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Abstract

We first give a proof that e is irrational. The proof uses the de-
nominators of the terms of the series e − 2 as decimal bases. All

rational numbers in (0, 1) can be represented as single decimals digits
using these bases. We prove that partials sums for this series require

the largest denominator in their terms – the last term. This allows
systems of inequalities to be formed that eliminate ever more possible

rational convergence points. In the limit all possible rational conver-
gence points are eliminated and e is proven to be irrational. We next
observe that the denominators of ζ(n)−1 = zn can be used as number

bases and that these number bases cover with single digit decimals all
possible rational convergence points, just like the case of e − 2. We

next prove that partial sums of these series can’t be expressed using
single digit decimals using as bases the denominators of their terms:

the partials escape their terms completely, unlike e−2 with its partials
expressible with single digits from the denominator of its last term.

This is suggestive that zn can be proven to be irrational. Finally, we
show that this covering and escaping quality of zn yields a proof that

all zn are irrational.

1 Introduction

Apery’s ζ(3) proof and its simplifications are the only proofs that a specific
odd argument for ζ(n) is irrational [1, 4, 6, 9, 11]. The irrationality of even
arguments of zeta are a natural consequence of Euler’s formula [2]:

ζ(2n) =
∞

∑

k=1

1

k2n
= (−1)n−1 22n−1

(2n!)
B2nπ2n. (1)
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Apery also showed ζ(2) is irrational, and Beukers, based on the work
(tangentially) of Apery, simplified both proofs [3] a lot; see Poorten [12] for
the history of Apery’s proof and Havil [8] for an approachable introduction
to Apery’s original proof. Beukers’s proofs replace Apery’s mysterious re-
cursive relationships with multiple integrals and are easier to understand;
see Huylebrouck [9] for an historical context for Beukers’s proofs. Papers
by Poorten and Beukers are in Pi: A Source Book [4] and Eymard and La-
Fon The Number π [6] gives Beukers’s proofs and related material. Both the
proofs of Apery and Beukers require the prime number theorem and subtle
ε − δ reasoning.

Thus we have the irrationality of all evens immediate from a classic for-
mula and exactly one odd proven to be irrational; whereas you would think
that both evens and odds could be proven in the same way. Attempts to gen-
eralize the techniques of the one odd success seem to be hopelessly elusive.
It is not for a lack of trying. Apery’s and other ideas can be seen in the long
and difficult results of Rivoal and Zudilin [13, 16]. Their results, that there
are an infinite number of odd n such that ζ(n) is irrational and at least one
of the cases 5,7,9, 11 likewise irrational, seem less than encouraging.

In this paper we explore a different direction. We claim all ζ(n ≥ 2) can
be proven to be irrational by using what we call decimal sets and well known
and relatively simple properties of decimal bases: [7, Chapter 9]. We still
need the lesser cousin of the prime number theorem, Bertrand’s postulate,
and some new, but relatively straight forward epsilon reasoning.

2 Motivation

As the use of decimals in irrationality proofs is new, we first motivate the
ideas. We show how using decimals to prove e is irrational suggests that ζ(n)
should be irrational too.

The case of e

Every fraction a/b can be given as a decimal .(a) base b where a is a symbol
in base b. We will use .(a)b to designate this. So, for example, 1/2 + 1/6 =
4/6 = .(4)6. This reduces to .(2)3, but for our purposes we want to limit
bases to the form k!. As 3! = 6, this sum is given within this constraint.
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Our concern is to prove

e − 2 =
∞

∑

j=2

1

j!
=

1

2
+

1

2 · 3 +
1

2 · 3 · 4 + . . .

is irrational. This is just e minus the first two terms, so if e − 2 is proven to
be irrational, e will be too.

We first show that all rational numbers in (0, 1) can be expressed as single
digits in base k!.

Lemma 1. Every rational p/q ∈ (0, 1) can be expressed as a single digit in

some base k!.

Proof. Let k = q and note

p(q − 1)!

q!
=

p

q
= .(p(q − 1)!)q!.

The decimal is a single decimal in base q! as p < q implies p(q − 1)! < q!.

As e − 2 < 1, terms of e − 2 cover rational possible convergence points.
As all partial sums of e− 2 are themselves rational numbers, it is of interest
to know the relationship between the terms of e − 2 and their partials. In
particular, can partials be expressed with single decimal digits in the number
bases given by the denominators of the partials terms? In the case of e − 2
the last term can express partials. We show this next.

Lemma 2. Let

sk =

k
∑

j=2

1

j!
,

then sk = .(x)k!, for some 1 ≤ x < k! and k! is the least factorial.

