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Abstract

Let “Faulhaber’s formula” refer to an expression for the sum of powers
of integers written with terms of n(n+1)/2. Initially, the author used
Faulhaber’s formula to explain why odd Bernoulli numbers are equal to
zero. Next, Cereceda gave alternate proofs of that result and then proved
the converse, if odd Bernoulli numbers are equal to zero then we can derive
Faulhaber’s formula. Here, the original author will give a new proof of
the converse.

1 Motivation
If we knew nothing of the history of the problem and tried to discover for
ourselves a general expression for

n∑
k=1

km = 1m + 2m + · · ·+ nm,

where n,m are positive integers, we might notice there appear to be two ways
to write such sums. For example,∑

k =
n(n+ 1)

2
=

1

2
n2 +

1

2
n,∑

k2 =
2n+ 1

3
· n(n+ 1)

2
=

1

3
n3 +

1

2
n2 +

1

6
n,∑

k3 =

(
n(n+ 1)

2

)2

=
1

4
n4 +

1

2
n3 +

1

4
n2.

(1)
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The next two cases are∑
k4 =

1

5

[
6 · n(n+ 1)

2
− 1

]
·
∑

k2 =
1

5
n5 +

1

2
n4 +

1

3
n3 − 1

30
n,∑

k5 =
1

3

[
4 · n(n+ 1)

2
− 1

](∑
k
)2

=
1

6
n6 +

1

2
n5 +

5

12
n4 − 1

12
n2.

(2)

(When no confusion will arise, we will abbreviate
∑n

k=1 k
m by

∑
km.)

We can write each sum using terms of n(n+1)
2 or n. Of course, if we have

the former then we always can expand it into the latter. Do we always have the
former?

At a later point, reading up on the matter we would learn that writing an
expression for

∑
km using terms in n is associated with the name of Jakob

Bernoulli (1654-1705), and writing the same expression using terms in n(n+1)
2

is associated with that of Johann Faulhaber (1580-1635). Bernoulli’s contribu-
tion has long overshadowed Faulhaber’s, but now we know the two are linked
inextricably.

2 Background
In order to write an expression for

∑
km in n, we introduce the Bernoulli num-

bers. Set B0 = 1 and define Bn by

n∑
k=0

(
n+ 1

k

)
Bk = 0,

where n ≥ 1. Then we can write∑
km =

1

m+ 1

m∑
j=0

(−1)j
(
m+ 1

j

)
Bjn

m+1−j . (3)

For a sum in n(n+1)
2 , for even powers we have

∑
k2m =

[
c1

(
n(n+ 1)

2

)m−1

+ c2

(
n(n+ 1)

2

)m−2

+ · · ·+ cm−1 ·
n(n+ 1)

2
+ cm

]
·
∑

k2,

(4)
and for odd powers we have

∑
k2m+1 =

[
a1

(
n(n+ 1)

2

)m−1

+ a2

(
n(n+ 1)

2

)m−2

+ · · ·+ am−1 ·
n(n+ 1)

2
+ am

](∑
k
)2

,

(5)
and where the ci, ai are rational numbers and m ≥ 1. We will refer to these
two expressions as Faulhaber’s formula. (We can find explicit values for the
coefficients ci, ai (Gessel and Viennot [3, section 12]), but what concerns us
here are the overall forms of the sums.)
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If we look at the expressions in (1) and (2), we notice a few powers of n
are missing. The reason is because odd Bernoulli numbers are equal to zero:
B1 = − 1

2 , but for all m ≥ 1, B2m+1 = 0. When we write such sums using (3),
the powers of n which have odd Bernoulli numbers for coefficients drop out.

There are a number of ways to prove such a result (Rademacher [4, chapters
1-2]), but none seems to provide any deeper explanation for why this is so.
The key insight of Zielinski [6] was that Faulhaber’s formula implies such an
outcome.

If we write
∑

k2m+1 in the two forms of (3) and (5), the coefficients for the
terms of n must agree. Since (5) contains a factor of (

∑
k)

2
= 1

4n
4+ 1

2n
3+ 1

4n
2,

there is no term in n. That means the last term of (3), −B2m+1 · n, must be
equal to zero. In other words, B2m+1 = 0 for all m ≥ 1.

