Irrationality Proofs: From e to $\zeta(n \geq 2)$

Timothy W. Jones

April 24, 2021

Abstract

We first give a proof that e is irrational. The proof uses the denominators of the terms of the series $e - 2$ as decimal bases. All rational numbers in $(0, 1)$ can be represented as single decimals digits using these bases. We prove that partial sums for this series require the largest denominator in their terms – the last term. This allows systems of inequalities to be formed that eliminate ever more possible rational convergence points. In the limit all possible rational convergence points are eliminated and e is proven to be irrational. We next observe that the denominators of $\zeta(n) - 1 = z_n$ have this same property. We attempt the same technique used for $e - 2$, but discovery the system of inequalities don’t nest. In the process however we discover the partials do have denominators greater than than those of the last term. This is suggestive that z_n can be proven to be irrational. Finally, we show that these properties of terms covering possible rational convergence points and partials escaping these terms are enough to prove all z_n are irrational.

1 Introduction

Apery’s $\zeta(3)$ is irrational proof [1] and its simplifications [3, 11] are the only proofs that a specific odd argument for $\zeta(n)$ is irrational. The irrationality of even arguments of zeta are a natural consequence of Euler’s formula [2]:

$$\zeta(2n) = \sum_{k=1}^{\infty} \frac{1}{k^{2n}} = (-1)^{n-1} \frac{2^{2n-1} n!}{(2n)!} B_{2n} \pi^{2n}. \quad (1)$$
Apery also showed $\zeta(2)$ is irrational, and Beukers, based on the work (tangentially) of Apery, simplified both proofs; see Poorten [12] for the history of Apery’s proof and Havil [8] for an approachable introduction to Apery’s original proof. Beukers’s proofs replace Apery’s mysterious recursive relationships with multiple integrals; see Huylebrouck [9] for an historical context for Beukers’s proofs. Papers by Poorten and Beukers are in Pi: A Source Book [4] and The Number π [6] gives Beukers’s proofs (condensed) and related material. Both the proofs of Apery and Beukers require the prime number theorem and subtle $\epsilon - \delta$ reasoning.

Thus we have the irrationality of all evens immediately proven irrational using a classic formula and exactly one odd; whereas, you would think that both evens and odds could be proven in the same way. Attempts to generalize the techniques of the one odd success seem to be hopelessly elusive. Apery’s and other ideas can be seen in the long and difficult results of Rivoal and Zudilin [13, 16]. Their results, that there are an infinite number of odd n such that $\zeta(n)$ is irrational and at least one of the cases 5,7,9,11 likewise irrational do suggest a radically different approach is necessary.

In this paper we explore a different direction. We claim all $\zeta(n \geq 2)$ can be proven to be irrational by using what we call decimal sets and well known and relatively simple properties of decimal bases: [7, Chapter 9]. We still need the lesser cousin of the prime number theorem, Bertrand’s postulate [5, 7], and some new, but relatively straightforward epsilon reasoning.

2 Motivation

As the use of decimals in irrationality proofs is new, we first motivate the ideas. We show how using decimals to prove e is irrational suggests that $\zeta(n)$ should be irrational too.

The case of e

Every fraction a/b can be given as a decimal $.(a)$ base b where a is a symbol in base b. We will use $.(a)_b$ to designate this. So, for example, $1/2 + 1/6 = 4/6 = .(4)_6$. This reduces to $.(2)_3$, but for our purposes we want to limit bases to the form $k!$. As $3! = 6$, this sum is given within this constraint.
Our concern is to prove
\[e - 2 = \sum_{j=2}^{\infty} \frac{1}{j!} = \frac{1}{2} + \frac{1}{2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \ldots \]
is irrational. This is just \(e \) minus the first two terms of its series form, so if \(e - 2 \) is proven to be irrational, \(e \) will be too.

We first show that all rational numbers in \((0, 1)\) can be expressed as single digits in base \(k! \).