Proof. As k! is a common denominator of all terms in sk, sk can be expressed
as a fraction having this denominator; that is there exists some integer x,
1 ≤ x < k!. The following induction argument shows that k! is the least
factorial possible.

Clearly 2! works for the first partial. Suppose k! works for the kth partial.
So the k + 1 partial can be expressed with

x

k!
+

1

(k + 1)!
=

y

a!
(2)
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for some positive integers a and y. If a ≤ k, then multiplying (2) by k!
gives and integer plus 1/(k + 1) is an integer, a contradiction. So a > k,
but a = k + 1 works (it’s a common denominator), so it is the least possible
factorial.

Each partial is represented by a single decimal digit. This implies that
each partial has a tail and that tail must be given by additional digits. Lemma
3 shows that these tails are trapped in between two single decimal digits in
base k!.

Lemma 3.

sk < sk +

∞
∑

j=k+1

1

j!
= e − 2 < sk +

1

k!
. (3)

Proof. Using the geometric series, we have

∞
∑

j=k+1

1

j!
=

1

k!

(

1

(k + 1)
+

1

(k + 1)(k + 2)
+ . . .

)

<
1

k!

(

1

(k + 1)
+

1

(k + 1)2
+ . . .

)

=
1

k

1

k!
.

So
∞

∑

j=k+1

1

j!
<

1

k

1

k!
<

1

k!

and (3) follows.

Lemma 3 implies the x decimal in .(x)z
y doesn’t change with increasing

upper index, z, of the partial; z = k, where k is the upper index of the
partial. The symbol .(x)z+

y means the digit x in base y doesn’t change for all
partials with upper index z and greater.

Theorem 1. e − 2 is irrational.

Proof. Using Lemma 3, all partials, given by dots, are trapped between 1/2
and 1/2 + 1/2 = 1:

.(1)1+
2 < · · · < (1)1+

2 . (4)

Incrementing the upper index we get tighter and tighter traps for e − 2:

.(1)1+
2 < .(4)2+

6 < · · · < .(5)2+
6 < (1)1+

2 ; (5)
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and
.(1)1+

2 < .(4)2+
6 < .(17)3+

24 < · · · < .(18)3+
24 < .(5)2+

6 < (1)1+
2 . (6)

Suppose e − 2 is rational, then by Lemma 1 there exists a k such that
e − 2 = .(x)k!, but for some y we must have

.(1)1+
2 < · · · < .(y)

(k−1)+
k! < e − 2 = .(x)k! < .(y + 1)

(k−1)+
k! < · · · < (1)1+

2 (7)

and no single digit in base k! can be between two other single digits in the
same base, a contradiction.

The case of ζ(n)

We use the following symbols:

zn = ζ(n) − 1 =

∞
∑

j=2

1

jn
and sn

k =

k
∑

j=2

1

jn
.

Using just developed for e − 2, we can form systems of inequalities for
each upper index of z2. With upper index 3 we derive inequalities for bases
4 and 9:

(.1)3
4 < (.3)3

9 < s2
3 = .(13)3

36 < .(4)3
9 < .(2)3

4. (8)

For upper index 4, we derive another set of inequalities:

.(1)4
4 < .(3)4

9 < .(6)4
16 < s2

4 = .(61)144 < .(7)4
16 < .(4)4

9 < .(2)4
4. (9)

Unlike the e − 2 case, single fixed digits are not created.
The inequalities in (8) and (9) nest. If it were the case that this nesting

continued, then we could exclude ever more rational values as possible conver-
gence points; the terms cover possible rational convergence points (Lemma
4); we could prove z2 is irrational just like we proved e− 2 is irrational. But
z2 intervals do not continue to nest. Continuing with just the bases 4, 9, and
16, we observe

.(1)5
4 < .(7)5

16 < .(4)5
9 < s2

5 = .(1669)3600 < .(8)5
16 = .(2)5

4 < .(5)5
9.

Base 16 and base 9 have been transposed and, on the right, base 16 and base
4 endpoints collide (i.e. are equal). The next two iterations are

.(1)6
4 < .(7)6

16 < .(4)6
9 < s2

6 = .(1769)3600 < .(8)6
16 = .(2)6

4 < .(5)6
9
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and

.(4)7
9 < .(8)7

16 = .(2)7+
4 < s2

7 = .(90281)176400 < .(5)7
9 < .(9)7

16 < .(3)7+
4 .

