Hypothese einer Verletzung der Lorentz-Invarianz in der Äthertheorie und Bestätigung durch die Experimente von D. C. Miller

Sebastian Pliet*

2. Juli 2021 / 1.0

Es wird die Hypothese aufgestellt, daß der Brechungsindex von bewegten Gasen in deren Ruhesystem anisotrop wird. Deswegen sollten Interferometer mit Luft im Lichtweg eine Phasenverschiebung messen können. Das theoretische Signal wird aus der Äthertheorie von Lorentz hergeleitet. Die Hypothese wird anhand von historischen Daten der Experimente von Dayton C. Miller auf dem Mount Wilson in den Jahren 1925–1926 geprüft. In ausgewählten Daten wird ein passendes Signal gefunden und bestätigt damit die Äthertheorie. Mit Hilfe einer Ausgleichsrechnung konnte die Geschwindigkeit v und der Apex, in äquatorialen Koordinaten (α, δ) , der Bewegung des Sonnensystems im Äther bestimmt werden. Die kleinste Abweichung der Theorie von den Daten ergibt sich mit den Parametern

 $v = (326 \pm 17) \text{ km/s}, \quad \alpha = (11.0 \pm 0.2) \text{ h}, \quad \delta = (-11 \pm 5)^{\circ}.$

^{*}aetherise@gmx.de

Inhaltsverzeichnis

1.	Fragestellung	3
2.	Hypothese2.1. Lichtweg im Vakuum und in Festkörpern2.2. Lichtweg in Gasen	3 4
3.	Theorie 3.1. Phasenlaufzeit	4 5 5
4.	Experiment 4.1. Messvorgang 4.2. Datenblätter	5 6 7
5.	Signal 5.1. Bekannte Parameter 5.2. Freie Parameter 5.3. Himmelsmechanik 5.4. Vorzeichen 5.5. KHS-Dipol	8 8 9 10 10
6.	6.1. Datenreduktion 6.2. Signalextraktion 6.3. Fourier-Analyse 6.4. Test auf Normalverteilung 6.5. Gruppen und Kategorien 6.6. Anomalien 6.7. Verwertbarkeit der Gruppen 6.8. Auswahl der Datenblätter 6.9. Differenzsignale	11 12 13 13 13 14 14 15 17 17 18
7.	7.1. Ausgleichsrechnung	18 18 19 19 21
8.	Folgerungen	23
٨	Refebba	2/

1. Fragestellung

Eine der großen Fragen in der Physik ist die Frage nach der wahren Bedeutung der Lorentz-Transformation [1]. Es gibt mindestens zwei Möglichkeiten. In der Äthertheorie von Lorentz [2] beschreibt sie eine Symmetrie des Elektromagnetismus, welcher sich in einem bestimmten Bezugssystem, dem Äther, ausbreitet. In der Speziellen Relativitätstheorie (SRT) von Einstein [3] wird sie als relative Gleichzeitigkeit oder Raumzeit [4] gedeutet, eine fundamentale Natur von Raum und Zeit ohne bevorzugtes Bezugssystem.

Obwohl es in der Äthertheorie ein bevorzugtes Bezugssystem gibt, wurde postuliert, daß man es nicht entdecken könne. Damit liefern beide Theorien die gleiche Beschreibung der elektrischen und optischen Erscheinungen in bewegten Körpern.

Die grundsätzlich verschiedene Natur beider Theorien gibt aber Anlass zu der Vermutung, daß eine Unterscheidung doch möglich ist. 1

2. Hypothese

Die ersten Experimente um den Äther zu entdecken, versuchten mittels Interferometern eine Laufzeitänderung von Lichtstrahlen zu messen. Die Erde, auf der das Experiment stattfindet, bewegt sich auf jeden Fall um die Sonne und damit durch den Äther, was zu einer messbaren Phasenverschiebung führen sollte [5]. Diese ersten Experimente lieferten nicht das erwartete Ergebnis, was auch zur Weiterentwicklung der Äthertheorie führte [6].

Die Hypothese betrifft nun genau diese Art von Experimenten, also große Interferometer, deren Lichtstrahlen durch Luft gehen.

2.1. Lichtweg im Vakuum und in Festkörpern

Aus der Äthertheorie folgt, daß die mittlere Lichtgeschwindigkeit auf geschlossenen Wegen konstant ist. Betreibt man ein Michelson-Interferometer im Vakuum, gibt es also keine Phasenverschiebung.

Befindet sich ein durchsichtiger Festkörper, z. B. Glas, im Lichtweg des Interferometers, gibt es ebenfalls keine Phasenverschiebung [7]. Es gibt zwar eine Phasenverschiebung durch das Material, beschrieben durch den Brechungsindex, aber dieser ändert sich nicht und insgesamt wird die Symmetrie nicht gebrochen.

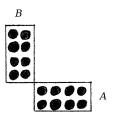


Abbildung 1: Ein ruhendes Michelson-Interferometer

Der Brechungsindex eines Materials ist nach Lorentz [8] eine Folge der Überlagerung der elektromagnetischen Schwingungen des Lichts und den Schwingungen der dabei mit angeregten Moleküle beziehungsweise deren elektrischen Feldern.

Wenn man Licht beobachtet, beobachtet man immer die Wirkung der Welle und nicht das Feld. Das Feld breitet sich immer mit Lichtgeschwindigkeit aus, auch im Material. Aber die Welle wird durch Überlagerung mit anderen Wellen phasenverschoben. Das Ergebnis ist verlangsamtes Licht.

In Abbildung 1 ist ein Michelson-Interferometer dargestellt. Die beiden Arme sind mit A und B gekennzeichnet. Die schwarzen Kreise stellen die Atome oder Moleküle der Materie im Lichtweg dar. Die Arme des Interferometers bestehen auch aus Materie, sind aber vereinfacht als Rechtecke dargestellt. Das Interferometer ruht im Äther, es gibt also keine Lorentz-Kontraktion. Die beiden Arme sind ungefähr gleich lang und bleiben es bei einer Drehung auch.

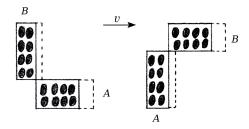


Abbildung 2: Ein bewegtes Michelson-Interferometer

In Abbildung 2 ist ein bewegtes Michelson-Interferometer dargestellt. Einmal links in der Ausgangslage und einmal rechts um 90° im Uhrzeigersinn gedreht. Der Pfeil v gibt die Richtung der Bewegung im Äther an. Man erkennt die Lorentz-Kontraktion der beiden Arme und eines Festkörpers im Lichtweg. Die gestrichelten Linien geben die Dimensionen der Arme in Ruhe an.

Wie man sieht, bleibt die Anzahl der Teilchen im Lichtweg beider Arme gleich. Deswegen gibt es keine Änderung der Phasenverschiebung bei einer Lageänderung.

¹ Alle Daten und Programme, die im Rahmen dieser Forschungsarbeit entstanden sind, wurden auf https://github.com/aetherise/aetherise veröffentlicht.

2.2. Lichtweg in Gasen

Im gasförmigen Aggregatzustand können sich die einzelnen Atome oder Moleküle der Materie frei durcheinander bewegen. Jedes einzelne Teilchen wird bei einer Bewegung im Äther in Bewegungsrichtung kontrahiert. Es stellt sich aber nun die Frage, ob sich die Lorentz-Kontraktion auch auf die Abstände zwischen den Teilchen auswirkt. Also ob sich die Dichte wie bei einem Festkörper ändert.

Wenn man sich Teilchen vorstellt, die sich chaotisch bewegen und aneinander stoßen, ist nicht sofort klar, was eine kleine Änderung der Dimensionen bewirkt. Vor allem, wenn es sich um zweiatomige Moleküle handelt, deren Gestalt stark von der der Kugel abweicht.²

Die Hypothese lautet nun, daß sich die Dichte einer im Äther bewegten Gaswolke, zumindest näherungsweise, nicht ändert.

Betreibt man ein Michelson-Interferometer als offenes System in einem Gas, ergibt sich nach meiner Hypothese ein Bild wie in Abbildung 3.

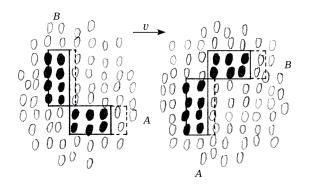


Abbildung 3: Ein Michelson-Interferometer in einer Gaswolke

In Abbildung 3 ist bewegtes Michelson-Interferometer innerhalb einer mitbewegten Gaswolke dargestellt. Die schwarzen Ellipsen stellen die Gasmoleküle dar, die sich im Lichtweg der Arme befinden. Alle weißen Ellipsen sind Moleküle, die sich außerhalb des Lichtweges befinden. Alles andere ist wie in Abbildung 2 zu verstehen.

Man erkennt, daß sich in den beiden verschiedenen Lagen die Anzahl der Teilchen im Lichtweg beider Arme unterscheidet. Daraus folgt, daß sich die Phasenverschiebung bei einer Drehung ändern muss. Die Symmetrie ist gebrochen. Die Phase ist nicht mehr Lorentz-invariant und der Brechungsindex wird anisotrop. Eine Unterscheidung zwischen Äther und Raumzeit ist damit möglich.

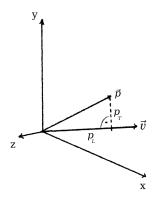


Abbildung 4: Das Koordinatensystem S

3. Theorie

Um die zu beobachtende Interferenzstreifenverschiebung bei einer Drehung des Interferometers zu berechnen, scheint es sinnvoll, die Theorie für eine einzelne Strecke zu entwickeln. Damit kann man dann beliebige Lichtwege rechnen, welche aus einzelnen Strecken zusammengesetzt sind.

Sei S ein Koordinatensystem, welches sich im Äther bewegt, und \vec{v} und \vec{p} Vektoren in diesem System. Der Vektor \vec{v} gibt die Geschwindigkeit und Richtung der Bewegung an. Der Vektor \vec{p} ist die Strecke, auf der sich ein Photon bewegt.

3.1. Phasenlaufzeit

Um die Zeit zu berechnen die ein Photon für die Strecke \vec{p} benötigt, bestimmen wir den longitudinalen und transversalen Anteil von \vec{p} in Richtung \vec{v} . Der longitudinale Anteil ist

$$p_L = \frac{\vec{v} \cdot \vec{p}}{\mid \vec{v} \mid} \tag{1}$$

und der transversale ist $p_T = |\vec{p}_T|$, wobei

$$\vec{p}_T = \vec{p} - p_L \frac{\vec{v}}{|\vec{v}|} \ . \tag{2}$$

Ist u die Geschwindigkeit des Photons in S, dann sind

$$u_L = \frac{p_L}{|\vec{p}|} u \quad \text{und} \quad u_T = \frac{p_T}{|\vec{p}|} u \tag{3}$$

die longitudinalen und transversalen Anteile in Richtung \vec{v} .

Mit dem Additionstheorem für Geschwindigkeiten [3] transformieren wir nun u aus dem Bezugssystem S in das Bezugssystem S', dem Äther:

$$u'_{L} = \frac{u_{L} + v}{1 + \frac{u_{L}v}{c^{2}}}, \quad u'_{T} = \frac{u_{T}\sqrt{1 - \left(\frac{v}{c}\right)^{2}}}{1 + \frac{u_{L}v}{c^{2}}}.$$
 (4)

 $^{^2\}mathrm{Eine}$ Herleitung will ich hier nicht versuchen.

Um die Zeit auszurechnen die das Photon für die Strecke \vec{p} in S' benötigt, bestimmen wir klassisch mit der Galilei-Transformation die Geschwindigkeit

$${u'}^2 = (u'_L - v)^2 + {u'}_T^2 \tag{5}$$

und, unter Beachtung der Lorentz-Kontraktion, den Weg

$$s'^2 = \left(p_L \sqrt{1 - \left(\frac{v}{c}\right)^2}\right)^2 + p_T^2 \ .$$
 (6)

Die benötigte Zeit ist dann

$$t' = \frac{s'}{u'} \ . \tag{7}$$

Wir werden Zeiten nur für geschlossene Lichtwege berechnen. Somit erübrigen sich Fragen nach der Richtigkeit und Bedeutung von t' für offene Wege.

