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Abstract

Although Beukers’s proof that ζ(2) and ζ(3) are irrational are at
the level of advanced calculus, they are condensed. This article slows

down the development and adds examples of the techniques used. In
so doing it is hoped that more people might enjoy these mathematical
results. We focus on the easier of the two ζ(2).

Introduction

Apery proved ζ(3) is irrational [1]. His proof was difficult [5, 12]. Beukers
simplified it. Beukers in his four and a half page paper [3] proves both ζ(2)
and ζ(3) are irrational. The former uses less complicated cases of a pattern
than the latter, but still the math in both is highly condensed.

There is a mixture of number theory and calculus which is not typical
in either number theory or calculus courses. In this article we slow down
Beukers’s presentation and provide tutorials, in effect, for the harder parts.
Where possible we give examples and references. As the ζ(3) case is largely a
repeat of ζ(2), we focus mainly only on it, but do cover ζ(3) as well, generally
using Maple, a computer algebra system, wherever possible.

If the presentation works, teachers (and students) might find good exam-
ples of challenging high school and undergraduate topics and all within the
context of a truly marvelous, yet serious mathematical results.

1



Preliminaries

Divisions can generate infinite series. Perhaps the easiest example of this is
using long division to arrive at

1

1 − x
= 1 + x + x2 + x3 + . . . .

When we take integrals, we’ve solved an integral with a series:

∫

1

1 − x
dx =

∫

1 + x + x2 + x3 + · · · = x + x2/2 + x3/3 + x4/4 + . . . . (1)

The definite integral with 0 and 1 limits of integration gives the harmonic
series:

∞
∑

k=1

1

k

which doesn’t converge. We suspected as much, as 1/(1 − x), the integrand
on the left of (1), gets large as x approaches 1.

The series
∞
∑

k=1

1

k2

squares the terms of the harmonic. So if we had a way to repeat the ideas
just given, we might be able to arrive at an integral (or a double integral)
that equals this series; its notated with ζ(2).

We find that

1

1 − xy
= 1 + xy + x2y2 + x3y3 + . . . (2)

and
∫

1 + xy + x2y2 + x3y3 + . . . dx = x +
x2

2
y +

x3

3
y2 + . . . .

Taking the limits of integration to be 1 and 0, yields

1 +
1

2
y +

1

3
y2 + . . . ,
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and then integrating with the same limits with respect to y, we arrive at
ζ(2):

∫ 1

0

1 +
1

2
y +

1

3
y2 + . . . dx =

∣

∣

∣

1

0
y + (1/2)y2/2 + (1/3)y3/3 + . . .

= ζ(2).

This can all be summarized succinctly with

∫ 1

0

∫ 1

0

1

1 − xy
dx dy = ζ(2). (3)

Our mission is to prove this number is irrational. This is a result known
prior to Apery and Beukers work.

Imagining a solution

Looking at proofs of irrationality that involve integrals [6, 7, 11], the struc-
ture is to generate bounds that are violated somehow when the integral is
evaluated. An increasing n value needs to be incorporated into (3) so that as
this n goes to infinity the violation of a bound is guaranteed. We note that
in the articles just cited, we see the form xn(p − qx)n used as an integrand
with 0 and p/q as limits of integration. The form xn(1−x)n is used in [2] to
show e is irrational. We have two variables in our double integral with 1 as
the upper limit of integration for both variables, so we will explore

∫ 1

0

∫ 1

0

y(1 − y)x(1− x)

1 − xy
dx dy . (4)

Now, if we have bounds for the nth power of the integrand in (4), say

0 <
yn(1 − y)nxn(1 − x)n

(1 − xy)n
≤ Bn,

then perhaps we can say

∫ 1

0

∫ 1

0

yn(1 − y)nxn(1 − x)n

(1 − xy)n

1

1 − xy
dx dy ≤ Bnζ(2). (5)
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d/dx
∫

+ x2 sin x
- 2x − cos x
+ 2 − sin x

0 cos x
∫

d/dx

Table 1: Example of tabular integration

Note: the lower bound is automatic as the function is positive on the intervals
in question.1 Then following the example in [7], we assume ζ(2) is rational
and evaluate this integral and violate this limit as n goes to infinity.

The template for a lot of irrationality proofs is to force a positive integer
to be less than one. Something like

0 < xn < q(5/6)n (6)

where xn and q are positive integers, shows the trick: as limn→∞(5/6)n = 0,
for any fixed q (6) becomes impossible. There are four tasks: form an integral
(done); evaluate that integral; form an upper bound for it; and, show the
combination gives a contradiction.

