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Abstract 
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It is generally accepted that any physical object can be considered as a set of material points, 

endowed with a set of physical parameters. Knowing the state of motion of each point of the object 

is equivalent to the knowing the state of motion of the whole object. Thus, the state of the object 

is characterized by a number of parameters, and any change in their values is the movement of the 

object. Parameters may be both discrete (such as spin and charge) and continuous (the coordinates 

of points, the moments of time). The number of parameters required to describe the physical sys-

tem is determined by the specific task. For example, Newtonian mechanics requires three coordi-

nates to describe the motion of a particle, while for describing the behavior of a large number of 

subsystems it is necessary to introduce the concept of configuration and phase spaces.  

Here we consider only continuous parameters, called coordinates, each of which takes val-

ues on the real line. The set of all parameters defines the coordinate space, the metric properties 

of which one needs to know to be able making direct physical measurements that allow determin-

ing how the parameters in this physical process change. For example, in the analytical dynamics 

such parameter space is the space of generalized coordinates. In each physical process, it is possi-

ble to determine physical quantities that are functions of parameters, which are determined by 

indirect measurements and set the state of the object. The set of all possible states determines the 

space of states. Thus, we can summarize that the state of physical objects are realized on the co-

ordinate space. In other words, the coordinate space is a reservoir of physical objects and the arena 

in which physical processes happen. In this sense it has the same absolute character as Newton’s 

space. 

Since the coordinate space is a continuous manifold, then we assume that it is a smooth 

differentiable real N-dimensional space, ND , covered by the curvilinear coordinates (parameters) 
AX , 1,2,...,=A N , N is the number of parameters. Changing the state of the system is determined 

by the motion of a point in this space, so that the point moves along a path, or a smooth curve, the 

parametric equation of which is ( )=A AX X s . One can choose any parameter as the parameter s, 

but it is most convenient to choose a natural parameter determined by the arc length of the trajec-

tory. In the Special Relativity for subluminal particles, such a parameter is the proper time. There-

fore, the Minkowski space, just like Euclidean space of Newtonian mechanics, is also absolute in 

nature, rather than the relative one, as it stated in Special Relativity. 

The derivative of the coordinates 
AX  with respect to the parameter s at any point of the 

trajectory defines a tangent vector /A AV dX ds= . The set of such vectors, which are tangent to 

all possible trajectories, passing through a given point, forms a tangent N-dimensional vector space 

NV  at this point 
AX , which does not coincide with the vector space of the same structure at a 
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neighboring point 
AX   of the parameter space. In order to go to a neighboring point it is necessary 

to make the transformation ( )A A BX f X =  in the space ND , which induces a linear transformation 

A A B

BdX F dX
 =  in the space NV , where A A B

B
F X XF̂ ( ) ( / ) is transformation matrix. The 

transformation in ND  defines the transition from local map ( , )U  to the map ( , ) U , where 

NU D  and N
 U D  are open sets in ND , covering by coordinates { }AX U  and { }AX  U , 

respectively.   and    are homeomorphisms of sets U  and U  onto the open sets D  and D , 

respectively, allowing to determine local coordinates { }A D  in U  and { }A D  in U : 

: → DU , or ( )A A BX = ; (1) 

:  → DU , or ( )A A BX   = . (2) 

Introduction of local coordinates allows, first, to determine a local basis at any point of the 

trajectory and to establish the transformation law of the basis for passing from point to point, and, 

secondly, to connect local coordinates with tangent vectors by a linear transformation: 
A A B

Bd H dX = . Coordinates A  and 
AX  may be chosen so that the matrix A

B
HĤ ( )  will be of 

canonical form. 

From a physical point of view, the measurement process is realized using the local coordi-

nates A . Then coordinates 
AdX  will be «naturally measured quantities», as they are called by 

Einstein,1 and canonical form of the matrix Ĥ  determines the metric structure of the tangent space 

NV . Tangent spaces can be superposed with each other at all points of the space ND . Therefore, 

the space NV  with canonical metric can be regarded as a background space, where physical phe-

nomena develop. This agrees with Poincaré’s assertion that geometry does not stem from experi-

ence and, therefore, “One geometry cannot be more true than another; it can only be more conven-

ient”.2 

Determining the canonical form of a matrix Ĥ  is a completely definite, but rather cumber-

some procedure. As is known, its gist consists in the fact that it is necessary to find eigenvalues 

A  of the matrix Ĥ , and then use the scale transformations to reduce its elements to 0, 1 or –1. 

A  are solutions of characteristic equation 

 1 P 0N N H 1ˆdet( ) ( ) ( ) , (3) 

where 
1

1 1 0P ( ) ...N N N

Na a a   −

−= + + + +  is a polinomial of N-th degree whose coeffecients are 

expressed in terms of the elements od the matrix Ĥ . Polinomial P ( )N   can be represented as 

 
1 2

1 2 2 2 2

1 2 1 2P ( ) ( ) ( ) ...( ) P ( ) P ( ) ... P ( )
z

n
s s s

mm mN

n z              = − − −       , (4) 

where im  ( 1,2,...,i n= ) are algebraic multiplicity of real roots 1 , 2 , ..., n , 

ks  ( 1, 2,...,k n n n z= + + + ) are algebraic multiplicity of complex roots k , 

 
2 * 2 * *P ( ) ( )( ) ( )k n k k k k k k          − = − − = − + +  (5) 

is a polinomial of second degree with two complex conjugate roots k  and 
*

k . 