The left and right digits for base 4 have migrated to .(2)4 and .(3)4. As
.(2)4 < z2 < .(3)4, these left and right values for base 4 are fixed for k ≥ 7.

Looking at the inequalities for z2, the bases for partial sums exceed those
of the terms used. We will show that sn

k is not an element of sets of single
decimals in the bases of its terms, their denominators (Corollary 1); nota
bene general n. We claim that these properties of partials escaping terms
and terms covering rationals are enough to show the irrationality of all zn.
We use these properties to show partials get arbitrarily close to numbers of
ever greater precision, Theorem ??; this implies irrationality.

3 Terms cover rationals

First two definitions.

Definition 1. Let

djn = {1/jn, . . . , (jn − 1)/jn} = {.1, . . . , .(jn − 1)} base jn.

That is djn consists of all single decimals greater than 0 and less than 1 in

base jn. The decimal set for jn is

Djn = djn \
j−1
⋃

k=2

dkn .

The set subtraction removes duplicate values.

Definition 2.
k

⋃

j=2

Djn = Ξn
k

We next show this union of decimal sets give all rational numbers in (0, 1).

Lemma 4.

lim
k→∞

Ξn
k =

∞
⋃

j=2

Djn = Q(0, 1),

where Q(0, 1) designates all rational numbers in the interval (0, 1).
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Proof. Every rational a/b ∈ (0, 1) is included in a Djn . This follows as
abn−1/bn = a/b and as a < b, per a/b ∈ (0, 1), abn−1 < bn and so a/b ∈
Dbn .

As 0 < zn < 1 for n ≥ 2, Lemma 4 shows, for large enough k, Ξn
k will

contain any possible rational convergence point for any given zn.
The first two example series, z2 and e − 2, have terms that cover possi-

ble rational convergence points. They both converge to irrational numbers.
Covering rational convergence points does not insure irrationality though, as
the next examples show.

Example 1. The telescoping series

∞
∑

k=2

1

k
− 1

k + 1
=

∞
∑

k=2

1

k(k + 1)

covers rational points. If a/b ∈ (0, 1), a < b and

a

b
=

a(b + 1)

b(b + 1)
∈ db(b+1).

But this telescoping series converges to a rational number: 1/2.

Example 2. The geometric series or the series for such numbers as .1 base
4, don’t cover possible rational convergence points. For example 1/3 /∈ d4k ,
for any k ≥ 1.

Example 3. Such numbers as .29 base 10 converge to a number covered by
the terms, although not all rational numbers are covered.

4 Partials escape terms

We show partial sums of zn can’t be expressed as a single decimal using for a
base the denominators of any of the partial sum’s terms. We use the simple
fact that a reduced fraction can’t be expressed as a single digit decimal in a
base less than its denominator. We just need to show, then, that the reduced
denominator of sn

k exceeds kn, the denominator of the last term in a partial
sum with upper index k.

Table 1 gives some evidence that the reduced fractions giving partial sum
totals have much larger denominators than the denominators of their last
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k s2
k Prime factorization

3 .(13)36 36 = 2232

4 .(61)144 144 = 2432

5 .(1669)3600 3600 = 243252

6 .(1769)3600 3600 = 243252

7 .(90281)176400 176400 = 24325272

Table 1: The reduced fractions (given as decimals) are divisible by powers of
2 and a prime greater than k/2.

term: 36 > 32; 144 > 42; 3600 > 52; 3600 > 62; 176400 > 72. It also suggests
a strategy for proving this. If we can show partial sums of zn are divisible
by powers of 2 and some relatively large prime, as twice something greater
than half is bigger than the whole, that would do it. Apostol’s Introduction

to Analytic Number Theory (Chapter 2, problem 21), solutions in [10], gives
the general technique used in this section.

Lemma 5. If sn
k = r/s with r/s a reduced fraction, then 2n divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2n, 3n, . . . , kn} will have a greatest power of 2, na. Also k! will have a
powers of 2 divisor with exponent b; and (k!)n will have a greatest power of
2 exponent of nb. Consider

(k!)n

(k!)n

k
∑

j=2

1

jn
=

(k!)n/2n + (k!)n/3n + · · · + (k!)n/kn

(k!)n
. (10)

The term (k!)n/2na will pull out the most 2 powers of any term, leaving a
term with an exponent of nb−na for 2. As all other terms but this term will
have more than an exponent of 2nb−na in their prime factorization, we have
the numerator of (10) has the form

2nb−na(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)n/2na. The denominator, meanwhile, has the factored form

2nbC,
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where 2 - C . This leaves 2na as a factor in the denominator with no powers
of 2 in the numerator, as needed.