3.2. Phasenverschiebung

Bestimmt man für zwei unterschiedliche Lichtwege die Zeiten t_1 und t_2 und bildet die Differenz

$$\Delta t = t_2 - t_1 \ , \tag{8}$$

kann man diese auch in Wellenlängen λ ausdrücken

$$\frac{c}{\lambda}\Delta t$$
 . (9)

Dabei gehe ich davon aus, daß die Frequenz des Lichts in einem Material immer gleich bleibt, auch im gasförmigen Zustand mit Lorentz-Kontraktion.

Bestimmt man für zwei Lagen 3 A und B der Lichtwege das Δt , dann ist

$$\Delta \lambda = \frac{c}{\lambda} (\Delta t_B - \Delta t_A) \tag{10}$$

die relative Verschiebung in Wellenlängen.

Diese Rechnung liefert für Lichtwege im Vakuum und in Festkörpern $\Delta\lambda=0$. Für Lichtwege in Gasen muss man für die longitudinale Komponente, aufgrund des veränderten Brechungsindex n_L , eine andere Lichtgeschwindigkeit angeben. Aus (3) wird dann

$$u_L = \frac{p_L}{|\vec{p}|} \frac{c}{n_L} \quad \text{und} \quad u_T = \frac{p_T}{|\vec{p}|} \frac{c}{n} . \tag{11}$$

3.3. Anisotroper Brechungsindex

Wir wollen nun den Brechungsindex n_L eines bewegten Gases in Richtung der Bewegung bestimmen.

Bei einer Untersuchung des Zusammenhangs zwischen dem Brechungsindex n und der Körperdichte d findet Lorentz [8] die Größe

$$\frac{n^2 - 1}{(n^2 + 2)d} = R = \text{const.}$$
 (12)

Aus einem bekannten Brechungsindex n kann man nun Rd ausrechnen. Weil die Materie in Bewegungsrichtung kontrahiert, und damit auch alle Maßstäbe und Beobachter, sieht es in S so aus, als würde die Dichte eines Gases longitudinal geringer sein. Und zwar genau um den Faktor der Lorentz-Kontraktion

$$\frac{1}{\gamma} = \sqrt{1 - \left(\frac{v}{c}\right)^2} \ . \tag{13}$$

Aus der veränderten Dichte folgt ein anderer Brechungsindex n_L . Eingesetzt in (12) und umgestellt ergibt sich

$$n_L = \sqrt{\frac{1 + 2Rd\gamma^{-1}}{1 - Rd\gamma^{-1}}} \ . \tag{14}$$

Damit haben wir nun die Lichtgeschwindigkeit die wir in (11) benötigen.

4. Experiment

Um die Hypothese zu prüfen, war es nicht nötig ein eigenes Experiment durchzuführen. Es gab in der Vergangenheit bereits Experimente.

Jemand der viele Experimente und Messungen durchgeführt hat war Dayton C. Miller. In einer seiner letzten Arbeiten [9] fasste er seine Ergebnisse zusammen. Er kam zu dem Schluss, daß seine Daten ein Signal vom Äther enthalten. Die Arbeiten von Miller wurden auch kritisiert [10] und andere ähnliche Experimente [11] fanden kein Signal.

Die Experimente von Miller auf dem Mount Wilson in den Jahren 1925–1926 waren genau solche, welche die Hypothese prüfen konnten.

Der Mount Wilson ist ein Berg in Kalifornien in den Vereinigten Staaten von Amerika. Miller hatte dort, in vier sogenannten Epochen, umfangreiche systematische Messungen durchgeführt [12]. Auf dem Gipfel in 1700 m Höhe war in einer Hütte ein Michelson-Interferometer aufgebaut. Es wurde als halboffenes System an der Luft betrieben.⁵

Die beiden Arme waren kreuzförmig angeordnet und bestanden aus Stahlträgern. Der mittlere Teil des Stahlkreuzes ruhte auf einem Schwimmer. Dieser schwamm in einer Wanne, die mit Quecksilber gefüllt war. Das ganze Gerät wog 1200 kg. Die beiden Stahlträger waren über 4 m lang. An jedem Ende waren

³Die relative Lage der Lichtwege zueinander soll sich nicht

 $^{^4}$ Nun kann man einwenden, daß alle bekannten n möglicherweise ungenau sind, weil sie ohne Beachtung der Äthertheorie ermittelt wurden. Aber die Genauigkeit des absoluten Wertes ist nicht entscheidend, weil ein Interferometer Unterschiede misst. Mit den Parameterwerten des KHS-Dipols (24) würde sich der Brechungsindex 1,00023 um $1,7\cdot 10^{-10}$ ändern, was zu einer Änderung der Signalamplitude von $1,4\cdot 10^{-8}~\lambda$ führen würde.

⁵Ich nenne das System halboffen, weil der Lichtweg zwar verkleidet war, aber an den Seiten aus Glas bestand. Wie dicht die Verkleidung war ist mir nicht bekannt.

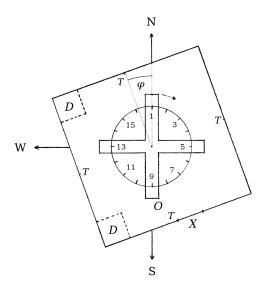


Abbildung 5: Grundriss der Hütte mit Interferometer

vier Spiegel angebracht mit denen die Lichtstrahlen mehrfach gespiegelt wurden, so daß ein Lichtweg von 64 m erreicht wurde. Die Lichtquelle war eine Acetylenlampe mit einer Wellenlänge von 570 nm.

In Abbildung 5 ist die Hütte dargestellt, in der das Interferometer aufgebaut ist. Das Interferometer befindet sich in der Ausrichtung, bei der der Messvorgang gestartet wird. Der Kreis mit den 16 Teilstrichen gibt die Azimute an, bei denen ein Wert abgelesen wird. N, S, W: Die Himmelsrichtungen. X: Die Tür. 6 T: Die vier Thermometer. D: Die zwei Standorte des Schreibtisches. 7 O: Der Beobachter der durch die Optik schaut. φ : Winkel von 20° zwischen dem Lot auf die Nordwand und Norden. Die Abbildung ist annähernd maßstabsgerecht.

Über ein Jahr verteilt hat Miller vier mal, jeweils bis zu zwei Wochen lang, Messungen durchgeführt. Dabei sind eine Anzahl an Datenblättern entstanden.

Tabelle 1: Epochen

Epoche	Zeitraum	Anzahl
Apr	27.03.1925 - 10.04.1925	36
Aug	24.07.1925 - 08.08.1925	96
Sep	10.09.1925 - 23.09.1925	83
Feb	03.02.1926 - 12.02.1926	101

Jedes Datenblatt entsteht üblicherweise innerhalb von ~ 15 Minuten aus 20 Umdrehungen des Interferometers. Bei jeder Umdrehung wird bei den 16 Azi-

muten der Abstand eines Referenzstreifens von einer Markierung abgelesen. Der Wert wird in $^1/_{10}$ eines Streifens angegeben. Ein Datenblatt besteht also aus einer Tabelle mit den abgelesenen Werten und Metadaten wie Uhrzeit, Temperaturen, Wetterbedingung.

4.1. Messvorgang

In der Hütte steht ein Schreibtisch. Entweder in der NW-Ecke oder in der SW-Ecke, der genaue Ort ist nicht bekannt. An diesem Schreibtisch sitzt der Schreiber, der das Datenblatt ausfüllt. Miller war nicht alleine in der Hütte, sondern hatte einen Assistenten, R. M. Langer. Das Interferometer wird im Uhrzeigersinn in Drehung versetzt. Nach einer gewissen Wartezeit werden die vier Thermometer abgelesen und die Messung gestartet. Das Interferometer ist dabei so ausgerichtet wie in Abbildung 5, der Beobachter befindet sich im Süden und schaut durch die Optik in Richtung Norden. Durch die Optik sieht der Beobachter eine Anzahl Interferenzstreifen und im Vordergrund eine Markierung. Der beobachtete Abstand des Referenzstreifens von der Markierung ist der Wert für den Azimut 1. Der Beobachter läuft mit dem Interferometer mit und sagt für jeden Azimut den beobachteten Abstand an, der dann vom Schreiber aufgeschrieben wird.

Leider ist das Streifenbild nur in den allerwenigsten Fällen in Ruhe. Die Streifen "laufen weg", es gibt eine Drift in eine Richtung, auch wenn das Interferometer nicht in Drehung versetzt wurde. Die Ursache ist in den meisten Fällen wohl eine Änderung der Temperatur. Dadurch wandert irgendwann das Streifenbild aus dem Sichtfeld und das Interferometer muss neu eingestellt werden, so daß der Referenzstreifen wieder in der Nähe der Markierung sichtbar ist. Diese Justierung geschieht mit Hilfe von Gewichten, die auf einen Arm gestellt oder entfernt werden. Reicht das nicht, wird ein Spiegel neu justiert. Vermutlich bei beiden Verfahren kann es passieren, daß sich die Richtung der Streifenverschiebung ändert.

Miller hat festgelegt, daß eine bestimmte Richtung der Verschiebung, welche von einer Verlängerung des Lichtweges des Armes mit der Optik herrührt, als positiv gilt. Miller hatte eine Möglichkeit diese Richtung festzustellen, denn auf vielen Datenblättern gibt es den Vermerk "Sign correct".

Am Ende der Messung werden noch einmal die Thermometer abgelesen.

⁶Die Hütte hatte, auf Höhe der Arme des Interferometers, auf jeder Seite durchgehende Fensterreihen. Diese sind nicht eingezeichnet, um die Übersichtlichkeit zu erhöhen.

⁷ Mir ist nicht bekannt wo genau der Schreibtisch stand, wie groß er war, und wo der Schreiber saß.

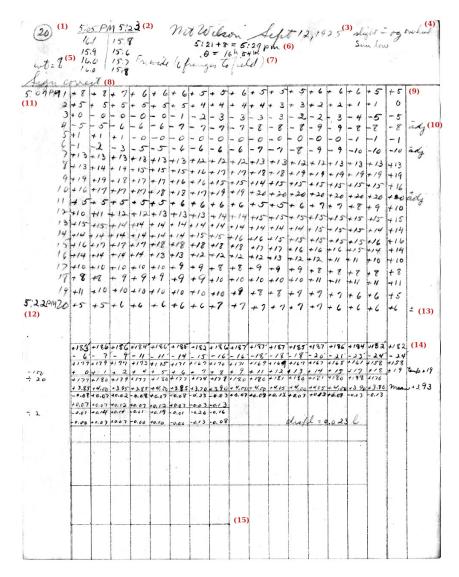


Abbildung 6: Digitalisat des Datenblattes Sep-20 aus [12].

- (1) Fortlaufend vergebene Nummer je Epoche.
- (2) Tabelle mit den Temperaturen (in °C) der vier Thermometer und im Kopf den Ablesezeitpunkt. Von Oben nach Unten: N, O, S, W.
- (3) Titel mit Datum.
- (4) Wetter.
- (5) Gewicht. Vermutlich eine Anzahl.
- (6) Mittlere Beobachtungszeit +
 8 Minuten = mittlere Ortszeit.
 Theta = Ortssternzeit.
- (7) Beschreibung des Interferenzstreifenbildes.
- (8) "Sign correct": Eine Verlängerung des Arms mit der Optik führt zu steigenden positiven Ablesungen.
- (9) Tabelle mit 20 Zeilen und 16+1 Spalten. Die Abstände des Referenzstreifens zur Markierung in $^1/_{10}$ Streifen.
- (10) "adj": Abkürzung für "adjust". Justierungsvermerk mit Vorzeichen.
- (11) Start der Beobachtung.
- (12) Ende der Beobachtung.
- (13) Vorzeichen. Hier das Zeichen \pm .
- (14) Berechnungen.
- (15) Datensatz als Diagramm. Nur Punkte ohne Verbindungslinien.

4.2. Datenblätter

Ein Beispiel für ein Datenblatt ist in Abbildung 6 angegeben. Nicht alle Einträge sind verständlich. Was die Zahl bei der Gewichtsangabe (5) bedeutet ist nicht klar. Die Einträge sind nicht durchgehend gepflegt und werden in der Datenanalyse nicht beachtet. Auch ist nicht klar was die verschiedenen Vorzeichen $+,-,\pm,\mp$ bei (10) und (13) bedeuten.