Lemma 1. Every rational \(\frac{p}{q} \in (0, 1) \) can be expressed as a single digit in base \(q! \).

Proof. We simply note
\[\frac{p(q-1)!}{q!} = \frac{p}{q} = \left(\frac{p(q-1)!}{q!}\right)_{q!}. \]
The decimal is a single decimal in base \(q! \) as \(p < q \) implies \(p(q-1)! < q! \). \(\square \)

Per Lemma 1, as \(e - 2 < 1 \), terms of \(e - 2 \), meaning their denominators used as decimal bases, cover rational possible convergence points. As all partial sums of \(e - 2 \) are themselves rational numbers, it is of interest to know the relationship between the terms of \(e - 2 \) and their partials. In particular, can partials be expressed with single decimal digits in the number bases given by the denominators of the partials terms? In the case of \(e - 2 \) the last term can express partials. We show this next.

Lemma 2. Let
\[s_k = \sum_{j=2}^{k} \frac{1}{j!}, \]
then \(s_k = \left(\frac{x}{k!}\right)_{k!} \), for some \(x, 1 \leq x < k! \), and \(k! \) is the least such factorial with this property.

Proof. As \(k! \) is a common denominator of all terms in \(s_k \), \(s_k \) can be expressed as a fraction having this denominator. As \(s_k < 1 \), this means there exists some integer \(x, 1 \leq x < k! \), with \(s_k = \left(\frac{x}{k!}\right)_{k!} \). The following induction argument shows that \(k! \) is the least factorial possible.
Clearly 2! works for the first partial. Suppose $k!$ works for the kth partial. So the $k+1$ partial can be expressed with
\[
\frac{x}{k!} + \frac{1}{(k+1)!} = \frac{y}{a!}
\]
for some positive integers a and y. If $a \leq k$, then multiplying (2) by $k!$ gives an integer plus $1/(k+1)$ is an integer, a contradiction. So $a > k$, but $a = k + 1$ works (it’s a common denominator), so it is the least possible factorial.

Each partial defines a head, the partial, plus a tail, the rest of the series. Lemma 3 shows that tails corresponding to s_k are trapped in between two single decimal digits in base $k!$.

Lemma 3. For partial $.(x)_k = s_k$ and its tail $\sum_{j=k+1}^{\infty} \frac{1}{j!}$, we have
\[
s_k < s_k + \sum_{j=k+1}^{\infty} \frac{1}{j!} = e - 2 < s_k + \frac{1}{k!}.
\]

Proof. Using the geometric series, we have
\[
\sum_{j=k+1}^{\infty} \frac{1}{j!} = \frac{1}{k!} \left(\frac{1}{(k+1)} + \frac{1}{(k+1)(k+2)} + \cdots \right)
\]
\[
< \frac{1}{k!} \left(\frac{1}{(k+1)} + \frac{1}{(k+1)^2} + \cdots \right) = \frac{1}{k!} \cdot \frac{1}{k!}
\]
and (3) follows as, per Lemma (1), $x < k!$.

Letting $(x)_y^z$ designate single decimal upper or lower bounds for partials with upper index z, Lemma 3 implies the boundary decimals don’t change with increasing upper index. We designate this feature with $(x)_y^{z+}$. Examples are contained in the following theorem.

Theorem 1. $e - 2$ is irrational.

Proof. Using Lemma 3, all partials, given by dots, are trapped between $1/2$ and $1/2 + 1/2 = 1$:
\[
.(1)_2^{1+} < \cdots < (1)_2^{1+}.
\]
Incrementing the upper index we get tighter and tighter traps for \(e - 2 \):
\[
.1^1_2 < .4^2_6 < \cdots < .5^2_6 < (1)^1_2; \tag{5}
\]
and
\[
.1^1_2 < .4^2_6 < .17^3_{24} < \cdots < .18^3_{24} < .5^2_6 < (1)^1_2. \tag{6}
\]
Suppose \(e - 2 \) is rational, then by Lemma 1 there exists a \(k \) such that \(e - 2 = .(x)_k! \), but for some \(y \) we must have
\[
.1^1_2 < \cdots < .(y)^{k-1}_k! < e - 2 = .(x)_k! < .(y + 1)^{(k-1)}_k! < \cdots < (1)^1_2 \tag{7}
\]
and no single digit in base \(k! \) can be between two other single digits in the same base, a contradiction.