Lemma 6. If sn
k = r/s with r/s a reduced fraction and p is a prime such

that k > p > k/2, then pn divides s.

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of such a
natural number r > 1 impossible.

The reasoning is much the same as in Lemma 5. Consider

(k!)n

(k!)n

k
∑

j=2

1

jn
=

(k!)n/2n + · · · + (k!)n/pn + · · · + (k!)n/kn

(k!)n
. (11)

As (k, p) = 1, only the term (k!)n/pn will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)n/pn. As
p < k, pn divides (k!)n, the denominator of r/s, as needed.

Lemma 7. For any k ≥ 2, there exists a prime p such that k < p < 2k.

Proof. This is Bertrand’s postulate.

Theorem 2. If sn
k = r

s
, with r/s reduced, then s > kn.

Proof. Using Lemma 7, for even k, we are assured that there exists a prime
p such that k > p > k/2. If k is odd, k − 1 is even and we are assured of
the existence of prime p such that k − 1 > p > (k − 1)/2. As k − 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Lemma 7, we have assurance of the
existence of a p that satisfies Lemma 6. Using Lemmas 5, 6, and 7 we
have 2npn divides the denominator of r/s and as 2npn > kn, the proof is
completed.

Corollary 1.

sn
k /∈ Ξn

k or sn
k ∈ R(0, 1) \ Ξn

k

where R(0, 1) is the set of real numbers in (0, 1).

Proof. This is a restatement of Theorem 2.
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5 Examples

Table 2 gives examples of properties of series and suggests the pattern: irra-
tionals have terms that cover possible rational convergence points and par-
tials that escape their terms.

Series Covers Escapes Convergence point
z2 Yes Yes (k) not covered (irrational)
e − 2 Yes Yes (k-1) not covered (irrational)
Telescoping Yes No covered (rational)
.1 base 4 No Yes (k-1) not covered (rational)
.29 base 10 No Yes (k-1) covered (rational)

Table 2: The two series that converge to a rational number, the geometric and
telescoping, have one pattern; those that converge to an irrational number
have another.

6 Towards Greater Precision

Progress has been made. Consider the following heuristic.
Using Lemma 4,

lim
k→∞

Ξn
k = Q(0, 1),

with Corollary 1 we have

lim
k→∞

R(0, 1) \ Ξn
k = R(0, 1) \ Q(0, 1) = H(0, 1), (12)

where H(0, 1) is the set of irrational numbers in (0, 1).
We have then

lim
k→∞

sn
k ∈ R(0, 1) \ Ξn

k =⇒ zn ∈ H(0, 1),

using sn
k → zn, (12) and Corollary 1. That is zn is irrational.

It seems reasonable that if sn
k ’s require and are close to numbers requiring

larger bases than those contained in {2n, 3n, . . . , kn} then the numbers close
to these partials are not single decimals in these bases, so too for zn. That is
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the partials sn
k and hence zn are getting arbitrarily close to numbers requiring

ever greater bases. In set topological terms, the limits points for sn
k must

reside in the complement of Ξn
k . We now give a formal proof.

Definition 3. Let D
εj

jn be the set of all Djn decimal sets having an element

within εj of sn
j .

Example 4. .5, a single decimal, is a limit point of .49n, where the subscript
indicates the repetition of 9’s. Ordering the convergence point base and
partial bases for this example, one has 10∗ (for .5),10 (for .4), 102 (for .49),
103 (for .499) ,. . . , where the superscript asterisk indicates the convergence
point base. A sequence of epsilons of D

εj

10j can be calculated: .4 is .1 from .5;
.49 is .01 from .5; .499 is .001 from .5; etc.. Thus a decreasing and eliminative
sequence, εj, is defined: D.001

103 eliminates D10 and D102, for example. We can
make a different sequence that never eliminates base 10 – we know this must
be possible. In fact for any ε > 0, there exists an Nε such that .5− .49n < ε,
for all n > Nε.

Using Example 4, we characterize series that converge to rational (and
irrational) numbers.

Lemma 8. If for every monotonically decreasing sequence εj such that

lim
j→∞

εj = 0,

we have
∞
⋂

j=2

D
εj

jn = ∅, (13)

then zn is irrational

Proof. We use proof by contraposition: p ⇒ q ⇔ ¬q ⇒ ¬p. Suppose zn is
rational then zn ∈ D∗

jn , using Lemma 4. Define

ε∗j = zn − sn
j for j ≥ 2

and set
εj = 2ε∗j .