Die Datenblätter werden so verwendet wie sie sind, unklare Vorzeichen werden nicht beachtet. Anscheinend hat Miller alle Datenblätter entsprechend berichtigt. Einen Kommentar zum Vorzeichen findet man zum Beispiel im Datenblatt Sep-8. Eine Berichtigung unter Verwendung der Vorzeichen findet man zum Beispiel im Datenblatt Sep-9.

Die Datenblätter sind in digitalisierter Form verfügbar, aber nicht maschinenlesbar. Alle Datenblätter wurden deshalb von Hand abgeschrieben und aus

jedem einzelnen Datenblatt eine CSV-Datei erstellt.

Das Format der Datei richtet sich nach den originalen Datenblättern.

9

Bei der Abschrift wurden ein paar Dinge geändert:

- Wenn auf einem Datenblatt nur für den Anfang oder das Ende der Messungen die Temperaturen erfasst wurden, dann wurden die Temperaturen aus dem vorherigen oder folgenden Datenblatt einer Gruppe übernommen.
- 2. Auf dem Datenblatt Sep-81 wurde die Temperatur des Thermometers der Westwand von 13.0

⁸Zu finden im Verzeichnis dcm/csv/. Die digitalisierten Originale werden aus urheberrechtlichen Gründen nicht veröffentlicht.

⁹Ein Beschreibung des Formats findet man im Handbuch des Werkzeugs aetherise unter aetherise/aetherise_manual.de.pdf.

auf 13.9 geändert. Der Eintrag ist vermutlich fehlerhaft.

- 3. Auf dem Datenblatt Sep-50 wurde der Ablesezeitpunkt der Anfangstemperaturen auf 7:58 berichtigt.
- 4. Wenn auf einem Datenblatt die Spalte 17 nicht gefüllt wurde, dann wurden dort für jede Zeile der Wert der Spalte 1 der folgenden Zeile eingetragen. Zum Beispiel bei Datenblatt Sep-1.
- 5. Auf einigen Datenblättern waren manche Werte der Spalte 17 falsch. Scheinbar hat der Schreiber manchmal einen Wert aus der falschen Zeile übernommen. Falls kein Justierungsvermerk vorhanden ist, wird in der Spalte 17 der Wert der Spalte 1 der nächsten Zeile erwartet. War das nicht der Fall, wurde der Wert entsprechend berichtigt. Betrifft die Datenblätter Apr-104, Apr-127, Aug-28, Aug-57, Aug-59, Aug-81, Aug-94, Sep-48, Feb-13, Feb-19, Feb-21, Feb-47, Feb-59.
- 6. Wenn bei einem Datenblatt der Wert der Spalte 1 der nächsten Zeile übereinstimmte und es keine Hinweise auf einen falschen Wert gab, dann wurde das Zeichen a nachgetragen, wenn es fehlte. Vermutlich wurde der Justierungsvermerk vergessen. Betrifft die Datenblätter Apr-113, Apr-123, Aug-3, Aug-35, Sep-5, Sep-20, Feb-100.
- 7. Bei Datenblatt Aug-66 wurde der Justierungsvermerk am Ende entfernt. Eine Justierung am Ende macht keinen Sinn.
- Wenn Besucher anwesend waren, wurden die Namen nicht übertragen, sondern nur das Kürzel
 v. Die Handschrift zu entziffern war zu schwierig
 und die Namen wurden nicht als wichtig erachtet.
- 9. Wenn manche Datenblätter von Miller auf verschiedene Weisen bearbeitet und gerechnet wurden, dann wurde die Rechnung oder das Datenblatt verwendet, welches mit einem Haken versehen war. Ein Kreuz wird als verworfen gedeutet. Die Kürzel c und r in der letzten Spalte der CSV-Datei beziehen sich auf die ausgewählte Rechnung.
- 10. Wenn auf einem Datenblatt die mittlere Beobachtungszeit nicht stimmte, wurde sie und alle anderen abhängigen Zeiten, berichtigt. Betrifft die Datenblätter Apr-108, Apr-123, Aug-48, Aug-61, Feb-56, Feb-71. Bei Datenblatt Aug-96 wurde das Ende der Beobachtung aus der Anfangszeit und der mittleren Beobachtungszeit berechnet.

11. Wenn weitere Bemerkungen neben oder unter der Tabelle standen, wurden sie nur übernommen, wenn sie ins Thema der üblichen Bemerkungen im Kopf des Datenblattes passten, oder wichtig erschienen. Einige Bemerkungen zur Vorzeichenproblematik finden sich in der Abschrift des Versuchsprotokolls wieder.¹⁰

5. Signal

Mit der Theorie kann man nun für Millers Experiment das erwartete Signal berechnen. Das Signal Æ ist die Verschiebung der Interferenzstreifen je Azimut bei einer vollen Umdrehung des Interferometers. Dazu benötigt man die Kennwerte für Millers Interferometer, den Brechungsindex der Luft, den Standort auf der Erdoberfläche, den Zeitpunkt der Messung, und den Geschwindigkeitsvektor der Bewegung im Äther.

5.1. Bekannte Parameter

Die Kennwerte des Interferometers sind bekannt. Ich rechne vereinfacht mit einem Michelson-Interferometer mit einer Armlänge von 32,03 m. Die geografischen Koordinaten des Mount Wilson sind 34,225°N 118,057°W. 11 Datum, Uhrzeit und Sternzeit sind auf jedem Datenblatt vermerkt. Der Brechungsindex wird für jedes Datenblatt aus den angegebenen Temperaturen und dem Wetter berechnet [13].

Ein guter Mittelwert für die Temperatur bei den Messungen auf dem Mount Wilson ist 13,5 °C. Nach der barometrischen Höhenformel erhält man für eine Bodentemperatur von 25 °C in einer Höhe von 1700 m einen Luftdruck von 83 kPa. Bei einem Luftdruck von 83 kPa, einer Temperatur von 13,5 °C, einer relativen Luftfeuchtigkeit von 50 %, einem CO₂ Anteil von 305 ppm [14], einer Vakuumwellenlänge von 570 nm, ergibt sich für Luft ein Brechungsindex von 1,00023.

5.2. Freie Parameter

Der Geschwindigkeitsvektor im Äther ist nicht bekannt, aber man sollte ihn mit der Theorie aus den Daten mittels einer Ausgleichsrechnung bestimmen können. Geschwindigkeit und Richtung der Bewegung des Sonnensystems im Äther kann man mit den Parametern (v, α, δ) angeben. Wobei v hier der Geschwindigkeitsbetrag ist und (α, δ) die Richtung in äquatorialen Koordinaten. Diese Bewegung wird als näherungsweise konstant angenommen.

¹⁰Zu finden in dcm/Millers_notes.txt.

¹¹https://en.wikipedia.org/wiki/Mount_Wilson_ Observatory

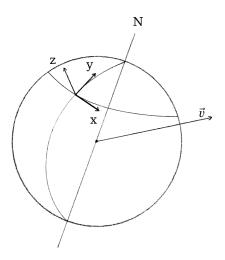


Abbildung 7: Die Erde im Äther mit lokalem Koordinatensystem S

5.3. Himmelsmechanik

Weil die Erde eine Eigenrotation besitzt, wird sich die Richtung der Bewegung im Äther für einen Beobachter auf der Erdoberfläche im Laufe eines Tages ändern.

Weil die Erde die Sonne umläuft, wird sich, abhängig von der Lage der Ekliptik zur Bewegungsrichtung (α, δ) , die Geschwindigkeit und auch die Richtung der Bewegung im Äther im Laufe eines Jahres ändern. Auf die vorhandenen Sonderfälle werden wir nicht weiter eingehen. Die kleine Änderung, die durch die Geschwindigkeit der Eigenrotation der Erde entsteht, wird vernachlässigt.

Wir müssen uns also mit der Himmelsmechanik beschäftigen, um \vec{v} an einem gegebenen Zeitpunkt zu bestimmen.

In Abbildung 7 ist die Erde mit ihrer Drehachse dargestellt. Der Nordpol ist mit N bezeichnet. Der Ursprung des Koordinatensystems S befindet sich am Beobachtungsort. Die y-Achse zeigt immer nach Norden und die z-Achse steht senkrecht auf der Kugeloberfläche. Der Geschwindigkeitsvektor \vec{v} der Bewegung im Äther ist hier willkürlich gewählt.

Erdrotation

Weil S sich mit der Erde mitdreht, ändert sich \vec{v} in S und zwar abhängig von der Sternzeit. Ist die Bewegung des Sonnensystems im Äther durch die Parameter (v,α,δ) gegeben, können wir mit Hilfe der bekannten astronomischen Koordinatensysteme den entsprechenden Vektor \vec{v}_S bestimmen. 12

Mit der Sternzeit θ wandelt man die rotierenden

äquatorialen Koordinaten (α, δ) in die entsprechenden ruhenden äquatorialen Koordinaten

$$(\tau, \delta) = (\theta - \alpha, \delta) . \tag{15}$$

Mit Hilfe des Breitengrades $b=34,225^{\circ}$ des Standortes wandeln wir die ruhenden äquatorialen Koordinaten in die horizontalen Koordinaten (a, h)

$$\tan(a) = \frac{\sin(\tau)\cos(\delta)}{\sin(b)\cos(\tau)\cos(\delta) - \cos(b)\sin(\delta)}$$

$$\sin(h) = \sin(b)\sin(\delta) + \cos(b)\cos(\delta)\cos(\tau) .$$
(16)

Wobei der Azimut a ein Winkel ist, der von Süden aus im mathematisch negativen Sinn gezählt wird, wie es in der Astronomie üblich ist. Möchte man einen Nordazimut und einen Winkel im mathematisch positiven Sinn, wandelt man a zu

$$a_N = -(a + 180^{\circ})$$
 (17)

Jetzt legen wir den Vektor \vec{v}_S anfänglich so, daß er entlang der positiven y-Achse nach Norden zeigt

$$\vec{v}_S = (0, v, 0)^T$$
, (18)

dann drehen wir \vec{v}_S um die x-Achse um den Höhenwinkel h und dann um die z-Achse um den Azimut a_N . Der Vektor \vec{v}_S gibt nun in S die Richtung der Bewegung im Äther an.

Erdbahn

Der Erdbahn kommt eine besondere Bedeutung zu. Ohne die Erdbahn wäre die Bewegung im Äther zu einer bestimmten Sternzeit, auch über den Zeitraum eines Jahres, näherungsweise konstant. Was in Verbindung mit der Symmetrie eines Michelson-Interferometers dazu führt, daß man die Richtung der Bewegung nicht eindeutig bestimmen kann, denn die Gegenrichtung liefert das gleiche Ergebnis. Es gilt dann

$$\mathcal{E}(\alpha, \delta) = \mathcal{E}(\alpha + 12 \text{ h}, -\delta) . \tag{19}$$

Rechnet man die Bewegung der Erde um die Sonne mit ein, wird sich das Signal ein wenig ändern, abhängig von der Jahreszeit. Der größte Unterschied ergibt sich zwischen zwei Signalen, die ein halbes Jahr auseinander liegen. Dann liegen die beiden Geschwindigkeitsvektoren der entsprechenden Signale parallel, zeigen aber in verschiedene Richtungen. Hat man Daten die ein gutes halbes Jahr auseinander liegen, dann sollte bei der Ausgleichsrechnung, unter Beachtung der Erdbahn, die Abweichung zwischen Theorie und Daten geringer werden und es sollte eine eindeutige Lösung gefunden werden.

In Abbildung 8 sind die Sonne S_{\odot} und die Erde E_{δ} dargestellt. Man blickt auf den Nordpol der Erde, die sich näherungsweise auf einer Kreisbahn mit

¹²https://de.wikipedia.org/wiki/Astronomische_ Koordinatensysteme

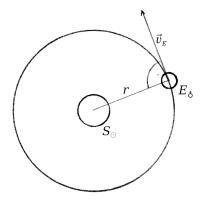


Abbildung 8: Die Erde auf ihrer Umlaufbahn um die Sonne

dem Radius r in der Ebene der Ekliptik bewegt. Die Geschwindigkeit und Richtung der Bewegung zu einem Zeitpunkt ist mit dem Vektor \vec{v}_E angegeben. Die Abbildung ist nicht maßstabsgerecht.

Da \vec{v}_E immer parallel zu einer Tangente der Umlaufbahn am Punkt der Erde ist, kann man \vec{v}_E berechnen, indem man den Stand der Sonne ermittelt, und dann diesen Apex im geozentrischen ekliptikalen Koordinatensystem um 90° verschiebt.