Sondow gives a similar proof of the irrationality of \(e \) [15].

The case of \(\zeta(n) \)

We use the following symbols:
\[
z_n = \zeta(n) - 1 = \sum_{j=2}^{\infty} \frac{1}{j^n} \text{ and } s_k^n = \sum_{j=2}^{k} \frac{1}{j^n}.
\]

As with the irrationality of \(e - 2 \) of the previous section, we can form systems of inequalities for each upper index of \(z_2 \). With upper index 3 we derive inequalities for bases 4 and 9:
\[
(1)^3_4 < (3)^3_9 < s^2_5 = (13)^3_{36} < (4)^3_9 < (2)^3_4. \tag{8}
\]
For upper index 4, we derive another set of inequalities:
\[
(1)^4_4 < (3)^4_9 < (6)^4_{16} < s^2_4 = (61)^4_{144} < (7)^4_{16} < (4)^4_9 < (2)^4_4. \tag{9}
\]
Unlike the \(e - 2 \) case, single fixed digits are not created and the inequalities don’t nest. Continuing with just the bases 4, 9, and 16, we observe
\[
(1)^5_4 < (7)^5_{16} < (4)^5_9 < s^2_5 = (1669)^5_{3600} < (8)^5_{16} = (2)^5_4 < (5)^5_9.
\]
Base 16 and base 9 have been transposed and, on the right, base 16 and base 4 endpoints collide (i.e. are equal). The next two iterations are
\[
(1)^6_4 < (7)^6_{16} < (4)^6_9 < s^2_6 = (1769)^6_{3600} < (8)^6_{16} = (2)^6_4 < (5)^6_9
\]
The left and right digits for base 4 have migrated to .(2)_4 and .(3)_4. As .(2)_4 < z_2 < .(3)_4, these left and right values for base 4 are fixed for \(k \geq 7 \).

We do see a property of interest in these inequalities: the bases for partial sums exceed those of the terms used. We will show that \(s^n_k \) is not an element of sets of single decimals in the bases of its terms, their denominators (Corollary 1); nota bene general \(n \). We will also show that the terms of all \(z_n \) cover, in the sense given in the previous section, all possible rational convergence points (Lemma 4). We claim that these properties of partials \(escaping \) terms and terms \(covering \) rationals are enough to show the irrationality of all \(z_n \). We use these properties to show partials get arbitrarily close to numbers of ever greater precision, Theorem 3; this implies irrationality.

3 Terms cover rationals

First two definitions.

Definition 1. Let

\[
d_{j^n} = \{1/j^n, \ldots, (j^n - 1)/j^n\} = \{.1, \ldots, (j^n - 1)\} \text{ base } j^n.
\]

That is \(d_{j^n} \) consists of all single decimals greater than 0 and less than 1 in base \(j^n \). The decimal set for \(j^n \) is

\[
D_{j^n} = d_{j^n} \setminus \bigcup_{k=2}^{j-1} d_{k^n}.
\]

The set subtraction removes duplicate values.

Definition 2.

\[
\bigcup_{j=2}^{k} D_{j^n} = \Xi^n_k
\]

We next show this union of decimal sets give all rational numbers in (0, 1).
Lemma 4.

\[\lim_{k \to \infty} \Xi_k^n = \bigcup_{j=2}^{\infty} D_{j^n} = \mathbb{Q}(0,1), \]

where \(\mathbb{Q}(0,1) \) designates all rational numbers in the interval \((0,1)\).

