New Coordinate Vacuum Solution in Cosmological General Theory of Relativity

Sangwha-Yi

Department of Math, Taejon University 300-716, South Korea

ABSTRACT

In the general relativity theory, we discover new vacuum solution by Einstein's gravity field equation. We investigate the new coordinate in cosmological general theory of relativity (CGTR).

PACS Number:04,04.90.+e,98.80,98.80.E

Key words: Cosmological General Theory of Relativity;

Gravity Field Equation;

New Coordinate Vacuum Solution

e-mail address:sangwha1@nate.com

Tel:010-2496-3953

1. Introduction

We solve new vacuum solution by gravity field equation in cosmological general theory of relativity. New spherical coordinate is

$$d\tau^{2} = dt^{2} - \frac{1}{c^{2}} [dr^{2} + V(t, r) \{ d\theta^{2} + \sin^{2} \theta d\phi^{2} \}]$$

$$V(t, r) = C_{1} (act + br)^{2}, \quad C_{1} = \frac{1}{b^{2} - a^{2}}$$

$$a, b, C_{1} \text{ is constant, } C \text{ is light's velocity.}$$

(1)

(3)

In this time, Einstein's gravity equation is

$$R_{tt} = \frac{\ddot{V}}{V} - \frac{\dot{V}^{2}}{2V^{2}}$$

$$= \frac{2a^{2}}{(act + br)^{2}} - \frac{1}{2} \frac{4a^{2}}{(act + br)^{2}} = 0$$

$$R_{rr} = \frac{V^{1}}{V} - \frac{1}{2} \frac{V^{2}}{V^{2}}$$

$$= \frac{2b^{2}}{(act + br)^{2}} - \frac{1}{2} \frac{4b^{2}}{(act + br)^{2}} = 0$$
(2)

$$R_{\theta\theta} = -\frac{\ddot{V}}{2} + \frac{V^{1}}{2} - 1$$

$$= -C_1 a^2 + C_1 b^2 - 1 = 0 (4)$$

$$R_{\theta\theta} = \sin^2 \theta R_{\theta\theta} = 0 \tag{5}$$

$$R_{tr} = \frac{\dot{V}'}{V} - \frac{\dot{V}V'}{2V^2}$$

$$= \frac{2C_1 ab}{(act + br)^2} - \frac{1}{2} \frac{4C_1 ab}{(act + br)^2} = 0$$
(6)

In this time,

$$V' = 2C_1b(act + br), \dot{V} = 2C_1a(act + br), V'' = 2C_1b^2, \ddot{V} = 2C_1a^2$$

$$A' = \frac{\partial A}{\partial r}, \dot{A} = \frac{1}{c} \frac{\partial A}{\partial t}$$

2. New vacuum solution in cosmological general theory of relativity

Hence, new vacuum solution is

$$d\tau^2 = dt^2 - \frac{1}{c^2} \left[dr^2 + \frac{1}{b^2 - a^2} (act + br)^2 \left\{ d\theta^2 + \sin^2 \theta d\phi^2 \right\} \right]$$

$$a, b, C_1$$
 are constant, C is light's velocity. (7)

In this time, if Γ^{1} is

$$r' = \frac{1}{\sqrt{b^2 - a^2}} (act + br)$$

As

$$dr' = \frac{1}{\sqrt{b^2 - a^2}} (acdt + bdr)$$

Or

$$dr = \frac{\sqrt{b^2 - a^2}}{b} dr' - \frac{a}{b} c dt \tag{8}$$

If new solution Eq(7) is inserted by transformation Eq(8),

$$dr^{2} = \frac{b^{2} - a^{2}}{b^{2}} dr^{2} - 2\frac{a}{b^{2}} \sqrt{b^{2} - a^{2}} dr^{2} cdt + \frac{a^{2}}{b^{2}} c^{2} dt^{2}$$
(9)

In this time, if α_0 is

$$\alpha_0 = \frac{a}{b} \tag{10}$$

Hence, proper time $d\tau$ of new solution is

$$d\tau^{2} = (1 - \alpha_{0}^{2})dt^{2} + 2\alpha_{0}\sqrt{1 - \alpha_{0}^{2}}dr^{1}\frac{dt}{c} - \frac{1}{c^{2}}[(1 - \alpha_{0}^{2})dr^{12} + r^{12}\{d\theta^{2} + \sin^{2}\theta d\phi^{2}\}]$$
(11)