Um die ekliptikalen Koordinaten (l,b) der Sonne zum Zeitpunkt JD (Julianisches Datum) zu bestimmen, sind Näherungsformeln bekannt:¹³

$$m = JD - 2451545$$

$$L = 280,460^{\circ} + 0,9856474^{\circ} \cdot m$$

$$g = 357,528^{\circ} + 0,9856003^{\circ} \cdot m$$

$$l = L + 1.915^{\circ} \cdot \sin(q) + 0.01997^{\circ} \cdot \sin(2q)$$
(20)

Die ekliptikale Breite b ist näherungsweise immer 0. Der Apex der Erde ist dann

$$(l-90^{\circ}, b)$$
 . (21)

Nach der Umrechnung in das äquatoriale Koordinatensystem mit einer Schiefe der Ekliptik im Jahre 1925 von $\epsilon=23,45^\circ$

$$\tan(\alpha) = \frac{\cos(\epsilon)\sin(l)\cos(b) - \sin(\epsilon)\sin(b)}{\cos(l)\cos(b)}$$

$$\sin(\delta) = \cos(\epsilon)\sin(b) + \sin(\epsilon)\cos(b)\sin(l),$$
(22)

und weiterer Umrechnung wie ab (15), kann man schließlich mit der mittleren Orbitalgeschwindigkeit $v_E=29780~\mathrm{m/s}$ den Vektor \vec{v}_E bilden.

Damit hat man

$$\vec{v} = \vec{v}_S + \vec{v}_E \ . \tag{23}$$

Die Theorie (10) benötigt die beiden Vektoren \vec{v} und \vec{p} und den Brechungsindex n als Parameter. Für den Zeitraum einer oder mehrerer Messungen ist \vec{v} und n näherungsweise konstant und nur \vec{p} dreht sich in der xy-Ebene von S. Modelliert man die Lichtwege von Millers Interferometer, dann ergibt sich aus einer vollen Umdrehung das theoretische Signal.

5.4 Vorzeichen

Bisher unbeachtet ist die Richtung der Interferenzstreifenverschiebung. Das Vorzeichen wählen wir in der Theorie (10) so, daß sich ein positiver Wert ergibt, wenn man im Modell von Millers Interferometer den Arm mit der Optik verlängert. Dieses Vorgehen entspricht dem von Miller verwendeten Verfahren, um das Vorzeichen festzulegen.

5.5. KHS-Dipol

Um sich eine Vorstellung von dem Signal zu verschaffen, kann man versuchsweise einen Vektor mit kosmologisch begründeten Werten einsetzen. Es scheint vernünftig den Dipol in der kosmischen Hintergrundstrahlung (KHS), umgerechnet als Geschwindigkeitsvektor, zu wählen [15]. Die Parameter sind:

$$v = (369,0 \pm 0.9) \text{ km/s}$$

 $\alpha = (11,195 \pm 0.005) \text{ h}$ (24)
 $\delta = (-6.93 \pm 0.06)^{\circ}$

Das Signal ist eine doppelperiodische Sinusschwingung, deren Phase und Amplitude sich mit der Stern-

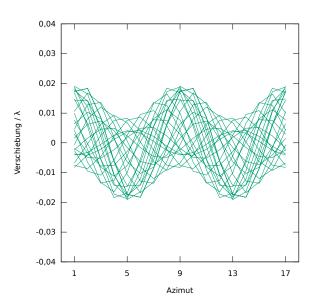


Abbildung 9: Die übereinandergelegten theoretischen Signale des KHS-Dipols bei verschiedenen Sternzeiten^{A1}

 $^{^{13} \}mathtt{https://de.wikipedia.org/wiki/Sonnenstand}$

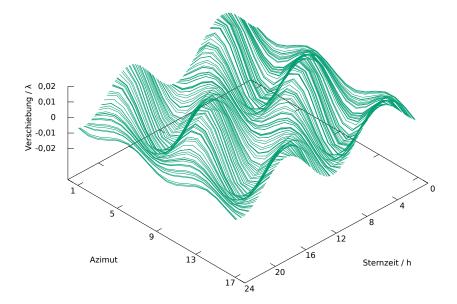
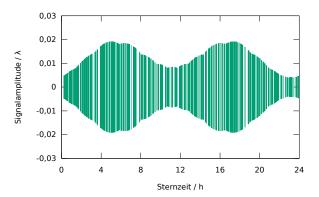


Abbildung 10: Die theoretischen Signale des KHS-Dipols $_{\rm A2}$



0,02 0,01 -0,02 -0,03 0 4 8 12 16 20 24 Sternzeit / h

Abbildung 11: Amplitude der Signale A3

Abbildung 12: Amplitude der Signale mit Erdbahn und Brechungsindex ^{A4}

zeit ändert. Die größte Amplitude ist $\sim 0.02 \lambda$.

In Abbildung 9 und Abbildung 10 sind die, mit den Parameterwerten des KHS-Dipols berechneten, theoretischen Signale dargestellt. Die Erdbahn ist nicht eingerechnet und der Brechungsindex ist fest auf den Wert 1,00023 gesetzt.

In Abbildung 11 und Abbildung 12 blickt man entlang der Azimutachse aus Abbildung 10 und sieht so nur die Amplitude der Signale. Die Beulen entstehen dadurch, daß die Amplitude aus dem Maximum der Werte der 16 Azimute bestimmt wird und der Höchstwert auch zwischen zwei Azimuten liegen kann. Man erkennt eine leicht asymmetrische Hantelform. 14

In Abbildung 12 ist im Gegensatz zu Abbildung 11 die Erdbahn und der Brechungsindex mit eingerechnet. Man erkennt man den Einfluss der Erdbahn auf das Signal, der veränderliche Brechungsindex hat kaum eine Wirkung. Man sieht die unterschiedlichen Signalstärken der verschiedenen Epochen.

6. Datenanalyse

0,03

In der Datenanalyse werden verschiedene Verfahren vorgestellt und angewendet, mit denen man das theoretisch vorhergesagte Signal finden und die freien Parameter bestimmen kann. In der Analyse werden immer die originalen Daten mit Millers Änderungen verwendet. Für die Datenanalyse auf einem Rechner wurde das Werkzeug aetherise entwickelt. Alle in dieser Arbeit vorgestellten Untersuchungen und Ergebnisse können so nachgestellt werden.

 $^{^{14}{\}rm Eine}$ Veränderung der Rektaszension α bewirkt eine Verschiebung der Hantelform im Intervall [0, 24) der Sternzeit. Eine Vergrößerung der Deklination δ bewirkt eine Vergrößerung der Amplitude bei 11 h und eine Verkleinerung der Amplitude bei 23 h. Eine Veränderung der Geschwindigkeit v bewirkt eine entsprechende Veränderung der Amplitude insgesamt.

6.1. Datenreduktion

Gemessen wird der Abstand x eines Referenzstreifens zu einer Markierung bei den Azimuten i. Der Abstand x ergibt sich aus der theoretischen Streifenverschiebung x, dem Versatz x des Signals, der Drift x, und einem unbekannten systematischen Fehler x. Die Messfunktion ist

$$\alpha_i = \mathcal{E}_i(\vec{v}, n, i) + C + D_i + E_i$$
 (25)

Die Fehler C und D kann man aus den Daten selbst bestimmen und herausrechnen. Sei $(q_{ji})_{j=1,\dots,N}$; $_{i=1,\dots,17}$ die Tabelle der Messwerte eines Datenblattes. Nach einer vollen Umdrehung j des Interferometers hat man zwei mal den Azimut 1 gemessen und dabei die Werte q_{j1} und q_{j17} erhalten. Die Drift ist dann $q_{j17}-q_{j1}$. Geht man davon aus, daß die Drift näherungsweise linear ist, dann ist die Drift der Messung j am Azimut i

$$D_{ji} = \frac{q_{j17} - q_{j1}}{16}(i - 1) \ . \tag{26}$$

Die Drift wird vermutlich von einer Änderung der Temperatur verursacht. Weitere Einflüsse, die einen systematischen Fehler verursachen oder ändern können sind:

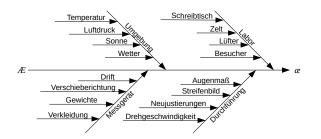


Abbildung 13: Einflüsse auf die Messgröße

Ein weiterer systematischer Fehler, den man herausrechnen kann, ist der Versatz C, welcher durch die Justierung entsteht und sich durch die Drift ändert. Weil der anfängliche Abstand des Referenzstreifens zur Markierung bei Azimut 1 beliebig ist, müssen alle Messwerte einer Umdrehung normiert werden.

Da man ein periodisches Signal erwartet und wahrscheinlich auch die systematischen Fehler aufgrund der Symmetrie des Messgerätes periodisch sind, kann man C berechnen, indem man den Mittelwert aller Messwerte einer Messung j bildet:

$$C_j = \frac{1}{16} \sum_{i=1}^{16} q_{ji} . (27)$$

Man erreicht damit

$$a_i - C - D_i = \mathcal{E}_i(\vec{v}, n, i) + E_i$$
 (28)

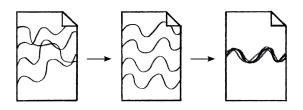


Abbildung 14: Veranschaulichung der Reduktion um Drift und Versatz

Wenn man die Messwerte um die Drift und den Versatz reduziert hat, dann bildet man mit

$$q_{ji} \leftarrow \frac{1}{2} (q_{ji} + q_{j(i+8)})_{i=1,\dots,9}$$
 (29)

von gegenüberliegenden Azimuten den Mittelwert. Damit verringert man die Unsicherheit und es werden einfach periodische systematische Fehler entfernt.

Nun kann man die Schätzwerte \bar{q}_i für (28) aus den $(q_{1i} \ q_{2i} \dots q_{Ni})^T$ und die Unsicherheiten $u_i = u(\bar{q}_i)$ nach dem ISO/IEC Guide 98-3 (GUM) ermitteln. ¹⁵ Aus jedem Datenblatt erhält man einen Datensatz $(\bar{q}_i)_{i=1,\dots,9}$. Dieser wird der mittleren Beobachtungszeit zugeordnet. ¹⁶ Die Schätzwerte enthalten aber immer noch einen systematischen Fehler E.

6.2. Signalextraktion

Ein unbekannter doppelperiodischer systematischer Fehler E lässt sich nicht aus einem einzelnen Datenblatt herausrechnen. Geht man aber davon aus, daß E unter gleichen Bedingungen β konstant ist, dann kann man aus verschiedenen Datenblättern A und B

$$(\bar{q}_i)_A \approx (\mathcal{E}_i)_A + (E_i) \mid_{\beta}$$

$$(\bar{q}_i)_B \approx (\mathcal{E}_i)_B + (E_i) \mid_{\beta}$$

$$(30)$$

ein Differenzsignal extrahieren

$$(\bar{q}_i)_A - (\bar{q}_i)_B \approx (\mathcal{E}_i)_A - (\mathcal{E}_i)_B$$
 (31)

Das ist möglich, weil \mathcal{E} sich im Laufe der Zeit ändert. Die Datenblätter sollten einen genügend großen zeitlichen Abstand haben, um ein starkes Differenzsignal zu erhalten.

¹⁵Miller verwendete ein gleichwertiges Verfahren zur Datenreduktion, was sich aber nicht dafür eignet die Unsicherheiten zu bestimmen, denn dabei bildet man zuerst den Mittelwert der Messungen an den Azimuten.

 $^{^{16}}$ Durch das Mitteln der veränderlichen Signale entsteht ein kleiner theoretischer Fehler. Die maximalen Abweichungen gegenüber dem wahren Signal zur mittleren Beobachtungszeit sind für die Amplitude $-9\cdot 10^{-6}~\lambda$, für die Phase $\pm 0,004~\mathrm{h}$, mit einer Unsicherheit an den Azimuten von $\pm 0,0001~\lambda$. Alles unter der Annahme der Parameterwerte des KHS-Dipols und einer Messdauer von 15 min bei 20 Umdrehungen.

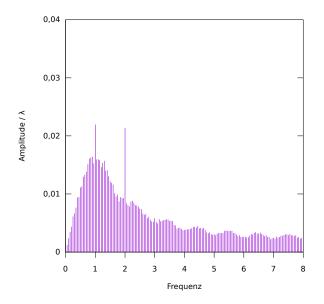


Abbildung 15: Mittleres Spektrum A10

6.3 Fourier-Analyse

Mit einer Diskreten Fourier-Transformation (DFT) kann man jedes Datenblatt auf vorhandene Signale untersuchen. Vorher werden von allen q_{ji} die Fehler C_j und D_{ji} entfernt.

