The Paradoxical Collection of Sets Explained

By Jim Rock

Abstract: We explain why there is a collection of sets, which both have and do not have largest elements.

Introduction. For all real numbers \(a \) in the open interval \((0, 1)\)

Let the collection of all \(R_a = \{ y \text{ a real number } | 0 \leq y < a \} \)

Each set in the collection of \(R_a \) has a largest element.

Each \(R_a \) must contain one and only one element \(a' \) that is not an element in the group of all the proper subsets of that \(R_a \), as taken from the collection of all \(R_a \).

Otherwise, since the group of all proper subsets of each \(R_a \) taken from the collection of all \(R_a \) are nested in descending order inside that \(R_a \), and none of the proper subsets contain all the elements of that \(R_a \), each \(R_a \) would be a proper subset of itself.

\(a' \) is the largest element of \(R_a \).

No Set in the collection of \(R_a \) has a largest element.

Suppose there is a largest element \(a' \) in \(R_a \).

\(a' < (a + a')/2 < a \). Let \(b = (a + a')/2 \). Then \(b \) is in \(R_a \) and \(a' < b \).

Note: the question is not whether \(R_a \) actually contains a largest element, but whether or not the two contradictory statements about a largest element are both conclusions of valid logical arguments.

© 2021 James Edwin Rock. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

If you wish, email comments to Jim Rock at collatz3106@gmail.com.