (2.13) and (2.16), (2.17), (2.18) and (2.19) we get an invariant of (2.1) : 

                                 ẋeμI1+ ω2I2 = Constant           …(2.20) 

where   I1  and  I2  are given by (2.16), (2.17), (2.18) and (2.19). 

 

Case  ii) 

 To find another invariant of (2.1) we choose 

                        ii)  
 α =  −1
β = 1   

}              …(2.21) 

Then from   (2.8)   

                                = 
ẋ

x
                …(2.22) 

And from (2.10) 

           
dG

d
 [1 +  

μ


+  

ω2


2 ] ‒ [

μ


2 + 

ω2


3 ]G = 0 

Hence      
dG

G
 = 

μ


2      d

[1+ 
μ


+ 

ω2


2 ]

 + 

ω2


3       d

[1+ 
μ


+ 

ω2


2 ]

 = 
μ d

[2+ μ+ ω2]
 + 

ω2 d

[2+ μ+ ω2]
 

Thus      lnG = µ ∫
d


2

+ μ + ω2
 + ω2 ∫

d

(
2

+ μ + ω2)
  

Therefore 

  G = eμI3+ ω2I4                                                                                       …(2.23) 

Where             I3 = ∫
d

(
2

+ μ + ω2)
          …(2.24) 

                       I4 = ∫
d

 (
2

+ μ + ω2)
          …(2.25) 

From table of integrals  [ 4 ] 

  I3 =  − 
2

√−
 tanh‒1 

μ+2ω2

√−
  ;       = 4ω2 – µ2 < 0 

                            =  − 
2

√−
 tanh‒1 

μ+2ω2 
ẋ
x

√−
   using (2.22)       …(2.26) 

                            = 
− 2

μ+2ω2
   ;          = 0 
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                            = 
− 2

μ+2ω2ẋ
x 

   using (2.22)       …(2.27) 

                         I3 = − 
2

√
 tan‒1 

μ+2ω2

√
  ;       > 0 

                             = − 
2

√
 tan‒1 

μ+2ω2 
ẋ
x

√
     using (2.22)       …(2.28) 

and                   I4 =   
1

2𝜔2  ln 


2

(2+ μ + ω2)
 ‒ 

μ

2ω2 I3  

                             =  
1

2𝜔2
 ln 

(
ẋ
x)

2

(
ẋ

2

x2+ μ 
ẋ
x + ω2)

 ‒ 
μ

2ω2
 I3 using (2.22)           .(2.29) 

We thus get another invariant of (2.1) : 

From (2.3), using (2.23) and (2.26), (2.27), (2.28) and (2.29) 

   ẋ G = ẋeμI3+ ω2I4 = Constant        …(2.30) 

I3 and I4  are given by (2.26) to (2.29). 

 

Likewise we can get many more invariants of (2.1) by assigning any arbitrary value of  n  to   

and – n to  or in other words taking  = n and  = ‒ n we can find galore of invariants of 

dissipative linear harmonic oscillator. 

 

 

3. Conclusion and Comments. 
     Construction of invariants of a dynamical system is an 

important part of theoretical study. The above method of finding invariants has not been used so 

far. Time independent and time dependent invariants of dissipative harmonic oscillator have 

been worked out by various authors [4, 5, 6] using various methods. Using above method one 

can explicitly determine as many as invariants of dissipative harmonic oscillator as one wishes. 

However as equation (2.1) has two independent constants, only two of invariants calculated will 

be functionally independent. 
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