Proof. Every rational \(a/b \in (0,1) \) is included in a \(D_{j^n} \). This follows as \(ab^{n-1}/b^n = a/b \) and as \(a < b \), per \(a/b \in (0,1) \), \(ab^{n-1} < b^n \) and so \(a/b \in D_{b^n} \).

As \(0 < z_n < 1 \) for \(n \geq 2 \), Lemma 4 shows, for large enough \(k \), \(\Xi_k^n \) will contain any possible rational convergence point for any given \(z_n \).

The first two example series, \(z_2 \) and \(e - 2 \), have terms that cover possible rational convergence points. They both converge to irrational numbers. Covering rational convergence points does not insure irrationality though, as the next examples show.

Example 1. The telescoping series

\[\sum_{k=2}^{\infty} \frac{1}{k} - \frac{1}{k+1} = \sum_{k=2}^{\infty} \frac{1}{k(k+1)} \]

covers rational points. If \(a/b \in (0,1) \), \(a < b \) and

\[\frac{a}{b} = \frac{a(b+1)}{b(b+1)} \in d_{b(b+1)}. \]

But this telescoping series converges to a rational number: 1/2.

Example 2. The geometric series or the series for such numbers as \(.1 \) base 4, don’t cover possible rational convergence points. For example \(1/3 \notin d_{4^k} \), for any \(k \geq 1 \).

Example 3. Such numbers as \(.2\overline{5} \) base 10 converge to a number covered by the terms, although not all rational numbers are covered.

4 Partials escape terms

We show partial sums of \(z_n \) can’t be expressed as a single decimal using for a base the denominators of any of the partial sum’s terms. We use the simple
fact that a reduced fraction can't be expressed as a single digit decimal in a base less than its denominator. We just need to show, then, that the reduced denominator of \(s_k^n \) exceeds \(k^n \), the denominator of the last term in a partial sum with upper index \(k \).

<table>
<thead>
<tr>
<th>(k)</th>
<th>(s_k^n)</th>
<th>Prime factorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(.(13)_{36})</td>
<td>(36 = 2^23^2)</td>
</tr>
<tr>
<td>4</td>
<td>(.(61)_{144})</td>
<td>(144 = 2^43^2)</td>
</tr>
<tr>
<td>5</td>
<td>(.(1669)_{3600})</td>
<td>(3600 = 2^43^25^2)</td>
</tr>
<tr>
<td>6</td>
<td>(.(1769)_{3600})</td>
<td>(3600 = 2^43^25^2)</td>
</tr>
<tr>
<td>7</td>
<td>(.(90281)_{176400})</td>
<td>(176400 = 2^43^25^27^2)</td>
</tr>
</tbody>
</table>

Table 1: The reduced fractions (given as decimals) are divisible by powers of 2 and a prime greater than \(k/2 \).

Table 1 gives some evidence that the reduced fractions giving partial sum totals have much larger denominators than the denominators of their last term: \(36 > 3^2 \); \(144 > 4^2 \); \(3600 > 5^2 \); \(3600 > 6^2 \); \(176400 > 7^2 \). It also suggests a strategy for proving this. If we can show partial sums of \(z_n \) are divisible by powers of 2 and some relatively large prime, as twice something greater than half is bigger than the whole, that would do it. Apostol’s *Introduction to Analytic Number Theory* (Chapter 2, problem 21), solutions in [10], gives the general technique used in this section.

Lemma 5. If \(s_k^n = r/s \) with \(r/s \) a reduced fraction, then \(2^n \) divides \(s \).