Cereceda [2] chose a different line of attack and introduced Bernoulli poly-
nomials:

Bm(x) =

m∑
j=0

(
m

j

)
Bjx

m−j ,

where x is a real variable and Bm(0) = Bm. This allows an expression for the
sum of powers to be written as∑

km =
1

m+ 1
(Bm+1(n+ 1)−Bm+1) . (6)

In the new context, the property B2m+1 = 0 is related to Bernoulli poly-
nomials being evaluated at x = 1

2 . The notion of symmetry then allows such
polynomials to be rewritten with terms of x(x−1)

2 . Once this is done, (6) leads
immediately to Faulhaber’s formula. (Again, alternate proofs of the main result
of Zielinski [6] are contained within the paper as well.)

Taken together, the papers lead to a surprising revelation, one which has
been a long time in the making. Denote

∑n
k=1 k

m by Sm. Then we have

Theorem 1. (Zielinski-Cereceda) for positive integers m,

B2m+1 = 0 ⇐⇒

{
S2m = S2 · P2m (S1) ,

S2m+1 = S2
1 · P2m+1 (S1) ,

where P2m (S1) and P2m+1 (S1) are polynomials in S1 = n(n+1)
2 .

In this paper we will give a different proof of the converse. Our approach
will be based on what commonly is referred to as the method of partial sums:

n∑
k=1

km+1 = (n+ 1)

n∑
k=1

km −
n∑

k=1

k∑
l=1

lm.

We state it in a pointed fashion to illustrate it serves as a generator for sums
of powers (Zielinski [5, section 2]). In this context, when we use (3) to write
expressions for

∑∑
lm, the property B2m+1 = 0 will cause the bulk of the

terms to be of even or odd parity like
∑

km+1.
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3 Main Result
We start with a proof of our method of partial sums:

Proposition 1. for integers n,m, where n ≥ 1 and m ≥ 0,

n∑
k=1

km+1 +

n∑
k=1

k∑
l=1

lm = (n+ 1)

n∑
k=1

km.

Proof. we proceed by mathematical induction. Let m be a fixed, nonnegative
integer. For the base case of n = 1 we have

1∑
k=1

km+1 +

1∑
k=1

k∑
l=1

lm = 1m+1 + 1m = 1 + 1 = 2 · 1 = (1 + 1)

1∑
k=1

km.

Assume the result is true for n ≥ 1. Then

n+1∑
k=1

km+1 +

n+1∑
k=1

k∑
l=1

lm =

n∑
k=1

km+1 + (n+ 1)
m+1

+

n∑
k=1

k∑
l=1

lm +

n+1∑
l=1

lm

= (n+ 1)

n∑
k=1

km +

(
(n+ 1)

m+1
+

n+1∑
l=1

lm

)

= (n+ 1)

n∑
k=1

km + (n+ 1) (n+ 1)
m
+

n+1∑
l=1

lm

= (n+ 1)

n+1∑
k=1

km +

n+1∑
l=1

lm.

Notice that
∑n+1

k=1 k
m =

∑n+1
l=1 lm. The same sum is expressed in two different

notations. Therefore

n+1∑
k=1

km+1 +

n+1∑
k=1

k∑
l=1

lm = (n+ 2)

n+1∑
k=1

km.

(Note: for the special case of m = 0, where k0 = l0 = 1, the reader might want
to write a separate proof with different notation.)

Before we prove the converse we state, without proof, a lemma which points
out critical, intermediate relationships:

Lemma 1. for positive integers n,(
n+

1

2

)(∑
k
)2

=
3

2
· n(n+ 1)

2
·
∑

k2,(
n+

1

2

)∑
k2 =

(
4

3
· n(n+ 1)

2
+

1

6

)∑
k.
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A consequence of the second relationship is that
(∑

k2
)2 can be rewritten

using only terms of
∑

k, which then implies, through (4), that
(∑

k2m
)2 can

be rewritten in
∑

k as well (Beardon [1, section 3]).

Now we give a new proof of the converse:1

Proposition 2. if odd Bernoulli numbers are equal to zero, we can derive Faul-
haber’s formula.

Proof. we proceed by mathematical induction. We know∑
k2 =1 ·

∑
k2,∑

k3 =1 ·
(∑

k
)2

.

We will assume (4) and (5) are true for all 1, 2, ...,m and then establish the case
of m+ 1.

For m+ 1, Proposition 1 tells us

n∑
k=1

k2m+2 = (n+ 1)

n∑
k=1

k2m+1 −
n∑

k=1

k∑
l=1

l2m+1. (7)

We want to write
∑

l2m+1 in k. Expression 3 tells us

k∑
l=1

l2m+1 =
1

2m+ 2

2m+1∑
j=0

(−1)j
(
2m+ 2

j

)
Bjk

2m+2−j .

