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One of the long-standing conundrums of science is the exact mathematical relationship of quantum 

mechanics to Newtonian physics, as well as to relativistic physics. Herein it is shown to be possible to use the 

Planck constant as represented by the quantum formula for photon energy, � = ��/� , where h is the Planck 

constant, and using an approach similar to Bohr’s classical mechanical solution for the atom, to construct 

equations that show the mathematical relationship among all three in fundamental terms. This has the 

possibility of showing how relativity applied to Newtonian physics produces a quantum mechanical result, 
and may lead to a better understanding of quantum mechanics from a non-statistical approach, as well as 

possibly allowing a direct calculation of quantum gravity.  

  

Although Niels Bohr’s classical model of atomic structure is commonly regarded today as obsolete, it 

nevertheless laid the foundation for determining electron shell numbers and electron spin configurations, and 

included not only circular orbits, but elliptical ones as well, and the unit of the Bohr radius is still useful. His model, 

while functioning perfectly for less complex atoms, became too cumbersome for higher atomic numbers and was 

replaced with matrix methodologies, but the foundational approach remains valid. A similar approach to the nature 

of photonic energy does not suffer from the complications of spectral lines in atoms of higher atomic numbers which 

gave rise to quantum considerations and its consequent complexities. 

Using the quantum representation for photon energy, the resulting plot is instantly recognizable as a two-body 
energy curve. To construct a simple Newtonian mathematical model for photonic energy, it is logical to begin with 

an oppositely-charged lepton pair, specifically the electron and positron, as mutually-orbiting bodies, since under 

certain conditions in quantum electrodynamics, the two particles annihilate to create a single photon. As the particles 

are assumed at this point to be of opposite and equal charge: 
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where F is the attractive electromagnetic force, k is Coulomb’s constant, e is the elementary charge and r 

(radius) is an arbitrarily selected value to produce wavelengths throughout the electromagnetic spectrum. Then the 

orbital velocity for each particle is: 
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Since there are two particles: 
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The wavelength of the system then can be calculated as simply: 
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which by using the preceding formulas, is: 
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Then, solving for the radius to calculate the velocity from the wavelength yields: 
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 (See Supplement A) 

 

To plot the expected energy in quantum mechanical terms, as well as the kinetic energy of the model, the 

following formulas are used: 
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The graph to the right shows the two results: 

 

The results differ slightly, but the point at which they 
are equal can be calculated, and a corrective factor 

constructed.  

 

Starting with: 
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and substituting from the previous equations: 
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then solving for the radius at the point of equality: 
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Using the CODATA 2014 [1] values, the result for req is approximately equal to 1.69336707 × 10-9. This 

corresponds to a mid-IR wavelength of 11.66 μm at an energy of 1.7030253 x 10-20 Joules or 0.1063 eV. 
 

It was also realized that 
$B = 32DE , where DE is the Bohr radius. (See Supplement B)  

 

It was then found that the difference in the two results at other radii could be exactly corrected by: 
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Further, it was found, more conveniently, that for any radius r, the correction factor was also: 
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Therefore: 
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The equality now contains three terms: �<=><  , which is the correction factor;  /0-, which is the classical term; 

and  
���  , which is the quantum expression. 

 

 It can be seen that the corrective factor is the result of the difference between a circular orbit and an 

elliptical orbit, where, at the point of equality, the semi-major axis and the semi-minor axis are equal.  

 

According to Kepler’s Third Law, for a given major semi-axis the orbital period does not depend on the 

eccentricity, but rather the orbital period is equal to that for a circular orbit with the radius equal to the semi-major 



 

 

axis of an ellipse. One can start with the orbital period of a circular orbit with a radius equal to the semi-major axis 

of the ellipse, and then use the perimeter of the elliptic orbit (utilizing the simplest equation for the elliptical 

perimeter) divided by circumference of the circular orbit to find the elliptical velocity, which is exactly what the 

preceding correction factor does. 

So the calculation for velocity of a single particle must now incorporate the square root of the perimeter of the 

ellipse divided by the circumference of the circle: 
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This result is equal to the square root of the correction factor  �37H3  , where r is any radius, represented by req+n. 

(See Supplement D) 

 

Therefore: 
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The final form of the left-hand side of the equality is: 

 �,, = /(0′)- 

 

Graphing  E'' and, as previously, 

  
 

The results are shown in the graph to the right. 

 

It can be seen that the results agree exactly, 

validating that, except for the point of equality, the system 

is elliptic. 

The equality   
���  = /(0′)-   can now be fully 

proven. (See Supplement E) 

 

The relativistic term can now be constructed with only slight modification, using: 

 γ, = U�UYZ[\]"^"
  

 

and also modifying the terms of length (λ) and mass (m) in the quantum mechanical and Newtonian terms. 

Then the relativistic equation for kinetic energy:  _` = a��
 b ��
 can be finalized in the following form: 
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Due to the nature of the relativistic equation, this is not an exact solution, but it is within 0.0000003% across a 

range of  151 nm to 3164 nm, or 8.2 eV to 0.39eV. This inaccuracy can be seen to result from the stair-stepped 

nature of the resulting relativistic curve when observed on a small scale at lower velocities, which implies that 

relativity itself may indeed produce quantum effects. 

 
The final quantum mechanical/Newtonian/relativistic equality is now: 
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In the preceding equation, the reduction to equality is simple between the relativistic and Newtonian cases, but 

not as obvious for quantum mechanics.  

Although historically it has been thought that a disparity existed between Newtonian physics and quantum 

mechanics, it can be seen from this purely mathematical model that the disparity only exists between Newtonian 

physics and relativity, as has long been accepted. The relationship of this model to reality may be generative or 

substantive in nature, but neither is claimed, and although the Newtonian and relativistic models can be equated, 

they differ substantially in function. Furthermore, in the Newtonian and the relativistic models, the basis of the 

elliptical orbits is undetermined, although it may be supposed since this is a two-dimensional model, the three-
dimensional reality of the elliptical curves may be explained by precessing orbits. In any case, the mathematical 

relationship among the three branches of physics as outlined here should be of fundamental interest, while pointing 

the way to a non-statistical approach to quantum mechanics. Furthermore, as indicated above, the stair-stepped 

nature of the relativistic curve at small scales and lower velocities is a previously unrecognized phenomenon which 

may shed light on how relativity could produce quantum effects, and finally, the resulting equivalence should make 

calculating quantum gravity a simple exercise. 
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Supplement E
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