Proof. The set \(\{2, 3, \ldots, k\} \) will have a greatest power of 2 in it, \(a \); the set \(\{2^n, 3^n, \ldots, k^n\} \) will have a greatest power of 2, \(na \). Also \(k! \) will have a powers of 2 divisor with exponent \(b \); and \((k!)^n \) will have a greatest power of 2 exponent of \(nb \). Consider

\[
\frac{(k!)^n}{(k!)^n} \sum_{j=2}^{k} \frac{1}{j^n} = \frac{(k!)^n/2^n + (k!)^n/3^n + \cdots + (k!)^n/k^n}{(k!)^n}.
\]

(10)

The term \((k!)^n/2^{na} \) will pull out the most 2 powers of any term, leaving a term with an exponent of \(nb-na \) for 2. As all other terms but this term will have more than an exponent of \(2^{nb-na} \) in their prime factorization, we have the numerator of (10) has the form

\[2^{nb-na}(2A + B),\]
where $2 \nmid B$ and A is some positive integer. This follows as all the terms in the factored numerator have powers of 2 in them except the factored term $(k!)^n/2^{na}$. The denominator, meanwhile, has the factored form $2^{nb}C$.

where $2 \nmid C$. This leaves 2^{na} as a factor in the denominator with no powers of 2 in the numerator, as needed.

Lemma 6. If $s^n_k = r/s$ with r/s a reduced fraction and p is a prime such that $k > p > k/2$, then p^n divides s.

Proof. First note that $(k, p) = 1$. If $p | k$ then there would have to exist r such that $rp = k$, but by $k > p > k/2$, $2p > k$ making the existence of such a natural number $r > 1$ impossible.

The reasoning is much the same as in Lemma 5. Consider

$$\frac{(k!)^n}{(k!)^n} \sum_{j=2}^{k} \frac{1}{j^n} = \frac{(k!)^n/2^n + \cdots + (k!)^n/p^n + \cdots + (k!)^n/k^n}{(k!)^n}. \quad (11)$$

As $(k, p) = 1$, only the term $(k!)^n/p^n$ will not have p in it. The sum of all such terms will not be divisible by p, otherwise p would divide $(k!)^n/p^n$. As $p < k$, p^n divides $(k!)^n$, the denominator of r/s, as needed.

Lemma 7. For any $k \geq 2$, there exists a prime p such that $k < p < 2k$.

Proof. This is Bertrand’s postulate.

Theorem 2. If $s^n_k = \frac{r}{s}$, with r/s reduced, then $s > k^n$.

Proof. Using Lemma 7, for even k, we are assured that there exists a prime p such that $k > p > k/2$. If k is odd, $k - 1$ is even and we are assured of the existence of prime p such that $k - 1 > p > (k - 1)/2$. As $k - 1$ is even, $p \neq k - 1$ and $p > (k - 1)/2$ assures us that $2p > k$, as $2p = k$ implies k is even, a contradiction.

For both odd and even k, using Lemma 7, we have assurance of the existence of a p that satisfies Lemma 6. Using Lemmas 5, 6, and 7 we have $2^n p^n$ divides the denominator of r/s and as $2^n p^n > k^n$, the proof is completed.

Corollary 1.

$$s^n_k \notin \Xi_k \text{ or } s^n_k \in \mathbb{R}(0, 1) \setminus \Xi_k^n$$

where $\mathbb{R}(0, 1)$ is the set of real numbers in $(0, 1)$.

Proof. This is a restatement of Theorem 2.
5 Examples

Table 2 gives examples of properties of series and suggests the pattern: irrationals have terms that cover possible rational convergence points and partials that escape their terms.

<table>
<thead>
<tr>
<th>Series</th>
<th>Covers</th>
<th>Escapes</th>
<th>Convergence point</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_2</td>
<td>Yes</td>
<td>($> k$)</td>
<td>not covered (irrational)</td>
</tr>
<tr>
<td>$e - 2$</td>
<td>Yes</td>
<td>($= k$)</td>
<td>not covered (irrational)</td>
</tr>
<tr>
<td>Telescoping</td>
<td>Yes</td>
<td>($< k$)</td>
<td>covered (rational)</td>
</tr>
<tr>
<td>.1 base 4</td>
<td>No</td>
<td>($= k$)</td>
<td>not covered (rational)</td>
</tr>
<tr>
<td>.29 base 10</td>
<td>No</td>
<td>($= k$)</td>
<td>covered (rational)</td>
</tr>
</tbody>
</table>

Table 2: The two series that converge to a rational number, the geometric and telescoping, have one pattern; those that converge to an irrational number have another.