Then

D∗

jn ⊂
∞
⋂

j=2

D
εj

jn ,

so the intersection is not empty.
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Example 5. Some irrational numbers are approximated very well (up to
a point) using a low precision rational number. Using + for an irrational
tail, .(25)0000000000+, a single decimal in base 100, is approximated by
.(25)100 to 10−10. To get a closer approximation, a piece of the tail can be
converted to a new decimal head: .(250000000000x)+ gives a better rational
approximation, where x is a non-zero, fixed digit in base 1011. A string of
x’s consisting of all 9s is not a rational tail. In contrast to series converging
to rational numbers, Example 4, series converging to an irrational number
get closer to higher precision numbers, numbers requiring larger bases. For
the x decimal digit of this example, its accuracy must be at least as good as
its precision, but there is always a better approximation using a larger base.
This is proven in Lemma 9.

Lemma 9 simply says that if a point is not a single decimal in a base then
it is inside an interval between single decimals; hence, it is trapped within
1/b, b of these endpoints. This follows as decimal sets partition (0, 1) with
intervals with widths equal to their precision, 1/b, b the base.

Lemma 9. If .(a)b ∈ (0, 1) and .(a)b /∈ Djn then there exists x ∈ Djn such

that

.(a)b ∈ (.(x− 1), .(x))jn,

where (.(x − 1), .(x))jn is an open set with end points .(x − 1)jn and .(x)jn.

Further for any given ε > 0,

|.(a)b − .(x − 1)jn| <
1

jn
< ε, (14)

for large enough j.

Proof. Djn partitions the interval (0, 1) forcing .(a)b into such an interval.
The distance between endpoints in such an open interval is 1/jn, so anything
inside the interval is less than 1/jn to an endpoint. The right hand inequality
in (14) follows from the Archimedean property of the reals [14].

We suspect series that cover and escape their cover, in the sense developed
above, have ever better approximations with greater bases. Any finite base
approximation can’t equal the convergence point.

Lemma 10. For zn there exists a sequence εj such that

∞
⋂

j=2

D
εj

j = ∅.
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Proof. We need to define a sequence εj. Let

ε∗j = min{|x− sn
j | : x ∈ Ξn

j }.

We know by Corollary 1 that ε∗j > 0. We proceed inductively. For the first
iteration, let ε3 be a number such that ε3 < ε∗3. This excludes the decimal
sets of Ξn

3 at this our first iteration. Assume we can generally do this for the
jth iteration. For the j + 1st iteration, using Lemma 9, there exists a base
in Ξn

j+r, for some r such that ε∗j+r < εj/2. Set εj+1 = ε∗j+r. The procedure
gives ε values that cumulatively exclude ever more decimal sets from D

εj

jn .
Regroup the series. By Lemma 4, the exclusions are exhaustive, so

∞
⋂

j=2

D
εj

jn = ∅,

as needed.

Theorem 3. zn is irrational.

Proof. Let the sequence given in Lemma 10 be given by εj1 and let a general
sequence needed for Lemma 8 be given by εj. Suppose

p

q
∈

∞
⋂

j=2

D
εj

jn . (15)

That is suppose the intersection in (15) is not empty. As εj1 → 0 and εj → 0,
for any fixed εj1 that excludes p/q there will be an εj such that εj < εj1. This
implies that p/q will be excluded using εj, contradicting (15).

7 Conclusion

How does this proof compare to the work of Beukers? Why do we get a
general result here and not with his techniques?

Beukers uses double integrals that evaluate to numbers involving partials
for ζ(2). He uses

∫ 1

0

∫ 1

0

xrys

1 − xy
dxdy = various expressions related to ζ(2)
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and uses this to calculate
∫ 1

0

∫ 1

0

(1 − y)nPn(x)

1 − xy
dxdy,

where Pn(x) is the nth derivative of an integral polynomial.
These calculations yield integers An and Bn in

0 < |An + Bnζ(2)|d2
n <

{

√
5 − 1

2

}5n

ζ(2) <
{5

6

}n

, (16)

where dn designates the least common multiple of the set of integers {1, . . . , n}.
This last, assuming ζ(2) is rational, forces an integer between 0 and 1, giving
a contradiction. An upper limit for dn requires the prime number theorem.

These themes repeat for ζ(3) with the complexity of the expressions at
least doubling.

We don’t use integrals to generate in effect an interval, a trap, like (16),
but the relationships between terms and partials to generate partitions of
(0, 1) narrowing and leaving only irrational numbers. We use inherent and
simple properties of zn’s partials and terms, Corollary 1, to avoid intractable
complexity.
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