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  Abstract 

 

In this paper, it will be shown that it is possible to detect if a number p is prime [1] or 

not, using the following expression involving the q-polygama function [2] (represented 

as ψ) and being c whatever positive real number higher than zero: 

 

 

𝑞2 =
1

2𝜋
∫ 𝑒𝑝𝑗𝜔 (

𝜓𝑞(1) + ln(1 − 𝑒−𝑐−𝑗𝜔)

ln(𝑒−𝑐−𝑗𝜔)
−

𝑒−𝑐−𝑗𝜔 + 𝑒−2𝑐−2𝑗𝜔

1 − 𝑒−𝑐−𝑗𝜔
)

𝜋

−𝜋

𝑑𝜔(1) 

 

 

If the result is zero, p is a prime number. If it is different from zero, the result will give 

information about the number of factors that the number p has. 

 

We will check that using this as a basis, we can obtain the following integral: 

 

 

 

𝑞3 =
1

2𝜋
∫ 𝑒𝑝𝑗𝜔 (∑ 𝑒−𝑐(2+𝑘)𝑒−2𝑘𝑗𝜔

1

1 − 𝑒−𝑐𝑒−𝑘𝑗𝜔

𝑘=∞

𝑘=2
)

𝜋

−𝜋

𝑑𝜔(2) 

 

And it is possible to obtain the sum of the factors of a semiprime number p [3] with it. 

Once we have the sum and the product of the factors, it is immediate to obtain the two 

factors of the semiprime number. The solution of that integral (solving it numerically) is 

obtained in polynomial time (quadratic).  

 

To do so, the second element of the product inside the integral has had to be calculated 

before and stored in a table (data base). Once this prework is done, the result is given in 

polynomial time (linear) independently of p or its size. You can check that this is possible 

because the second element of the product within the integral does not depend on p: 

 

∑ 𝑒−𝑐(2+𝑘)𝑒−2𝑘𝑗𝜔
1

1 − 𝑒−𝑐𝑒−𝑘𝑗𝜔

𝑘=∞

𝑘=2
(3) 

 

Keywords 

Primality test, factorization, pq-number, semiprime, biprime, prime, number theory, 

RSA encryption 

 
 



J. Sánchez 

 

 

 2  

 

1. Introduction  

This paper will start in a very similar way than the paper [4]. So, if you have already read 

that paper you can skip the chapters 1-7.  

 

We will obtain the following integral (being ψ the q-polygamma function): 

 

𝑞2 =
1

2𝜋
∫ 𝑒𝑝𝑗𝜔 (

𝜓𝑞(1) + ln(1 − 𝑒−𝑐−𝑗𝜔)

ln(𝑒−𝑐−𝑗𝜔)
−

𝑒−𝑐−𝑗𝜔 + 𝑒−2𝑐−2𝑗𝜔

1 − 𝑒−𝑐−𝑗𝜔
)

𝜋

−𝜋

𝑑𝜔(1) 

 

Being p the number that we want to check if it is a prime or not. And being c whatever real 

number different form zero. We will check that this “whatever” is theoretical, as the inte-

gral will be calculated numerically, so we will use “c” as a “calibration factor” to try to get 

the most accurate result from the integral with the less computation effort. 

 

If the result of the integral is zero (or it is so small that it can be considered to be zero) the 

number p is a prime. If not, the result will tell us how many permutations of two divisors, 

the number p has. 

 

To obtain the expression of the integral (1), the following steps shall be taken. First, we 

will create a domain with all the composite numbers in the domain included. 

 

Then, we will use the Fourier transform [5] to change from the original domain (time do-

main) to the frequency domain.  

 

Using the Parseval’s theorem [6][7], we can check if a certain number is the above created 

domain or not. The use of Parseval’s theorem will lead to the above integration.  

 

If the number p that we want to check is not in the domain, the result of the integration is 

zero and the number is a prime. If instead, the result is an integer, this integer will tell us 

how many permutations of two divisors the number p has. And in consequence, how many 

divisors, the number has. 