In Abbildung 15 ist das mittlere Spektrum von $\frac{3}{4}$ aller Datenblätter dargestellt. Von den 316 Datenblättern wurden 242 verwendet. Die nicht verwendeten Datenblätter wurden unter schlechten Temperaturbedingungen gemessen oder sind augenscheinlich Ausreißer. Die Signale solcher Datenblätter enthalten typischerweise eine außergewöhnlich große Amplitude, was das Spektrum verfälschen würde.

Neben dem Rauschen erkennt man zwei deutliche Spitzen bei den Frequenzen 1 und 2. Mit *Frequenz* ist hier die Anzahl der Perioden je Umdrehung gemeint. Die zugehörigen Werte der Amplituden findet man in Tabelle 2.

Tabelle 2: Mittlere Amplituden

Frequenz	Amplitude / λ
1	0,022
2	0,021

Die Datenreduktion in 6.1 und Millers Algorithmus verhalten sich wie ein Frequenzfilter, der auch aus einem 1/f-Rauschen ein Signal mit einer Frequenz ~ 2 isolieren würde. Der Algorithmus kann aber aufgrund des deutlichen Signals mit der Frequenz 2 verwendet werden.

Die DFT ist eine weitere Methode zur Datenreduktion, die wir nutzen werden. Mit dieser Methode wird aus den Messwerten jeder Umdrehung j der benötigte harmonische Anteil $z \in \mathbb{C}$ bestimmt. Nach GUM werden aus den $\{z_j\}$ der Schätzwert \bar{z} und die Unsicherheiten der Komponenten $\Re(\bar{z})$ und $\Im(\bar{z})$ ermittelt.

Benötigt wird nur der harmonische Anteil mit der Frequenz 2. Aus jedem Datenblatt erhält man ein \bar{z} , was den (\bar{q}_i) und dem Ergebnis von Millers Algorithmus entspricht, und mit dem man genau so rechnen kann

6.4. Test auf Normalverteilung

Mit dem Shapiro-Wilk-Test wird geprüft, wie gut die Messwerte an den Azimuten der Datenblätter normal verteilt sind. Nur bei Normalverteilung kann man die Standardunsicherheiten berechnen und weitere statistische Methoden anwenden. Vor dem Test werden von allen q_{ji} die Fehler C_j und D_{ji} entfernt.

Die Testergebnisse folgen einer Binomialverteilung mit einer Erfolgswahrscheinlichkeit von $p=1-\alpha$ und einer Ablehnungsquote entsprechend dem Signifikanzniveau α , falls alle Messungen normal verteilt sind. Ist die Ablehnungsquote größer als α , deutet dies auf einen echten Anteil nicht normal verteilter Messwerte hin.

In Tabelle 3 und Tabelle 4 sind die Testergebnisse für verschiedene Kategorien von Datenblättern angegeben. Wählt man Datenblätter nach anderen Kriterien wie Monat, Tageszeit oder Temperatur aus, ergeben sich ähnliche Ergebnisse. Die Anzahl der Messwerte je Test beträgt im Schnitt 20.

Die Messungen sind normal verteilt, mit einem maximalen Anteil von $\sim (5\pm 2)$ % nicht normal verteilten Messungen. ¹⁹ Die Unsicherheit gibt ein Intervall für eine Konfidenz von 95 % an. ²⁰

6.5 Gruppen und Kategorien

Die Datenblätter sind in Messreihen (Gruppen) entstanden, bestehend aus üblicherweise 4 oder mehr Datenblättern. Bei einer Gruppe ist die Epoche und der Schreibtischort gleich. Liegen mehr als 1,5 Stunden zwischen der mittleren Beobachtungszeit zweier aufeinander folgender Datenblätter, wird eine neue

¹⁷Nicht verwendet wurden die Datenblätter in den Verzeichnissen dcm/error/, dcm/outlier/ und dcm/unusual/.

¹⁸Funktion shapiro.test in R (Version 3.3.3). https://www.r-project.org/

¹⁹Der Anteil steigt mit α und fällt dann ab $\alpha=0,5$. Der Grund ist unklar. In einfachen Simulationen, bei denen ein Teil von zufällig erzeugten normal verteilten Stichproben durch eindeutig nicht normal verteilte Stichproben ersetzt wurde, blieb der echte Anteil konstant.

²⁰Das Konfidenzintervall wird mit der Methode von Agresti-Coull bestimmt.

Tabelle 3: Anzahl der getesteten Azimute a

Datenblätter	Abgelehnt bei α				Gesamt	
	0,5	$0,\!25$	0,1	$0,\!05$	0,01	
Alle A5	2731	1491	624	328	81	5056
$ m Schlechte \ ^{A6}$	1407	773	320	168	42	2640
$\mathrm{Gute}^{\mathrm{A7}}$	1324	718	304	160	39	2416

^a Die Auswahl "Gute" und "Schlechte" ist in 6.5 beschrieben.

Tabelle 4: Ablehnungsquote der Tests

Datenblätter	Quote bei α / %					
	0,5	$0,\!25$	0,1	$0,\!05$	0,01	
Alle	$54,0 \pm 1,4$	$29,5 \pm 1,3$	$12,4 \pm 0,9$	6.5 ± 0.7	$1,6 \pm 0,4$	
${ m Schlechte}$	$53,3 \pm 1,9$	$29,3 \pm 1,8$	$12,2\pm1,3$	$6,4 \pm 1,0$	$1{,}7\pm0{,}5$	
Gute	54.8 ± 2.0	29.8 ± 1.8	$12,6 \pm 1,3$	$6,7 \pm 1,0$	$^{1,7\pm0,5}$	

Gruppe gebildet. Die Gruppen werden nach der Epoche und der Datenblattnummer des ersten Datenblattes benannt.

Von den 316 Datenblättern die vorliegen, wird ungefähr die Hälfte nicht verwendet. Die aussortierten schlechten Datenblätter werden nach Begründungen in Kategorien zusammengefasst:²¹

canceled Von Miller verworfen.

bad Datenblätter deren Datensätze eine größere mittlere Unsicherheit als $\sim 0.02 \ \lambda$ haben.

error Datenblätter die vermutlich einen starken ereignisbedingten systematischen Fehler enthalten. Zum Beispiel, wenn die Sonne auf das Interferometer scheint. Auch ein besonders hoher Temperaturunterschied (≥ 1 K), oder eine besonders hohe betragsmäßige Temperaturänderung (≥ 0,5 K) gehören dazu.

unusual Außergewöhnliche Datenblätter, wo vom normalen Verfahren abgewichen wurde. Zum Beispiel eine andere Drehrichtung.

outlier Ausreißer einer Gruppe, die nicht in eine andere Kategorie gehören, aber trotzdem deutlich von der Mehrheit abweichen.

Aus den übrigen guten Datenblättern wird versucht die Signale zu extrahieren und damit die freien Parameter der Theorie zu bestimmen.

6.6. Anomalien

Anomalien sind Gruppen die weniger objektiv aussortiert werden können, aber trotzdem auffällig sind,

weil sie eine Erwartung nicht bestätigen. Anomalien findet man nicht durch Betrachtung einzelner Datenblätter, sondern in Folgen von Datenblättern innerhalb und zwischen Gruppen.

Laut Theorie ist eine kontinuierliche Änderung von Phase und Amplitude des Signals zu erwarten. Anomal ist zum Beispiel eine abrupte starke Änderung der Amplitude. Zu finden in der Gruppe Sep-14. In den Gruppen Aug-31 und Aug-49 gibt es starke Schwankungen von Phase und Amplitude, was augenscheinlich mit den Temperaturbedingungen zusammenhängt.

Sind gleiche Zeiträume mehrfach, bei ähnlichen Bedingungen, gemessen worden, erwartet man eine gute Übereinstimmung der Gruppen. Anomal ist eine deutliche Abweichung von Phase oder Amplitude. So unterscheidet sich die Gruppe Sep-75 von Sep-35 und Sep-8.

6.7. Verwertbarkeit der Gruppen

Im April sind die Gruppen 107, 110, 113, 117, 122, 130 verwertbar. Es wurden hauptsächlich in zwei Zeiträumen Messreihen durchgeführt, die 12 h auseinander liegen. Frühmorgens und spätabends. Bei der Hälfte der Datenblätter fehlt die zweite Temperaturablesung. Man kann aber bei aufeinander folgenden Datenblättern die Temperaturänderung abschätzen.

Der komplette Juli fällt weg. Die Datenblätter haben alle eine zu große Unsicherheit oder wahrscheinlich einen systematischen Fehler aufgrund starker Temperaturänderungen. Miller nutzte anscheinend einen Lüfter, aber erst ab August wurde ein Zelt über der Hütte aufgebaut.

Im August sind die Gruppen 29, 60, 74, 80, 86, 88, 91 verwertbar, enthalten aber oft Änderungen der Temperaturänderung. Die Gruppen 31 und 49 sind

²¹Im Verzeichnis dcm/csv/ finden sich entsprechend benannte Unterverzeichnisse.

Anomalien.

Im September sind die Gruppen 1, 22, 26, 35, 49, 57, 63, (75) verwertbar. Die Gruppe 14 ist eine Anomalie. Die Gruppe 75 ebenfalls, sie fällt aufgrund der hohen Amplitude auf, aber es spricht nichts dagegen innerhalb der Gruppe ein Signal zu suchen.

Im Februar sind die Gruppen 18, 21, 43, 47, 53, 69, 74, 77, (80), 92 verwertbar. Die Gruppe 95 wird aufgrund der Wetterbedingungen, Sturm und Regen, verworfen. Die Gruppe 80 wurde bei Wind und Böen gemessen, deshalb ist die Verwertbarkeit unsicher.

6.8. Auswahl der Datenblätter

Bis auf wenige Ausnahmen stimmen Millers Messungen nicht mit den Signalen des KHS-Dipols überein. ²² Deswegen gehe ich davon aus, daß ein doppelperiodischer systematischer Fehler in fast allen Messungen vorhanden ist. Wir werden also Differenzsignale extrahieren, um damit den systematischen Fehler loszuwerden.

Das Ziel bei der Auswahl von Datenblättern zur Signalextraktion ist, den systematischen Restfehler klein zu halten. Außerdem sollte das Differenzsignal eine möglichst große Amplitude haben, um aus dem Rauschen hervorzutreten.

Um den systematischen Restfehler klein zu halten, wählt man nur Datenblätter, die unter ähnlichen Bedingungen entstanden sind. Zu den Bedingungen gehören zuerst die Epoche und der Standort des Schreibtisches. Weitere Bedingungen sind der Temperaturunterschied (TD) in der Hütte und die mittlere Temperaturänderung (dT). Die mittlere Temperatur wird von der Theorie über den Brechungsindex beachtet. Eine Möglichkeit, das TD anzugeben, ist die Berechnung der "Kreuzdifferenz"

$$T_X = (T_N + T_S) - (T_W + T_O)$$
 (32)

 T_N bedeutet hier die Temperatur des Thermometers der Nordwand. Die anderen Buchstaben entsprechen den jeweiligen Himmelsrichtungen.

Geht man davon aus, daß die Temperaturen näherungsweise linear wirken, kommt man durch Symmetrieüberlegungen auf die Größe T_X als Maß für die Ähnlichkeit des TD. 23

Außerdem sollten Datenblätter von Messungen am Tag und in der Nacht nicht miteinander verrechnet werden. Auch Messungen bei Sonnenaufgang oder Untergang sind problematisch, da die Sonne tief steht und in die Hütte scheinen kann, was Miller auch immer wieder bemerkt.

Die Dauer einer Umdrehung scheint auch einen Einfluss zu haben, wie man an den Datenblättern Feb-15 und Feb-16 und an der Gruppe Sep-57 erkennen kann. Grundsätzlich ist die Dauer einer Umdrehung aber recht konstant und nur in Einzelfällen scheint eine Beachtung nötig. ²⁴

Eine große Amplitude erreicht man, wenn man genügend zeitlichen Abstand zwischen den Datenblättern hat, aus denen man ein Signal extrahieren will. Ich wähle hier möglichst ~ 2 h. Bei Datenblättern mit niedriger (< 0,01 λ) Unsicherheit ist auch weniger möglich. Ich wähle diese Werte, damit der Störabstand

$$\frac{\Delta \hat{E}}{\bar{u}} , \qquad (33)$$

das Verhältnis aus Amplitude des theoretischen Differenzsignals und mittlerer Unsicherheit aller guten Datenblätter, bei Verwendung der Parameterwerte des KHS-Dipols, mindestens ~ 1 ist.