Evaluation, part 1

Doing multiple integrations by parts can be a daunting challenge. Tabular
integration by parts can help [9]. As the integral in (5) looks like a prime
candidate for such multiple integrations by parts, we’ll provide a tutorial on
tabular integration by parts and then use this method.

Finding the integral
∫

x2 sinx dx

becomes mechanical using tabular integration. Looking at Table 1 multi-
plying the first row’s, second column’s x2 with the third row’s − cosx and

1Technically this is an improper integral, but this is easily resolvable, see Beukers

article.
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d/dx
∫

+ (1 − y)n(1 − xy)−1 (1/n!) dn

dxn
xn(1 − x)n

- (−1)y(1 − y)n(1 − xy)−2 (1/n!) dn−1

dxn−1 x
n(1 − x)n

+ (−1)(−2)y2(1 − y)n(1 − xy)−3 (1/n!) dn−2

dxn−1 x
n(1 − x)n

± ...
...

± (−1)nn!yn(1 − y)n/(1 − xy)n+1 (1/n!)xn(1 − x)n
∫

d/dx

Table 2: Bottom up tabular integration

incorporating the sign in the first column and then repeating and adding
each such product gives the answer:

∫

x2 sinx dx = −x2 cos x + 2x sin x + 2cos x

If, for some reason, we wanted to keep an integral in our solution, we can
adjust our algorithmic assembly process. For example, we simply reset our
table at row 2, observing the minus sign in the first column:

∫

x2 sinx dx = −(−x2 cos x +

∫

2x(− cosx) dx).

One can, as usual, take derivatives and confirm these statements.
Table 1 repeats in reverse order the table header in the last row:

∫

and
d/dx. This is to indicate that one can reverse direction and construct the
top row as one equivalent to the bottom. Usually the function that promises
to end with a 0 after derivatives are taken is chosen for column one, as in
the first x2 sinx example. We use this bottom up integration by parts, see
Table 2, to construct a easier form of (5):

∫ 1

0

∫ 1

0

yn(1 − y)nxn(1 − x)n

(1 − xy)n+1
dx dy =

∫ 1

0

∫ 1

0

(1 − y)nPn(x)

1 − xy
dx dy (7)

where

Pn(x) = (−1)n 1

n!

dn

dxn
[xn(1 − x)n].
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Figure 1: The numerator of the integrand using Maple’s expand function.

Studying the bottom line of Table 2 one sees the integrand desired and then
works up rather than down to arrive at an equivalent integrand.

Evaluation, part 2

Have we accomplished anything? The integrand in

∫ 1

0

∫ 1

0

(1 − y)nPn(x)

1 − xy
dx dy (8)

has the same denominator as the one in (2) and we were able to give an infinite
series form for it: the right hand side of (2). The definition of Pn(x) reveals
that it is a integer polynomial in x and its a multiplicand with an integer
polynomial in y. Using Maple we can look at an example computation,
see Figure 1. Imagining this result multiplied by (2), we see an integer
polynomial in various powers of x and y. So if we can evolve a way to
evaluate integrals of the form

∫ 1

0

∫ 1

0

cr,sx
rys

1 − xy
dx dy , (9)

where cr,s is an integer, we have made progress. The terms of interest in the
integrand are

∑

r≥0,s≥0

cr,sx
rys. (10)

Find a case equation for (9) without the cr,s coefficient – they are integers,
which have the right form for our template, (6). This is relatively easy. Just
multiply (2) by xsxr and do the integrations; the integrand is

xrys = xrys(1 + xy + x2y2 + x3y3 + . . . ). (11)
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We find

∫ 1

0

∫ 1

0

xrys

1 − xy
dx dy =











ζ(2) if r = s = 0

ζ(2) −∑r
k=1

1
k2 if r = s > 0

m
d2

r

if r > s.

We will show each of the cases.
If r = s = 0, then (11) is just one times the infinite series, which we’ve

seen is just ζ(2). Now is about the time we should start imagining that
we assume ζ(2) is rational and what that might mean. It will have then a
denominator – hold that thought.

If r = s > 0, this just moves the terms up by r terms and we can express
this as the whole series minus the early terms:

ζ(2) −
r
∑

k=1

1

k2
.

The sum is finite and is equal to a fraction. Under the assumption that ζ(2)
is rational we can blast out its denominator with dispatch. What about this
sum? Well multiplying it by the least common multiple of all its denomina-
tors will make it too a positive integer. When we calculate an upper bound,
multiplication by the least common multiple of integers 1 through n will be
necessary.