In this time, if dt' is

$$\partial t' = \sqrt{1 - \alpha_0^2} \, \partial t \tag{12}$$

Therefore, new solution is

$$d\tau^{2} = dt^{2} + 2\alpha_{0}dr^{2}\frac{dt^{2}}{c} - \frac{1}{c^{2}}[(1 - \alpha_{0}^{2})dr^{2} + r^{2}\{d\theta^{2} + \sin^{2}\theta d\phi^{2}\}]$$
 (13)

If we rewrite dt, dr instead of dt', dr', the proper time $d\tau$ of new solution is

$$d\tau^{2} = dt^{2} + 2\alpha_{0}dr\frac{dt}{c} - \frac{1}{c^{2}}[(1 - \alpha_{0}^{2})dr^{2} + r^{2}\{d\theta^{2} + \sin^{2}\theta d\phi^{2}\}]$$
 (14)

Therefore, new spherical solution in general relativity theory is

$$d\tau^{2} = dt^{2} + 2\alpha_{0}dr\frac{dt}{c} - \frac{1}{c^{2}}[(1 - \alpha_{0}^{2})dr^{2} + r^{2}\{d\theta^{2} + \sin^{2}\theta d\phi^{2}\}]$$

$$\alpha_0 \neq 1$$
, α_0 is constant (15)

In this time, the coordinate transformation in cosmological general theory of relativity [1-3] is

$$r \to r\Omega(t_0), t \to t$$
,

 t_{0} is cosmological time. $\Omega(t_{0})$ is the ratio of universe's expansion in cosmological time t_{0} . (16)

Hence, this vacuum solution is by the coordinate transformation in cosmological general theory of relativity,

$$d\tau^{2} = dt^{2} + 2\alpha_{0}\Omega(t_{0})dr\frac{dt}{c} - \frac{\Omega^{2}(t_{0})}{c^{2}}[(1 - \alpha_{0})^{8}dr^{2} + r \{\partial\theta + 2\sin\theta\partial\phi\}]$$

$$\alpha_{0} \neq 1, \qquad \alpha_{0} \text{ is constant}$$

$$(17)$$

3. Conclusion

In the general relativity theory, we discover new vacuum solution by Einstein's gravity field equation. We investigate the new coordinate in cosmological general theory of relativity.

Reference

[1]S.Yi, "Cosmological General Theory of Relativity", International Journal of Advanced Research in Physical Science, **8**,2,(2021),pp 22-26

[2]S.Yi, "PMBH Theory of Representation of Gravity Field Equation and Solutions, Hawking Radiation in Data General Relativity Theory", International Journal of Advanced Research in Physical Science, 5,9,(2018), pp 36-45

[3]S.Yi, "Yukawa Potential in Klein-Gordon Equation in Cosmological Special Theory of Relativity", International Journal of Advanced Research in Physical Science, **8**, 3, (2021), pp. 16-18

[4]S.Weinberg, Gravitation and Cosmology (John wiley & Sons, Inc, 1972)

[5]P.Bergman,Introduction to the Theory of Relativity(Dover Pub. Co.,Inc., New York,1976),Chapter V

[6] C.Misner, K, Thorne and J. Wheeler, Gravitation (W.H. Freedman & Co., 1973)

[7]S.Hawking and G. Ellis, The Large Scale Structure of Space-Time(Cam-bridge University Press, 1973)

[8]R.Adler, M.Bazin and M.Schiffer, Introduction to General Relativity (McGraw-Hill, Inc., 1965)

[9]E.Kasner, Am. J. Math. 43, 217(1921)

[10]G.Birkoff, Relativity and Modern Physics (Harvard University Press, 1923), p.253

[11]T.Kaluza, Berl. Ber. 996(1921); O. Klein, Z. Phys. 37, 895(1926)

[12]Y. Cho, J. Math. Phys. 16, 2029(1975); Y. Cho and P. Freund, Phys. Rev. D12, 1711(1975)

[13]P. van Nieuwenhuizen, Phys. Rep. 68, 189(1981)