 

The important thing is that making some modifications to the integral that will be com-

mented in chapter 11, we will get to the following expression: 

 

𝑞3 =
1

2𝜋
∫ 𝑒𝑝𝑗𝜔 (∑ 𝑒−𝑐(2+𝑘)𝑒−2𝑘𝑗𝜔

1

1 − 𝑒−𝑐𝑒−𝑘𝑗𝜔

𝑘=∞

𝑘=2
)

𝜋

−𝜋

𝑑𝜔(2) 

 

If p is a semiprime number (a pq-number), the result of the integral will lead us to the value 

of one of the factors. This integral. if it is performed completely every time, is computa-

tionally very expensive. But as the second part of the product inside of the integral does 

not depend on p, we can pre-calculate it and then use the integral to factorize different 

semiprime numbers with a much less expensive computation per number. In fact, we can 

do it in linear time (after the pre-calculation).  
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2.  Matrix of composite numbers 

 

As commented, if you have already read [4] you can skip chapters 1 to 7 as they will be a 

repetition of it (with little variants). 

 

It is possible to create a matrix with the only composite numbers in certain domain. We 

can create it assuring that each element of the matrix is the product of every two integers 

in the domain. We can perform this operation one by one until having used all the integers. 

So, the result will be all the composite numbers in a certain domain. 

 

You can see an example in figure 1,  

 

[

2 · 2 2 · 3 2 · 4 2 · 5
3 · 2 3 · 3 3 · 4 3 · 5
4 · 2 4 · 3 4 · 4 4 · 5
5 · 2 5 · 3 5 · 4 5 · 5

] 

Fig.1 

And the result attached in figure 2: 

 

[

4 6 8 10
6 9 12 15
8 12 16 20
10 15 20 25

] 

 

Fig.2 

We can see that all the composite numbers between 4 and 10 are included in the matrix: 

4,6,8,9,10. And as expected, the prime numbers 2,3,5 and 7 are not. But we can see that 

the number 14 that is composite is not included. Why? Because it is composed by 7·2 and 

the 7 is not included in the multiplications. This means, the domain where it is true that all 

the composite numbers are included (and none of the primes) finishes in 2·5=10 (being 5 

the last number we are using in the multiplications).  

 

But we can consider a general matrix with m rows and m columns (meaning the last ele-

ment is (m+1)). If (m+1) is a finite number, the matrix will include all the composite num-

bers until 2·(m+1). If instead, we consider the case where this last element (m+1) tends to 

infinity, we are including all the composite numbers in this matrix, meaning that the natural 

numbers that will not appear in this hypothetical matrix are all the prime numbers. 

 

 

[
 
 
 
 
 

2 · 2 2 · 3 2 · 4 2 · 5 … 2 · (𝑚 + 1)

3 · 2 3 · 3 3 · 4 3 · 5 … 3 · (𝑚 + 1)

4 · 2 4 · 3 4 · 4 4 · 5 … 4 · (𝑚 + 1)
5 · 2 5 · 3 5 · 4 5 · 5 … 5 · (𝑚 + 1)
… … … … … …

(𝑚 + 1) · 2 (𝑚 + 1) · 3 (𝑚 + 1) · 4 (𝑚 + 1) · 5 … (𝑚 + 1) · (𝑚 + 1)]
 
 
 
 
 

 

Fig.3 



J. Sánchez 

 

 

 4  

 

[
 
 
 
 
 

4 6 8 10 … 2 · (𝑚 + 1)

6 9 12 15 … 3 · (𝑚 + 1)

8 12 16 20 … 4 · (𝑚 + 1)
10 15 20 25 … 5 · (𝑚 + 1)
… … … … … …

(𝑚 + 1) · 2 (𝑚 + 1) · 3 (𝑚 + 1) · 4 (𝑚 + 1) · 5 … (𝑚 + 1) · (𝑚 + 1)]
 
 
 
 
 

 

Fig.4 

 

3. Including the elements of the composite matrix in the discrete 
time domain 

Now, the next movements will be quite straight forward. The first thing we will do, is to 

introduce these calculated composite numbers in the discrete time domain. We will put uni-

tary delta functions in the positions of the x axis indicated by the matrix of composite num-

bers (figure 5).  

 

 

Fig.5 

 

We can see in the above figure, that each Dirac delta is located in a composite number that 

is obtained as the product of two integers. This is, each Dirac delta represents the factoriza-

tion of two numbers of each composite number. And the order of the factors counts. This is, 

δ(n-2·3) is one delta and δ(n-3·2) counts as a second delta in the same position.  