If we assume B2m+1 = 0 for m ≥ 1, we can rewrite the double sum as

n∑
k=1

k∑
l=1

l2m+1 =
1

2m+ 2

n∑
k=1

{
1 ·B0k

2m+2 −
(
2m+ 2

1

)
B1k

2m+1

+

(
2m+ 2

2

)
B2k

2m + · · ·+
(
2m+ 2

2m

)
B2mk2

}
=

1

2m+ 2

n∑
k=1

k2m+2 +
1

2

n∑
k=1

k2m+1 + b2m

n∑
k=1

k2m + · · ·+ b2

n∑
k=1

k2,

where b2m, . . . , b2 are rational numbers which do not interest us. Now we can
rewrite (7) as∑

k2m+2 = (n+ 1)
∑

k2m+1 − 1

2m+ 2

∑
k2m+2 − 1

2

∑
k2m+1

−
(
b2m

∑
k2m + · · ·+ b2

∑
k2
)
. (8)

1A proof for the special case of
∑

k8,
∑

k9 appears in the author’s earlier work (Zielinski
[5, sections 10-11]).

5



By the inductive hypothesis for
∑

k2m, we can rewrite the sum in the paren-
theses as

b2m
∑

k2 · P2m + · · ·+ b2
∑

k2 · P2,

where P2m, . . . , P2 are polynomials in n(n+1)
2 . Together, this is just P ·

∑
k2 for

another such polynomial P . Now (8) becomes

2m+ 3

2m+ 2

∑
k2m+2 =

(
n+

1

2

)∑
k2m+1 − P ·

∑
k2. (9)

For the next step of the proof, first we invoke the inductive hypothesis for∑
k2m+1. This allows us to rewrite the right side of (9) as(

n+
1

2

)(∑
k
)2

Q2m+1 − P ·
∑

k2, (10)

where Q2m+1 is a polynomial in n(n+1)
2 . Then we use the lemma to rewrite the

left side of (10) as

3

2
· n(n+ 1)

2
·
∑

k2 ·Q2m+1 = Q ·
∑

k2,

where Q is another polynomial in n(n+1)
2 . The final form of (9) becomes∑

k2m+2 =
2m+ 2

2m+ 3

(
Q ·
∑

k2 − P ·
∑

k2
)
= R ·

∑
k2,

where R is a polynomial in n(n+1)
2 .

The proof for
∑

k2m+3 proceeds along the same lines. We only wish to
point out an important difference when rewriting the double sum using Bernoulli
numbers. Starting with

n∑
k=1

k2m+3 = (n+ 1)

n∑
k=1

k2m+2 −
n∑

k=1

k∑
l=1

l2m+2,

the expression analogous to (9) will be

2m+ 4

2m+ 3

∑
k2m+3 =

(
n+

1

2

)∑
k2m+2 −B2m+2

∑
k − P ·

(∑
k
)2

. (11)

We need to eliminate the term of −B2m+2

∑
k, which we do as follows.

The coefficient of B2m+2 comes out of writing
∑

l2m+2 according to (3). If
we write the same expression using (4), which we just established, we get

∑
k2m+2 = [Q+ cm+1]

∑
k2 = [Q+ cm+1] ·

2n3 + 3n2 + n

6
,
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where Q is a polynomial in n(n+1)
2 , of degree of at least one, and cm+1 is a

rational number. The coefficient for the term of n is cm+1

6 . Since both coefficients
must agree, we have cm+1

6 = B2m+2.
When we invoke the lemma we get(

n+
1

2

)
[Q+ cm+1]

∑
k2 = [Q+ cm+1]

(
4

3
· n(n+ 1)

2
+

1

6

)∑
k

= [Q+ cm+1]

(
4

3

(∑
k
)2

+
1

6

∑
k

)
= [Q+ cm+1] ·

4

3

(∑
k
)2

+Q · 1
6

∑
k +

cm+1

6

∑
k.

Since the polynomial Q does not have a constant term, we can simplify the right
side to

Q
′
·
(∑

k
)2

+
cm+1

6

∑
k, (12)

where Q
′
is another polynomial in n(n+1)

2 . Now the term of cm+1

6

∑
k cancels

with that of −B2m+2

∑
k, and (11) and (12) become

2m+ 4

2m+ 3

∑
k2m+3 = Q

′
·
(∑

k
)2
− P ·

(∑
k
)2

,

from which the desired result follows.
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