6 Towards Greater Precision

Progress has been made. Consider the following heuristic.

Using Lemma 4,

$$\lim_{k \to \infty} \Xi_k^n = \mathbb{Q}(0, 1),$$

with Corollary 1 we have

$$\lim_{k \to \infty} \mathbb{R}(0, 1) \setminus \Xi_k^n = \mathbb{R}(0, 1) \setminus \mathbb{Q}(0, 1) = \mathbb{H}(0, 1), \quad (12)$$

where $\mathbb{H}(0, 1)$ is the set of irrational numbers in $(0, 1)$.

We have then

$$\lim_{k \to \infty} s_k^n \in \mathbb{R}(0, 1) \setminus \Xi_k^n \implies z_n \in \mathbb{H}(0, 1),$$

using $s_k^n \to z_n$, (12), and Corollary 1. That is z_n is irrational.

It seems reasonable that if s_k^n’s require and are close to numbers requiring larger bases than those contained in $\{2^n, 3^n, \ldots, k^n\}$ then the numbers close to these partials are not single decimals in these bases, so too, by triangulation, for z_n. That is the partials s_k^n and hence z_n are getting arbitrarily
close to numbers requiring ever greater bases. In set topological terms, the
limits points for \(s^n_k \) must reside in the complement of \(\Xi^n_k \); in the limit this
complement is \(\mathbb{H} \). We now give a formal proof.

We characterize series that converge to rational (and irrational) numbers.
This is the apparently new epsilon reasoning mentioned in the introduction.
First a definition.

Definition 3. Let \(D^n_j \) be the set of all \(D^n_j \) decimal sets having an element
within \(\epsilon_j \) of \(s^n_j \).

Lemma 8. If for every monotonically decreasing sequence \(\epsilon_j \) such that
\[
\lim_{j \to \infty} \epsilon_j = 0,
\]
we have
\[
\bigcap_{j=2}^{\infty} D^n_j = \emptyset,
\] (13)
then \(z_n \) is irrational

Proof. We use proof by contraposition: \(p \Rightarrow q \Leftrightarrow \neg q \Rightarrow \neg p \). Suppose \(z_n \) is
rational then \(z_n \in D^n_n \), using Lemma 4. Define
\[
\epsilon^*_j = z_n - s^n_j \text{ for } j \geq 2
\]
and set
\[
\epsilon_j = 2\epsilon^*_j.
\]
Then
\[
D^n_n \subset \bigcap_{j=2}^{\infty} D^n_j,
\]
so the intersection is not empty. \(\square \)

The next lemma says that if a point is not a single decimal in base \(b \) then
it is inside an interval between single decimals; hence, it is trapped within
1/\(b \) of these single decimal endpoints. This follows as decimal sets partition
(0,1) with intervals with widths equal to their, call it, precision: 1/\(b \).
Lemma 9. If \((a)_b \in (0, 1)\) and \((a)_b \notin D_{j^n}\) then there exists \(x \in D_{j^n}\) such that
\[
(a)_b \in ((x - 1), (x))_{j^n},
\]
where \(((x - 1), (x))_{j^n}\) is an open set with end points \((x - 1)_{j^n}\) and \((x)_{j^n}\). Further for any given \(\epsilon > 0\),
\[
|(a)_b - (x - 1)_{j^n}| < \frac{1}{j^n} < \epsilon,
\]
for large enough \(j\).

Proof. \(D_{j^n}\) partitions the interval \((0, 1)\) forcing \((a)_b\) into such an interval. The distance between endpoints in such an open interval is \(1/j^n\), so anything inside the interval is less than \(1/j^n\) to an endpoint.

The right hand inequality in (14) follows from the Archimedean property of the reals [14].

We suspect series that cover and escape their cover, in the sense developed above, have ever better approximations with greater bases. Any finite base approximation can’t equal the convergence point.