 

Therefore, if we do not have any delta in a certain position (see the red numbers), this means 

that the number is prime. 

 

If we have only one Dirac Delta in one position, it means that the number is the square of a 

prime number (see 4=2·2 or 9=3·3 for example). The reason for this, is that if the order 

counts, the only way to have only one product -and not a second, exchanging the order- is 

that the two numbers of the product are the same (leading to a square). 

 

If the number of Dirac deltas is odd but higher than one, the number has an integer square 

root (but this root is not a prime). If the number of deltas is even, it has different permutations 

of different products, but it does not have an integer square root.  
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There is also the special case when the number of deltas is two. In general, this would mean 

that the number is semiprime (pq-number) []. As generally, two deltas represent the product 

of two prime numbers in the two possible orders. See the number 6 for example (2·3 and 

3·2). But you can also check that the number 8 has two deltas but is not a semiprime. We 

will come back to this later. 

 

4. Creating the functions f(n) and g(n)  

 

We can create a function that is the sum of all these deltas. And this function will have the 

information of all these composite numbers. This function in the discrete domain is defined 

like this: 

 

 

𝑓(𝑛) = ∑ ∑ 𝛿(𝑛 − 𝑘1 · 𝑘2) =

𝑘1=𝑚+1

𝑘1=2

𝑘2=𝑚+1

𝑘2=2

∑ (𝛿(𝑛 − 2 · 𝑘2) + 𝛿(𝑛 − 3 · 𝑘2)
𝑘2=𝑚+1

𝑘2=2

+ 𝛿(𝑛 − 4 · 𝑘2) + ⋯𝛿(𝑛 − (𝑚 + 1) · 𝑘2)) = 

= 𝛿(𝑛 − 2 · 2) + 𝛿(𝑛 − 2 · 3) + ⋯𝛿(𝑛 − 2 · (𝑚 + 1))+ 

+𝛿(𝑛 − 3 · 2) + 𝛿(𝑛 − 3 · 3)… 𝛿(𝑛 − (𝑚 + 1) · (𝑚 + 1))(4) 

 

 

This function f(n) has the information regarding all the composite numbers inside the do-

main 2·(m+1). But the important information there is what it is not included. All the integers 

smaller than 2·(m+1) that are not included in this function, are prime numbers. 

 

How do we spot them? If we want to know if the number 5 is prime or not. We have to 

check if there is a Dirac delta in position 5. This means, we have to check if the following 

function g(n) is inside the function f(n): 

 

 

𝑔(𝑛) = 𝛿(𝑛 − 5)(5) 

 

In general, if we want to check if whatever number p is prime, g(n) would be: 

 

 

𝑔(𝑛) = 𝛿(𝑛 − 𝑝)(6) 

 

 

We could do this performing the multiplication one by one for all the points in the x axis 

between the function f(n) and the function g(n), as follows: 

 

∑ 𝑓(𝑛) · 𝑔(𝑛)

𝑛=∞

𝑛=−∞

= ∑ 𝑓(𝑛) · 𝑔(𝑛)

𝑛=(𝑚+1)

𝑛=4

(7) 

 

As the function g(n) is zero everywhere except in the point p, if the result of the multiplica-

tion point by point between f(n) and g(n) is zero, it means that f(n) does not have a Dirac 

delta in p. So, in that case (no deltas in p), p would be prime.  
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If the result is different, it will tell us the value of f(n) at that point. And the value of f(n) at 

that point is the number of deltas included. This means, the number of all the possible prod-

ucts of two integers that the number p has.  

 

The problem is that to perform this operation in the time domain, does not add any value. 

Because to know the result, we have to perform all the multiplications between f(n) and g(n) 

in all the points of the domain, to see if f(n) has a value different from zero in the position 

where g(n) has the delta. 

 

The only way to perform this operation efficiently is to do it in the frequency domain as we 

will see now. 

 

5. The frequency domain 

What we will do is to convert the functions f(n) an g(n) to the frequency domain. To do 

so, we use the Fourier transform. 