Ein zu großer zeitlicher Abstand wirkt sich wieder nachteilig aus, denn nach 12 h kann sich das Signal wiederholen und schon nach 6 h kann ein Differenzsignal wieder schwächer werden.

6.9. Differenzsignale

Die Differenzsignale werden wir aus möglichst großen und ähnlichen Folgen von Datenblättern extrahieren. Gesucht wird innerhalb einer Gruppe und auch gruppenübergreifend. Die gefundenen Folgen werden erst gemittelt und dann daraus das Differenzsignal berechnet.

Um möglichst gute Differenzsignale zu erhalten, lege ich Toleranzen fest, die bestimmen wie groß die Unterschiede bestimmter Größen der Datenblätter sein dürfen. Die einstellbaren Toleranzen sind der zeitliche Mindestabstand Δt (in h) zweier Folgen von Datenblättern, der maximale Unterschied des Temperaturunterschieds ΔTD (in °C) und der maximale Unterschied der mittleren Temperaturänderung ΔdT (in °C pro $\frac{1}{2}$ h).

Eine Folge soll mindestens aus zwei Datenblättern bestehen, um die Ähnlichkeit der Bedingungen der Messreihen sicherzustellen und die Unsicherheit zu verringern. Die betrachteten Größen der Datenblätter zweier Folgen müssen nicht sequenziell übereinstimmen, sondern es soll reichen, daß eine Permutation existiert, bei der keine Toleranzen überschritten werden.

Zwei Datenblattfolgen sollen besser als zwei andere Datenblattfolgen sein, wenn sie aus mehr Datenblät-

 $^{^{22}\}mathrm{Die}$ Ausnahmen sind die Gruppen Feb-18, Feb-43 und Feb-47.

²³Mit anderen Größen findet man ähnliche Differenzsignale. Man kann z. B. einfach alle Thermometer direkt vergleichen, oder – sehr vereinfacht – den stärksten Gradienten verwenden.

²⁴Eine Änderung der Auswahl für die Gruppe Sep-57 würde später bei der Minimierung das Ergebnis kaum ändern.

Nr.	Differenzsignal	Bemerkung
	Innerhalb Gruppen	
	aug [31, 33] - [34, 36]	Anomalie Aug-31
1	sep [49, 51] - [52, 54]	-
2	sep [57, 58] - [60, 61]	
3	sep [78, 79] - [81, 82]	
4	feb [48, 49] - [51, 52]	
5	feb [85, 87] - [89, 91]	Wind und Böen
	Zwischen Gruppen	
6	apr [110, 111] - [113, 114]	
	aug [29, 30] - [49, 50]	Anomalie Aug-49
	aug $[32, 33]$ - $[52, 53]$	Anomalie Aug-31
	aug [31, 33] - [60, 62]	Anomalie Aug-31
	aug $[49, 51]$ - $[60, 62]$	Anomalie Aug-49
	aug [76, 77] - [86, 87]	Gruppen überlappen und sind deutlich unterschiedlich.
7	sep [39, 42] - [53, 56]	
8	feb $[25, 26]$ - $[45, 46]$	
9	feb $[25, 26]$ - $[50, 51]$	
10	feb $[44, 46]$ - $[50, 52]$	
	feb $[50, 51]$ - $[53, 54]$	Differenz aus Gruppen mit steigenden und fallenden Temperaturen.
11	feb [74, 75] - [77, 78]	

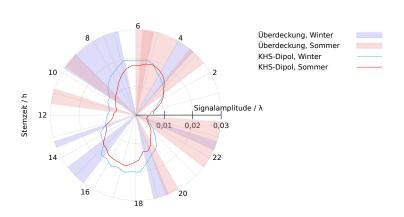


Abbildung 16: Überdeckung der Sternzeit durch die Differenzsignale $^{\rm A9}$

tern bestehen oder sonst die Summe der Größen²⁵

$$\max\{|\Delta TD_k|\} + \max\{|\Delta dT_k|\}$$
 (34)

kleiner ist. Je Gruppe und je Kombination zweier Gruppen wird das beste Folgenpaar zur Signalextraktion verwendet.

Ich wähle zuerst kleine Toleranzen und erhöhe diese dann, bis eine genügende Sternzeitüberdeckung durch die Datenblätter erreicht wird. Man kann mit $\Delta t=1$ und $\Delta TD=0,1$ und $\Delta dT=0,1$ anfangen. Durch probieren finde ich dann die Toleranzen $\Delta t=0,9$ und $\Delta TD=0,3$ und $\Delta dT=0,25$. Ich wähle das Δt und ΔTD so, damit das einzige Signal aus dem April noch gefunden wird. Ich erhöhe das ΔdT von 0,2 weiter auf 0,25, weil damit später das Ergebnis verbessert wird. Es würde ein größerer Ausreißer auftauchen, der durch eine leicht andere Datenblattauswahl verhindert wird. Außerdem würde sich später die Anpassungsgüte in Tabelle 6 nicht wie erwartet ändern.

In Tabelle 5 haben die ausgewählten Differenzsignale eine Nummer und die nicht verwendeten keine Nummer. Angegeben ist das Differenzsignal durch einen Ausdruck zur Signalextraktion wie ihn auch aetherise ausgibt. Der Ausdruck besteht aus der Epoche und zwei Intervallen welche eine Folge von Datenblattnummern angeben. Die Bemerkungen bestehen hauptsächlich aus Begründungen, warum manche Signale nicht verwendet wurden.

In Abbildung 16 sind die zeitlichen Intervalle der verwendeten Datenblattfolgen durchscheinend eingefärbt, so daß man Überlappungen erkennen kann. Der Winter besteht aus den Epochen Februar und April, der Sommer besteht aus den Epochen August und September. Zusätzlich ist noch die Amplitude des theoretischen Signals, berechnet mit den Parameterwerten des KHS-Dipols (24), ebenfalls getrennt in Winter und Sommer, dargestellt. Das Differenzsignal 5 fehlt hier aufgrund der unsicheren Verwertbarkeit der Gruppe Feb-80.

Im Falle des KHS-Dipols wären die beiden Amplitudenminima bei 11 h und 23 h gut getroffen, und auch die höchsten Amplituden wären überdeckt. Es gäbe außerdem genug Datenblätter im Sommer wie im Winter, um anhand der Amplitude die eindeutige Bestimmung des Apex der Bewegung im Äther zu ermöglichen.

6.10. Ausgleichsrechnung

Hat man eine Anzahl N an extrahierten Differenzsignalen $\{(\Delta q_i)_k\}$ oder $\{\Delta z_k\}$, kann man nun versuchen, die freien Parameter (v, α, δ) zu bestimmen.

Dazu benutzen wir den Chi-Quadrat-Test (χ^2 -Test) und minimieren die Größe χ^2 .

Wir werden nicht direkt mit den Δq_i rechnen, sondern zu jedem Δz die Phase \tilde{z} und Amplitude \hat{z} und deren Unsicherheiten \tilde{u} und \hat{u} bestimmen. Ein theoretisches Differenzsignal $\Delta \mathcal{E}$ hat die Phase $\tilde{\mathcal{E}}$ und die Amplitude $\hat{\mathcal{E}}$. Zu minimieren ist dann

$$\chi^{2} = \sum_{k=1}^{N} \left(\frac{\tilde{z}_{k} - \tilde{\mathcal{E}}_{k}(v, \alpha, \delta)}{\tilde{u}_{k}} \right)^{2} + \sum_{k=1}^{N} \left(\frac{\hat{z}_{k} - \hat{\mathcal{E}}_{k}(v, \alpha, \delta)}{\hat{u}_{k}} \right)^{2}.$$

$$(35)$$

Die Unsicherheiten der Parameter am Minimum werden mit der Methode $\Delta\chi^2=1$ bestimmt.

Man sollte nicht direkt mit den Δq_i aller Differenzsignale rechnen, weil dabei wahrscheinlich die Amplitude der theoretischen Signale verringert wird. Daß das so ist, kann man sich leicht überlegen, wenn man versucht, eine Sinusfunktion an zwei gleiche, leicht phasenverschobene Signale anzupassen.

Die Anzahl der Freiheitsgrade ist theoretisch

$$f = 2N - 3 (36)$$

denn wir haben 2 Werte – Phase und Amplitude – für N Differenzsignale und 3 Parameter. Ob man f so berechnen darf, ist fraglich. Die doch recht komplizierte Theorie könnte nicht-triviale Freiheitsgrade besitzen [16]. In Simulationen wurde die Gültigkeit von (36) bestätigt.

6.11. Test auf Signalinhalt

Hat man die freien Parameter bestimmt, kann man prüfen, ob eine Gruppe von Datenblättern das zeitlich veränderliche theoretische Signal enthält. Auch hier wieder vorausgesetzt, daß der systematische Fehler konstant ist.

Subtrahiert man von einer Gruppe das theoretische Signal, dann sollte der konstante systematische Fehler übrig bleiben. Die Datensätze werden sich also ähnlicher. Addiert man auf eine Gruppe die Theorie, dann sollte folglich die Ähnlichkeit geringer werden.

Um die Ähnlichkeit von Datensätzen zu bestimmen, verwenden wir eine ähnliche Summe wie für die Größe χ^2 . Die Größe

$$R^{2} = \sum_{i} \left(\frac{\bar{q}'_{i} - \bar{q}_{i}}{\sqrt{u_{i}^{2} + u'_{i}^{2}}} \right)^{2}$$
 (37)

ist ein Maß für die Abweichung zweier Datensätze (\bar{q}_i) und (\bar{q}'_i) mit ihren Unsicherheiten (u_i) und (u'_i) . Je kleiner der Wert, desto größer die Ähnlichkeit.

In der Theorie gibt es aber auch Zeiträume, in denen sich das Signal kaum ändert oder sehr schwach ist, weshalb diese Methode dann versagt.

 $^{^{25}}$ Hier werden unterschiedliche Größen mit unterschiedlichen Einheiten addiert.

 $^{^{26}\}mathrm{Dieses}$ Vorgehen kann man als Regressionsschritt auffassen.

Tabelle 6: Parameter am Minimum und Statistiken a

Variante	$oldsymbol{v} \ / \ \mathbf{km/s}$	α / h	$\delta \ / \ { m deg}$	χ^2/f	p
Mit Erdbahn, n berechnet A11	326 ± 17	$11,0\pm0,2$	-11 ± 5	2,144	0,004
$\hbox{Mit Erdbahn, } n{=}1{,}00023 \ ^{\hbox{A12}}$	326 ± 17	$11,0\pm0,2$	-11 ± 5	2,150	0,004
Ohne Erdbahn, $^{\mathrm{b}}$ n berechnet $^{\mathrm{A}13}$	336 ± 17	$11,1\pm0,2$	-10 ± 5	2,284	0,002
Ohne Erdbahn, $^{\mathrm{b}}$ $n{=}1{,}00023$ $^{\mathrm{A14}}$	335 ± 17	$11{,}1\pm0{,}2$	-10 ± 5	$2,\!292$	0,002

 $^{^{\}mathrm{a}}$ Die Anzahl der Freiheitsgrade f=17 wurde durch Simulationen bestätigt.

6.12. Simulationen

Eine Simulation ist eine simulierte Messung eines Datenblattes. Alle Messdaten eines Datenblattes werden dabei durch berechnete Werte ersetzt. Die Berechnung ist durch (25) gegeben. Die Drift D wird aus den Messdaten übernommen. Die E_i werden durch Annahme eines doppelperiodischen systematischen Fehlers und eines einfach periodischen systematischen Fehlers berechnet. Die Phase und die Amplitude beider Fehler erhalten zusätzlich einen normal verteilten statistischen Fehler. Auch die Phase von \cancel{E} wird bei jeder Messung ein wenig weiter verschoben, um Unsicherheit zu erzeugen. Jeder simulierte Messwert erhält zuletzt einen normal verteilten statistischen Fehler.