The next case, r > s, requires more work. Simply integrating, we have

∫ 1

0

∫ 1

0

∞
∑

k=0

xr+kys+k dx dy =
∞
∑

k=0

1

(k + r + 1)(k + s + 1)

When adding or subtracting fractions using cross multiplication, the product
of denominators appears; we use this in

1

k + s + 1
− 1

k + r + 1
=

(k + r + 1) − (k + s + 1)

(k + r + 1)(k + s + 1)
=

r − s

(k + r + 1)(k + s + 1)
.

So, we now have

∑ 1

(k + r + 1)(k + s + 1)
=
∑ 1

r − s

(

1

k + s + 1
− 1

k + r + 1

)

=
1

r − s

∑

(

1

k + s + 1
− 1

k + r + 1

)

.
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It’s best to consider an example to see what’s going on. Letting r = 5
and s = 2 we see a cascading phenomenon:

(1/3 − 1/6) + (1/4 − 1/7) + (1/5 − 1/8) + (1/6 − 1/9) + (1/7 − 1/10) + . . . =

(1/3) + (1/4) + (1/5),

that is, the terms from s + 1 up to r remain. The net is

1

r − s

(

1

s + 1
+ · · · + 1

r

)

.

Which, for s = 2, r = 5, is

1

3

(

1

3
+

1

4
+

1

5

)

. (12)

For such sums we can use a fraction that is not necessarily reduced, such as

m

d2
r

,

where dr is the least common multiple of {1, . . . , r}. So (12) gives

20

60

(

20

60
+

15

60
+

12

60

)

or
20

60

(

47

60

)

=
940

602
=

m

d2
r

as the least common multiple of {1, . . . , 5} is 60.
One more time; it is as simple as

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+ . . .

− 1

6
− 1

7
− . . .

(13)

is

1

3
+

1

4
+

1

5
.

(14)
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Evaluation, part 3

As a result of part 2, we have three sums to consider in our integrand:

∑

r=s=0

cr,sx
ryr +

∑

r=s>0

cr,sx
ryr +

∑

r>s≥0

cr,sx
ryr.

As the coefficients, the cr,ss, are all integers, this becomes

ζ(2)
∑

r=s=0

cr,s +
∑

r=s>0

cr,s[ζ(2) −
r
∑

k=1

1

k2
] +

∑

r>s≥0

cr,s

r−s
∑

k=1

1

k2

or

ζ(2)(
∑

r=s=0

cr,s +
∑

r=s>0

cr,s) −
∑

r=s>0

cr,s

r
∑

k=1

1

k2
+
∑

r>s≥0

cr,s

r−s
∑

k=1

1

k2

or
ζ(2)an −

∑

r=s>0

cr,s
m1

d2
n

+
∑

r>s≥0

cr,s
m2

d2
n

or
ζ(2)an + bn

m2

d2
n

or

(ζ(2)An + Bn)/d2
n, (15)

where d2
n is the square of the least common multiple of the set {1, 2, . . . , n},

an, bn, An and Bn are integers. It should be noted that when a fraction is
multiplied by an integer, cancellations can occur, but no additional factors
can be created in the denominator: factors go out, not in. Also, as Figure 1
implies, the coefficients are all functions of n per force of the numerator of the
integrand in (8) consisting consisting of the multiplication of two polynomials
of degree n. In [4] these integer coefficients are calculated, but this is not
really necessary.

The upper bound, part 1

Summing up, the integral evaluates to (15). Next up in our program is to
create an upper bound. Calculus books, like [9], use the area under the curve
feature of integrals to determine upper bounds: if the definite integral gives
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the area under the curve, the maximum of the integrand times the length of
the limits of integration should give the area of a rectangle that encloses the
area under the curve, an upper (and a lower) bound:

m(b− a) ≤
∫ b

a

f(x) dx ≤ M(b − a).

An upper bound for

Fn(x, y) =

(

x(1 − x)y(1 − y)

1 − xy

)n

will be the nth power of the upper bound of

F1(x, y) =

(

x(1 − x)y(1 − y)

1 − xy

)

.

Given the limits of integration, we seek then a relative extrema for (x, y) ∈
([0, 1] × [0, 1]). Such a maxima will occur when x = y because otherwise the
lesser of the two will diminish the value of the product. This gives a function
in one variable:

f(x) =
x2(1 − x)2

1 − x2
.