Lemma 10. For \(z_n\) there exists a sequence \(\epsilon_j\) such that
\[
\bigcap_{j=2}^{\infty} D_{j, \epsilon_j} = \emptyset.
\]

Proof. We construct a sequence \(\epsilon_j\) that cumulatively excludes all possible rational convergence points. Let
\[
\epsilon_j^* = \min\{|x - s^n_j| : x \in \Xi^n_j \}.
\]
We know by Corollary 1 that \(\epsilon_j^* > 0\). We proceed inductively. For the first iteration, let \(\epsilon_3^* > 0\). We proceed inductively. For the first iteration, let \(\epsilon_3^* < \epsilon_3\). This excludes the decimal sets of \(\Xi^n_3\) at this our first iteration. Assume we can generally do this for the \(j\)th iteration. For the \(j + 1\)st iteration, using Lemma 9, there exists a base in \(\Xi^n_{j+r}\), for some \(r\) such that \(\epsilon_{j+r}^* < \epsilon_{j+1}/2\). Set \(\epsilon_{j+1} = \epsilon_{j+r}^*\). The procedure gives \(\epsilon\) values that cumulatively exclude ever more decimal sets from \(D_{j^n_{j+1}}\).

Regroup the series. By Lemma 4, the exclusions are exhaustive, so
\[
\bigcap_{j=2}^{\infty} D_{j^n_{j}} = \emptyset,
\]
as needed.
Theorem 3. \(z_n \) is irrational.

Proof. Let the sequence given in Lemma 10 be given by \(\epsilon_{j_1} \), and let a general sequence needed for Lemma 8 be given by \(\epsilon_j \). Suppose
\[
\frac{p}{q} \in \bigcap_{j=2}^{\infty} D_{j_n}^{\epsilon_j}.
\]
That is suppose the intersection in (15) is not empty. As \(\epsilon_{j_1} \to 0 \) and \(\epsilon_j \to 0 \), for any fixed \(\epsilon_{j_1} \) that excludes \(\frac{p}{q} \) there will be an \(\epsilon_j \) such that \(\epsilon_j < \epsilon_{j_1} \). This implies that \(\frac{p}{q} \) will be excluded using \(\epsilon_j \), contradicting (15).

\[\square \]

7 Conclusion

How does this proof compare to the work of Beukers? Why do we get a general result here and not with his techniques?

Beukers uses double integrals that evaluate to numbers involving partials for \(\zeta(2) \). He uses
\[
\int_0^1 \int_0^1 \frac{x^r y^s}{1-xy} \, dxdy = \text{various expressions related to } \zeta(2)
\]
and uses this to calculate
\[
\int_0^1 \int_0^1 \frac{(1-y)^nP_n(x)}{1-xy} \, dxdy,
\]
where \(P_n(x) \) is the nth derivative of an integral polynomial.

These calculations yield integers \(A_n \) and \(B_n \) in
\[
0 < |A_n + B_n\zeta(2)|d_n^2 < \left\{ \frac{\sqrt{5} - 1}{2} \right\}^{5n} \zeta(2) < \left\{ \frac{5}{6} \right\}^n, \tag{16}
\]
where \(d_n \) designates the least common multiple of the set of integers \(\{1, \ldots, n\} \). This last, assuming \(\zeta(2) \) is rational, forces an integer between 0 and 1, giving a contradiction. An upper limit for \(d_n \) requires the prime number theorem.

These themes repeat for \(\zeta(3) \) with the complexity of the expressions at least doubling.

We don’t use integrals to generate in effect an interval, a trap, like (16), but the relationships between terms and partials to generate partitions of \((0,1) \) narrowing and leaving only irrational numbers. We use inherent and simple properties of \(z_n \)’s partials and terms, Corollary 1, to avoid intractable complexity.
References

https://greghurst.files.wordpress.com/2014/02/apostol_intro_to_ant.pdf