Die Simulation wurde so eingestellt, daß sie ein ähnliches Bild im Rohdatendiagramm und ähnliche Unsicherheiten erzeugt. Vorlagen waren die guten Datenblätter. Außerdem darf kein systematischer Restfehler übrig bleiben, wenn man die Differenzsignale extrahiert.

Der einfach periodische systematische Fehler und das Runden auf eine Genauigkeit von $^1/_{10}$ Streifen sorgen für einen Anteil an nicht normal verteilten simulierten Messdaten. Der Anteil ist mit $\sim 6~\%$ ähnlich hoch wie in den echten Messdaten.

Mit Simulationen kann man alle hier vorgestellten Verfahren prüfen. Die Simulationen zeigen, daß grundsätzlich alle Verfahren funktionieren. Mit den gefundenen Differenzsignalen lassen sich zuverlässig die wahren Parameterwerte durch die Ausgleichsrechnung bestimmen.

7. Ergebnisse

7.1 Ausgleichsrechnung

Die Minimierung wurde numerisch auf einem Rechner mit dem Programm aetherise ausgeführt. Bei der Minimierung fällt das Differenzsignal 5 auf. Es ist fast eine Nulllinie und trägt damit kaum Phaseninformation. Aufgrund der bekannten unsicheren Verwertbarkeit wird es in allen Rechnungen abgeschaltet.

In Tabelle 6 sind verschiedene Varianten, das theoretische Signal zu berechnen, und die Ergebnisse der Ausgleichsrechnungen angegeben. Eine Variante ist, den Geschwindigkeitsvektor der Erde, auf ihrer Umlaufbahn um die Sonne, zu vernachlässigen. Eine andere Variante ist, den Brechungsindex n auf einen festen mittleren Wert zu setzen, statt ihn aus Temperatur und Wetter zu berechnen. Die Unsicherheiten sind 1-Sigma Standardunsicherheiten ohne Beachtung von Kovarianzen und ohne Angabe des systematischen Fehlers.

Die Parameter der ersten Zeile in Tabelle 6 sind das Hauptergebnis dieser Arbeit:

$$v = (326 \pm 17) \text{ km/s}$$

 $\alpha = (11,0 \pm 0,2) \text{ h}$
 $\delta = (-11 \pm 5)^{\circ}$
(38)

Die zugehörige χ^2 -Statistik ist eher schlecht und zeigt an, daß es Abweichungen gibt, die nur unwahrscheinlich durch Zufall entstanden sind.

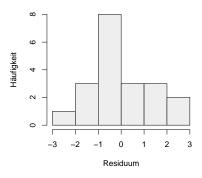


Abbildung 17: Histogramm der Residuen A15

Eine weitere Statistik ist die Verteilung der Residuen, deren Quadrate summiert das χ^2 ergeben. In Abbildung 17 ist das Histogramm der Residuen dargestellt. Nimmt man eine Normalverteilung an, dann erwartet man für deren Parameter $\mu=0$ und $\sigma^2=1$. Die ermittelten Parameterwerte sind $\mu=-0.050$ und

^b Zweites Minimum bei $(\alpha; \delta) = (23,1; 10)$. Die anderen Parameterwerte, Unsicherheiten und Statistik sind gleich.

 $\sigma^2 = 1.9$. Ein Shapiro-Wilk-Test auf Normalverteilung liefert einen p-Wert von p = 0.36. ¹⁸

Bis auf die Varianz σ^2 ist die Statistik gut. Die schlechte χ^2 -Statistik und die hohe Varianz kann man durch einen normalverteilten systematischen Restfehler in den Differenzsignalen erklären.

7.2. Test auf Signalinhalt

Mit den gefundenen Parameterwerten (38) kann man nun bei Gruppen mit konstanten Bedingungen den Test auf Signalinhalt machen. Es werden hier die Gruppen verwendet aus denen die Differenzsignale extrahiert wurden.

Tabelle 7: Ähnlichkeit von Datenblattfolgen

Datenblätter	R^2	R^2	R_+^2	Δ
Sep [39, 42] A17	16,29	17,34	15,80	-1,54
Sep [49, 56]	11,66	11,45	16,14	4,69
Sep $[57, 62]$	40,46	$38,\!26$	$46,\!25$	$7,\!99$
Sep [78, 83]	47,81	48,69	$50,\!31$	1,62
Feb $[48, 52]$	7,91	8,75	10,47	1,72
Feb [74, 79]	9,80	9,73	$21,\!57$	$11,\!84$
Feb [85, 91]	24,02	26,88	$23,\!35$	$-3,\!53$

Aufgrund der guten Übereinstimmung der gefundenen Parameterwerte (38) mit den Werten des KHS-Dipols (24), ist es interessant den Test auf Signalinhalt auch mit diesen Werten durchzuführen.

Tabelle 8: Ähnlichkeit von Datenblattfolgen bei Verwendung der Parameter des KHS-Dipols

Datenblätter	R^2	R^2	R_+^2	Δ
Sep $[39, 42]^{A18}$	16,29	18,13	15,37	-2,76
Sep $[49, 56]$	11,66	12,81	18,93	$6,\!12$
Sep $[57, 62]$	40,46	37,96	48,21	$10,\!25$
Sep [78, 83]	47,81	49,40	51,98	2,58
Feb $[48, 52]$	7,91	$9,\!25$	11,74	2,49
Feb [74, 79]	9,80	$12,\!45$	29,38	16,93
Feb $[85, 91]$	24,02	28,10	23,45	-4,65

In Tabelle 7 und Tabelle 8 ist die mittlere Ähnlichkeit aufeinander folgender Datenblätter in der Spalte R^2 angegeben. In der Spalte R^2 wurde vorher die Theorie subtrahiert, in der Spalte R^2_+ wurde vorher die Theorie addiert. In der Spalte Δ ist die Differenz $\Delta = R^2_+ - R^2_-$ angegeben. Die verwendeten Datenblätter sind durch die Epoche und ein Intervall der Datenblattnummern gegeben.

Man sieht, daß R_{-}^2 oftmals gar nicht kleiner als R^2 ist, aber trotzdem noch kleiner als R_{+}^2 ist. In Simulationen wurde dieses Verhalten bestätigt. Die Verschlechterung der Ähnlichkeit durch Addition der Theorie ist deutlich größer, als die Verbesserung

durch Subtraktion der Theorie. Einen positiven Wert für Δ kann man als Bestätigung werten.

7.3 Weiteres

Die Anisotropie der mittleren Lichtgeschwindigkeit auf geschlossenen Wegen kann man mit der relativen Änderung des Brechungsindex angeben $\Delta n/n = (n-n_L)/n$. Der Brechungsindex wird auf einen mittleren Wert von $n{=}1,00023$ gesetzt. Mit dem KHS-Dipol (24) ergibt sich theoretisch $\Delta n/n = 1,7 \cdot 10^{-10},$ gemessen (38) wurde $\Delta n/n \sim 1,4 \cdot 10^{-10}.$

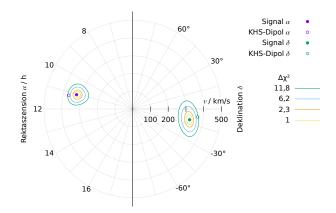
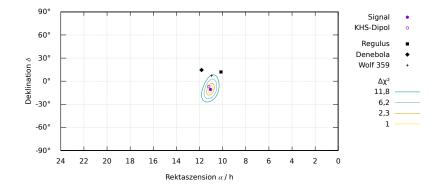


Abbildung 18: Die Parameter (v, α, δ) am Minimum. A16a

Die Rektaszension und die Deklination haben eine eigene Skala, der Nullpunkt ist identisch. Die Parameter sind paarweise als Polarkoordinaten (v,α) und (v,δ) mit ihren $\Delta\chi^2$ -Isolinien dargestellt. Zum Vergleich der Parameterwerte mit denen des KHS-Dipols ist dieser ebenfalls dargestellt.



 $\bf Abbildung$ 19: Apex der Bewegung im Äther. $^{\rm A16b}$

Hier ist das Parameterpaar (α, δ) am Minimum mit seinen $\Delta \chi^2$ -Isolinien dargestellt. Zum Vergleich der Parameterwerte mit denen des KHS-Dipols, ist dieser ebenfalls dargestellt. Zusätzlich sind einige Sterne des Sternbilds Löwe zu sehen.

7.4. Differenzsignale

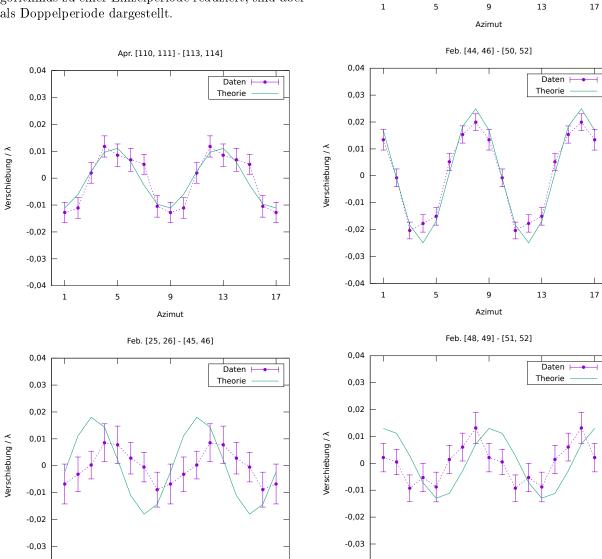
-0,04

9

Azimut

13

Hier sind alle extrahierten Differenzsignale zusammen mit dem theoretischen Differenzsignal in Diagrammen dargestellt. A19 Die Theorie ist mit den Parameterwerten des KHS-Dipols berechnet. Der Titel jedes Diagramms entspricht dem Ausdruck zur Signalextraktion. Die Datensätze wurden mit Millers Algorithmus zu einer Einzelperiode reduziert, sind aber als Doppelperiode dargestellt.



Feb. [25, 26] - [50, 51]

Daten Theorie

17

9

Azimut

13

0,04

0,03

0,02

0

-0,01

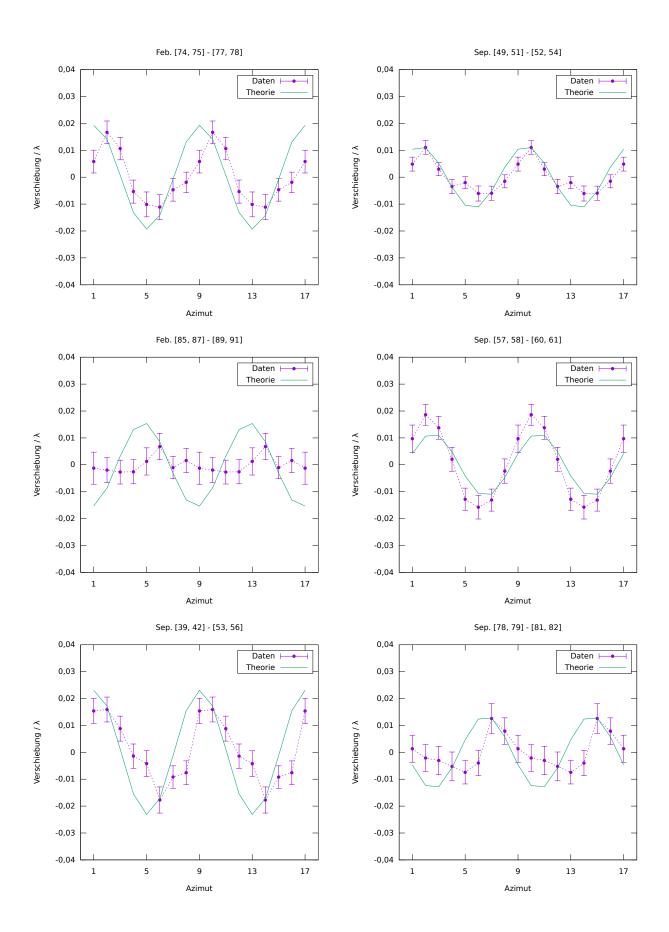
-0,02

-0,03

-0,04

Verschiebung / λ

-0,04



8. Folgerungen

Aufgrund der Übereinstimmung der gefundenen Parameterwerte mit den Werten des KHS-Dipols, nehme ich an, daß man eben diesen gemessen hat. Die naheliegendste Deutung des KHS-Dipols als Dopplereffekt, aufgrund einer Bewegung relativ zu einer isotropen KHS, wird also bestätigt. Diese Bewegung ist die gesuchte Absolutbewegung. Das Bezugssystem des Äthers ist also identisch mit dem Ruhesystem der KHS.²⁷

Die gute Übereinstimmung, trotz eher schlechter Statistik, liegt vermutlich daran, daß die systematischen Restfehler zufällig verteilt sind und sich größtenteils gegenseitig aufheben.