Let the real roots 1 , 2 , ..., n  of the polynomial (4) satisfy conditions 

 

1

1

1

0,..., 0 ;

0,..., 0 ;

0,..., 0 ;

 

 

 

+ +

+ ++ +

= =

 

 

r

r r p

r p qr p

 (6) 

 
1 “Naturlich gemessene Größen”, [1], S. 1058. 
2 [3], p. 50; «Une géométrie ne peut pas être plus vraie qu'une autre; elle peut seulement être plus commode» ([2], 

p. 66-67). 
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and complex roots 1n + , 2n + , ..., n z +  satisfy conditions 

 

1

1

1

Re 0,...,Re 0 ;

Re 0,...,Re 0 ;

Re 0,...,Re 0 .

 

 

 

+ +

+ + + +

+ + + + + +

 

 

= =

n n k

n k n k l

n k l n k l m

 (7) 

Then n r p q , z k l m , 1 2 1 2... 2( ... )p q zN r m m m s s s , whereas 

rank of the matrix Ĥ  is 
1 2 1 2

ˆrank( ) ... 2( ... )p q zm m m s s s N rH .  

With the help of scrupulous calculations, one can show that the matrix Ĥ  reduces to the 

following canonical form 

 1

0
diagH MHM 0 E A Σˆ ˆ ˆ ˆ ( , , , )

r p q k l m
, (8) 

where 

 11

1 1

diag
   

E E E E E( ,..., , ,..., )p p p q

p p p q

m m mm

p q
, (9) 
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1 1

diag
   

A A A A A( ,..., , ,..., )k k lk

k k k l

s sss

k l
, (10) 

 1

1

diag
 

Σ Σ Σ( ,..., )k l k l m

k l k l m

s s

m
, (11) 

M̂ , 
1

M̂  are degenerate matrices of rank N r−  of the transition to the local basis and vice versa, 

which satisfy the relation 
1 1 diag

r N r
MM M M 0 1ˆ ˆ ˆ ˆ ( , ). 

The matrices that make up the diagonal blocks of the matrix (8) have the form 

 
i i

i

i

i

mm

i

i

m

m







−+ 
=  
 
 

1 0
E

0 E
, 

1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

i i

i

 



 
 
 
 =
 
 
 
 

E , 1,2,...,i p= ; (12) 

 
i i

i

i

i

mm

i

i

m

m







−− 
=  
 
 

1 0
E

0 E
, 

1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

i i

i

 



− 
 

− 
 =
 

− 
 − 

E , 1, 2,...,i p p p q= + + + ; (13) 
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2

a a
a

a

a

ss

a

a

s

s







− 
=  
 
 

α 0
A

0 A
, 

2

2

2

2

a a

a

 



+ 
 

+ 
 =
 

+ 
 + 

α 1 0 0

0 α 0 0

A

0 0 α 1

0 0 0 α

, 1,2,...,a k= ; (14) 
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2

2

a a
a

a

a

ss

a

a

s

s







−− 
=  
 
 

α 0
A

0 A
, 

2

2

2

2

a a

a

 



− 
 

− 
 =
 

− 
 − 

α 1 0 0

0 α 0 0

A

0 0 α 1

0 0 0 α

,  

1, 2,...,a k k k l= + + + ;  (15) 

2

2

a a
a

a

a

ss

a

a

s

s







− 
=  
 
 

σ 0
Σ

0 Σ
, 

2

2

2

2

a a

a

 



 
 
 
 =
 
 
 
 

σ 1 0 0

0 σ 0 0

Σ

0 0 σ 1

0 0 0 σ

, 

 1, 2,...,a k l k l k l m= + + + + + + ; (16) 

 ...n n

n

=  =   α 1 α α α α , 2

1 11 1
( )

1 12 2

 
= + =  

− 
α 1 σ , (17) 

 ...n n

n

=  =   σ 1 σ σ σ σ , 2

0 1

1 0
i

 
= = 

− 
σ , (18) 

n0 , n1  are zero and unit n n -matrices, respectively, 2  in (18) is the Pauli matrix. At 0n  

matrices n0 , n1 , nE , nA , nΣ  vanish. In formulas (8)-(16) i , i  are geometric multiplicities, 

meaning that the matrix Ĥ  satisfies the minimal equation 

1 2
1 2 2 2 2

1 2 1 2
P P P

z
n

n z

  
 

  H H H H H H 0ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ...( ) ( ) ( ) ... ( ) .  (19) 

The canonical form (8) of the matrix Ĥ  determines the distance in the space NV , which for 

infinitely close points on the world line is expressed in terms of local coordinates by means of Ĥ  

in the form 

 
2

0
ˆ ˆ( ) A B A B

AB ABdS dX dX d d H H , (20) 

The representation of the matrix Ĥ  in the canonical form means that the vector space NV  

can be represented as a direct sum of invariant subspaces 

 1

1N ... k l m

k l m

sm

r  
+ +

+ +
=   V V V V , (21) 

each of which is covered by its own set of local coordinates. It means that line element (20) of the 

world line can be expressed in the form 

 
1 1

2 2 2 2...
k l m k l mr m sdS ds ds ds  , (22) 

which contains all possible cases of metrics. For example, if 1

1
0

m


H Eˆ , then at 1 3m = , 1 2 =  Ĥ  

can be regarded as the metric of a monoclinic crystal with one circular optical axis (see, e. g., [4], 

p. 97). The metric of an anisotropic space was considered by Edwards in [5], as well as in [6], 

pp. 82-88, where Einstein coordinates and Edwards coordinates are related by the matrix E i

i

m
, 

(12) , at 1i , 1 4m , 1 2 . The use of metrics of the form (14)-(16) can refer to different 

superspaces in which the coordinates do not commute with each other. 
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