A theorem in calculus says that the maximum of the integrand times the
length of the interval of integration gives the maximum of the integral [9].
We need then to find the maximum of the integrand.

Using elementary calculus, a maximum of a function occurs when its
derivative is 0 and the second derivative is negative at this point. We will
determine the appropriate 0 for f ′. First, lets reduce f :

f(x) = −x2(x − 1)(x − 1)

(x + 1)(x − 1)
= −x3 − x2

(x + 1)
.

The derivative of f is then

f ′(x) = −(3x2 − 2x)(x + 1) − (1)(x3 − x2)

(x + 1)2
=

(−2x)(x2 + x − 1)

(x + 1)2
.

After using the quadratic formula, we find the appropriate 0 of the numerator
is

Φ =

√
5 − 1

2
.
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One doesn’t have to bother with the second derivative test because the other
roots of the numerator, 0 and (−

√
5 − 1)/2, can’t work: too small and out

of domain, respectively.
Next we need to evaluate f(Φ). This seems like a complicated evaluation,

but this number is the reciprocal of φ, Greek phi, a famous number with lots
of properties [10]. We’ll use some of them. So, we need to evaluate

x2(1 − x)2

1 − x2

at Φ = φ−1. Well as Φ is a root of x2 + x − 1, we have Φ2 = 1 − Φ and
(1 − Φ)2 = Φ4, so

x2(1 − x)2

1 − x2
=

Φ6

1 − Φ2
,

when x = Φ. For the denominator, using x2+x−1 = 0 once again, 1−x2 = x
and so 1 − Φ2 = Φ. We can conclude that for (x, y) ∈ [0, 1) × [0, 1),

x(1 − x)y(1 − y)

1 − xy
≤ Φ5 =

(√
5 − 1

2

)5

≈ .0902.

Deriving a contradiction, part 1

So on the one hand we have the evaluation of an integral yielding something
of the form

In = bnζ(2) − pn

d2
n

(16)

and on the other hand we have a bound for the integral in this form

|In| ≤
(√

5 − 1

2

)5n

ζ(2). (17)

With the assumption that ζ(2) is rational, we can get (16) is of the form

qnζ(2) − pn

d2
n

=
qnp − qpn

qd2
n

.

Putting this with (17), we have

qnp − qpn

qd2
n

≤
(√

5 − 1

2

)5n

ζ(2)
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or

qnp − qpn ≤ qd2
n

(√
5 − 1

2

)5n

ζ(2) = pd2
n

(√
5 − 1

2

)5n

.

Now if we can get an upper bound for d2
n such that when multiplied by an

upper bound for Φ5n gives a fraction less than one to the nth power, we could
get a contradiction, as the far left side is an integer.

Deriving a contradiction, part 2

Now dn is the least common denominator of the integers 1 through n. We
can get an interesting way to calculate this using the fundamental theorem
of arithmetic:

dn =
∏

p≤n

pInt(log n/ log p).

So for n = 10

dn =
∏

p≤10

pInt(log n/ log p) = 2Int(log2 10)3Int(log3 10)5Int(log5 10)7Int(log7 10)

= 23 · 32 · 51 · 71

and this is correct; the least common multiple of the set of natural numbers
{1, . . . , 10} is 23 · 32 · 51 · 71. Now if we remove the Int, the integer floor
function, we can form inequalities:

dn =
∏

p≤n

pInt(log n/ log p) ≤
∏

p≤n

plog
p

n =
∏

p≤n

n = nπ(n) = elnnπ(n)

= eπ(n) lnn

where π(n) is the number of primes less than or equal to n. We’d like a
bound on this. According to the prime number theorem π(n) ∼ ln n

n
, so

π(n) lnn ∼ n. This means for a given epsilon we can find Nε such that

π(n) lnn ≤ (1 + ε)n,

for all n > Nε, so we have an upper bound for dn:

dn ≤ e(1+ε)n.

Now e = 2.71828 · · · < 3, so we can safely say dn < 3n and d2
n < 9n.
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Deriving a contradiction, part 3

We need to find an upper bound for

(√
5 − 1

2

)5n

9n =
(√

5 − 1
)5n

(

9

32

)n

.

Using
√

5 < 2.24, we have
√

5 − 1 < 1.24 = 31/25. Some calculations show
(

315

255

)(

9

32

)

<
5

6
,

so
(√

5 − 1

2

)5n

9n <

(

5

6

)n

Conclusion

A follow up document will cover the irrationality of ζ(3).
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