Daß wirklich ein Signal in Millers Daten ist, wird durch die gefundenen Ergebnisse bestätigt. In Tabelle 6 verschlechtert sich die Anpassungsgüte entsprechend der gewählten Variante. Der Brechungsindex hat eine kleine Wirkung, die Erdbahn eine größere. In Tabelle 7 und 8 ändert sich die Ähnlichkeit, bis auf kleine Ausnahmen, wie erforderlich.

Damit ist die Äthertheorie und meine Hypothese bestätigt. Und zwar in einer Weise, welche die SRT nicht bestätigt, denn laut der SRT dürfte es kein Signal geben. Bei Verwendung der SRT müsste man erklären, wie die 3,4 mK des KHS-Dipols [15] Millers Experiment so beeinflussen, daß das gefundene Signal gemessen wird. Sollte das nicht gelingen, ist die Spezielle Relativitätstheorie, und damit die Raumzeitdeutung der Lorentz-Transformation, widerlegt.

Die Ausgangsfrage nach der wahren Bedeutung der Lorentz-Transformation kann nur zum Teil beantwortet werden, denn Millers Experiment macht keine Aussage zur Isotropie der Lichtgeschwindigkeit im Vakuum. Folgende Aussagen sind aber möglich: Es gibt ein ausgezeichnetes Bezugssystem, den Äther. Im Äther breiten sich die elektrischen und magnetischen Felder mit Lichtgeschwindigkeit aus. Es gibt eine echte physikalische Kontraktion der Felder bei einer Relativbewegung der Feldquellen gegenüber dem Äther.

Alle Körper des Sonnensystems bewegen sich also, Lorentz-kontrahiert, mit ungefähr $^1/_{1000}$ der Lichtgeschwindigkeit, durch den Äther in Richtung Sternbild Löwe. 28

Um Gewissheit zu erlangen, muss Millers Experiment natürlich wiederholt und bestätigt werden. Es wird vermutlich noch weitere Möglichkeiten geben, Verletzungen der Lorentz-Invarianz zu messen. Miller [9] hat verschiedene andere Arbeiten erwähnt, in denen ein Signal gemessen wurde. Was diesen und anderen Arbeiten oft fehlt, ist eine theoretische Erklärung durch die Äthertheorie. Auch ist nicht geklärt, warum bei manchen Wiederholungen von Millers Experimenten kein Signal gemessen wurde. Die Beantwortung all dieser Fragen und Unklarheiten durch die Äthertheorie wird neue Erkenntnisse liefern.

Die Ergebnisse dieser Arbeit sind überzeugend und ich denke, man kann begründet behaupten: Der Äther ist entdeckt.

²⁷Das Ruhesystem der KHS ist das Bezugssystem, in dem der Dipol verschwindet, die KHS also isotrop erscheint.

²⁸Die Gravitation wurde in dieser Arbeit nicht betrachtet und mir ist nicht klar, ob auch das Gravitationsfeld, also die Bahnen der Himmelskörper, Lorentz-kontrahiert werden.

A. Befehle

Liste der Befehle mit denen Daten für Tabellen und Diagramme erzeugt wurden. Es wurde das Aetherise-Projekt 1.0.0 verwendet. Das verwendete Betriebssystem ist ein Linux-artiges.

```
A1. aetherise dcm/csv/*.csv dcm/csv/*/*.csv -reduce -no_data -disable_earth
     -n 1.00023 -month [9,9] -no [75,77] -no [79,81] -no [83,83] -no [43,43] -no [67,67]
     -no [69,69] -no [57,57] -no [59,59] -no [60,60] -no [62,62] -no [14,14] -no [16,17]
     -no [19,20] -no [65,65] -no [29,29] -no [31,33] -no [55,56] > s.dat
      a) plot_signal.sh s.dat "" image.svg
 A2. aetherise dcm/csv/*.csv dcm/csv/*/*.csv -reduce -no_data -disable_earth
     -n 1.00023 - time [0,12] > s.dat
      a) plot_signal3d.sh s.dat "" image.svg
 {
m A3.} aetherise dcm/csv/*.csv dcm/csv/*/*.csv -reduce -no_data -disable_earth
     -n 1.00023 > s.dat
      a) plot_theory_amp.sh s.dat "" image.svg
 A4. aetherise dcm/csv/*.csv dcm/csv/*/*.csv -reduce -no_data > s.dat
      a) plot_theory_amp.sh s.dat "" image.svg
 A5.\ {\sf test\_for\_normality.R}\ -{\sf ignore\_all}\ {\sf dcm/csv/*.csv}\ {\sf dcm/csv/*/*.csv}
 A6. test_for_normality.R -ignore_all dcm/csv/*/*.csv
 A7. test_for_normality.R -ignore_all dcm/csv/*.csv
 A8. aetherise -single -ignore all dcm/csv/*.csv -aggregate signals
     -signals_dt 0.9 -signals_dTD 0.3 -signals_ddT 0.25
 A9. aetherise dcm/csv/*.csv dcm/csv/*/*.csv -aggregate sidereal -month [2,4]
     -no_data > s.dat
      a) aetherise dcm/csv/*.csv dcm/csv/*/*.csv -aggregate sidereal -month [7,9]
         -no_data >> s.dat
      b) plot_coverage.sh selected_signals_coverage.dat s.dat "" image.svg
A10. aetherise -ignore all dcm/csv/*.csv dcm/csv/bad/*.csv -spectrum
     -aggregate mean > s.dat
      a) plot_spectrum.sh s.dat "" image.svg
All. aetherise -single -ignore all dcm/csv/*.csv -reduction DFT -aggregate fit
     -fit_sine -fit_disable 5 < selected_signals.txt</pre>
A12. aetherise -single -ignore all dcm/csv/*.csv -reduction DFT -aggregate fit
     -fit_sine -fit_disable 5 -n 1.00023 < selected_signals.txt</pre>
A13. aetherise -single -ignore all dcm/csv/*.csv -reduction DFT -aggregate fit
     -fit_sine -fit_disable 5 -disable_earth < selected_signals.txt
A14. aetherise -single -ignore all dcm/csv/*.csv -reduction DFT -aggregate fit
     -fit_sine -fit_disable 5 -disable_earth -n 1.00023 < selected_signals.txt
A15. aetherise -single -ignore all dcm/csv/*.csv -reduction DFT -aggregate fit
     -fit_sine -fit_disable 5 -stats -residuals < selected_signals.txt > r.dat
      a) histcsv.R r.dat 1 Residuum Häufigkeit image.pdf
A16. aetherise -single -ignore all dcm/csv/*.csv -reduction DFT -aggregate fit
```

-fit_sine -fit_disable 5 -contour -delta_chi2 16 < selected_signals.txt > c.dat

- a) plot_contour.sh c.dat "" image.svg
- b) plot_contour_apex.sh c.dat "" image.svg
- A17. Beispiele wie die Werte der Spalten R^2, R_-^2, R_+^2 von Tabelle 7 ermittelt wurden
 - a) aetherise -single -ignore all dcm/csv/*.csv -aggregate diff -theory_params 326000,11,-11 -month [9,9] -no [39,42]
 - b) aetherise -single -ignore all dcm/csv/*.csv -aggregate diff -theory_params 326000,11,-11 -month [9,9] -no [39,42] -subtract_theory
 - c) aetherise -single -ignore all dcm/csv/*.csv -aggregate diff -theory_params 326000,11,-11 -month [9,9] -no [39,42] -add_theory
- A18. Beispiele wie die Werte der Spalten R^2, R_-^2, R_+^2 von Tabelle 8 ermittelt wurden
 - a) aetherise -single -ignore all dcm/csv/*.csv -aggregate diff -month [9,9] -no [39,42]
 - b) aetherise -single -ignore all dcm/csv/*.csv -aggregate diff -month [9,9] -no [39,42] -subtract_theory
 - c) aetherise -single -ignore all dcm/csv/*.csv -aggregate diff -month [9,9] -no [39,42] -add_theory
- A19. Beispiel zur Signalextraktion und Erzeugung der Diagramme
 - a) aetherise -single -ignore all dcm/csv/*.csv -reduce -aggregate mean -month [3,4] -no [113,114] -csv > data.csv
 - b) aetherise -single -ignore all dcm/csv/*.csv -reduce -aggregate mean -month [3,4] -no [110,111] -data data.csv -subtract_data > s.dat
 - c) plot_signal.sh s.dat "Apr. [110, 111] [113, 114]" image.svg

Literatur

- [1] Henri Poincaré. "Sur la dynamique de l'électron". In: Comptes rendus de l'Académie des Sciences de Paris 140 (1905), S. 1504–1508.
- [2] Hendrik A. Lorentz. "Elektromagnetische Erscheinungen in einem System, das sich mit beliebiger, die des Lichtes nicht erreichender Geschwindigkeit bewegt". In: Das Relativitätsprinzip Eine Sammlung von Abhandlungen. B. G. Teubner, 1913, S. 6–26.
- [3] Albert Einstein. "Zur Elektrodynamik bewegter Körper". In: Annalen der Physik und Chemie 17 (1905), S. 891–921.
- [4] Hermann Minkowski. "Raum und Zeit". In: Physikalische Zeitschrift 10 (1909), S. 104–111.
- [5] Albert A. Michelson und Edward W. Morley. "On the Relative Motion of the Earth and the Luminiferous Ether". In: *American Journal of Science* 34 (1887), S. 333–345.
- [6] Hendrik A. Lorentz. "Die relative Bewegung der Erde und des Äthers". In: Abhandlungen über Theoretische Physik. B. G. Teubner, 1907, S. 443–447.
- [7] J. Shamir und R. Fox. "A New Experimental Test of Special Relativity". In: *Nuovo Cimento B* 62 (1969), S. 258.
- [8] Hendrik A. Lorentz. "Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte". In: *Annalen der Physik und Chemie* IX (1880), S. 641–665.
- [9] Dayton C. Miller. "The Ether-Drift Experiment and the Determination of the Absolute Motion of the Earth". In: Reviews of Modern Physics 5 (1933), S. 203–242.
- [10] R. S. Shankland et al. "New Analysis of the Interferometer Observations of Dayton C. Miller". In: Reviews of Modern Physics 27 (1955), S. 167–178.
- [11] Georg Joos. "Die Jenaer Wiederholung des Michelsonversuchs". In: Annalen der Physik 7 (1930), S. 385–407.

- [12] 19IM2 Dayton C. Miller Papers, 1878-1939, Case Western Reserve University Archives.
 19IM2 6:17 Research. Interferometer. Mt. Wilson, April 1925
 19IM2 6:18 Research. Interferometer. Mt. Wilson, July-August 1925
 19IM2 6:19 Research. Interferometer. Mt. Wilson, July-August 1925
 19IM2 7:1 Research. Interferometer. Mt. Wilson, September 1925
 19IM2 7:2 Research. Interferometer. Mt. Wilson, September 1925
 19IM2 7:3 Research. Interferometer. Mt. Wilson, February 1926
 19IM2 7:4 Research. Interferometer. Mt. Wilson, February 1926.
- [13] Philip E. Ciddor. "Refractive index of air: new equations for the visible and near infrared". In: APPLIED OPTICS 35 (1996). URL: https://emtoolbox.nist.gov/Wavelength/Ciddor.asp.
- [14] D. M. Etheridge et al. "Historical CO2 Records from the Law Dome DE08, DE08-2, and DSS Ice Cores (1006 A.D.-1978 A.D)". In: Carbon Dioxide Information Analysis Center (1998). URL: https://cdiac.ess-dive.lbl.gov/ftp/trends/co2/lawdome.smoothed.yr20.
- [15] G. Hinshaw et al. "Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results". In: *Astrophys. J. Suppl* 180 (2009), S. 225–245. URL: https://arxiv.org/abs/0803.0732v2.
- [16] R. Andrae et al. "Dos and don'ts of reduced chi-squared". 2010. URL: https://arxiv.org/abs/1012. 3754.