 

We start with f(n). We know from signal theory that the Fourier transform of a shifted 

Dirac delta is: 

 

𝛿(𝑛 − 𝑎) → 𝑒−𝑎𝑗𝜔 (8) 

 

So, the function f(n), in the frequency domain has the form F(ω): 

 

 

𝐹(𝜔) = ∑ ∑ 𝑒−𝑘1·𝑘2𝑗𝜔

𝑘2=𝑚+1

𝑘2=2

𝑘1=𝑚+1

𝑘1=2

= 

= 𝑒−2·2𝑗𝜔 + 𝑒−2·3𝑗𝜔 + ⋯ + 𝑒−2·(𝑚+1)𝑗𝜔 + 

+𝑒−3·2𝑗𝜔 + 𝑒−3·3𝑗𝜔 + ⋯+ 𝑒−3·(𝑚+1)𝑗𝜔 + 

+⋯+ ⋯+ ⋯+ ⋯+ 

+𝑒−(𝑚+1)·2𝑗𝜔 + 𝑒−(𝑚+1)·3𝑗𝜔 … + 𝑒−(𝑚+1)·(𝑚+1)𝑗𝜔(9) 

 

We can put above sum in the following form: 

 

= (𝑒−2𝑗𝜔)2 + (𝑒−2𝑗𝜔)3 + ⋯+ (𝑒−2𝑗𝜔)𝑚+1 + 

+(𝑒−3𝑗𝜔)2 + (𝑒−3𝑗𝜔)3 + ⋯+ (𝑒−3𝑗𝜔)𝑚+1 + 

+⋯+ ⋯+ ⋯+ ⋯+ 

+(𝑒−(𝑚+1)𝑗𝜔)2 + (𝑒−(𝑚+1)𝑗𝜔)3 + ⋯ + (𝑒−(𝑚+1)𝑗𝜔)𝑚+1(10) 

 

As you can see above, each line is a geometric series sum. So, using the known result 

of geometric series [8], we can write: 

= 𝑒−2·2𝑗𝜔
1 − 𝑒−2𝑚𝑗𝜔

1 − 𝑒−2𝑗𝜔
+ 

 

+𝑒−2·3𝑗𝜔
1 − 𝑒−3𝑚𝑗𝜔

1 − 𝑒−3𝑗𝜔
+ 

+⋯ + 

+𝑒−2(𝑚+1)𝑗𝜔
1 − 𝑒−(𝑚+1)𝑚𝑗𝜔

1 − 𝑒−(𝑚+1)𝑗𝜔
= 
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= ∑ 𝑒−2𝑘𝑗𝜔
1 − 𝑒−𝑚𝑘𝑗𝜔

1 − 𝑒−𝑘𝑗𝜔

𝑘=𝑚+1

𝑘=2
(11) 

 

For the function g(n), following the same process: 

 

𝑔(𝑛) = 𝛿(𝑛 − 𝑝)(12) 

 

The Fourier transform G(ω) of g(n) would be: 

 

 

𝑔(𝑛) = 𝛿(𝑛 − 𝑝) → 𝐺(𝜔) = 𝑒−𝑝𝑗𝜔(13) 

6. Parseval’s theorem 

 

Now, we get to the point. In the chapter 4, we wanted to perform the following operation: 

 

∑ 𝑓(𝑛) · 𝑔(𝑛)

𝑛=∞

𝑛=−∞

= ∑ 𝑓(𝑛) · 𝑔(𝑛)

𝑛=(𝑚+1)

𝑛=4

(14) 

 

If the result is different from zero, it means that p is composite, as it means that: 

 

𝑔(𝑛) = 𝛿(𝑛 − 𝑝)(15) 

 

g(n) has found delta/s in the same position in the function f(n) defined before, that has 

only deltas in composite number positions. 

 

This operation in the time domain does not have added value (as you have to perform all 

multiplications), but fortunately a guy called Marc-Antoine Parseval [6][7] saved our day 

discovering the following theorem. 

 

The general Parseval’s theorem applied to discrete functions (as it is the case) says the 

following [7 Page 48/51]: 

 

∑ 𝑓(𝑛) · 𝑔∗(𝑛)

𝑛=∞

𝑛=−∞

=
1

2𝜋
∫ 𝐹(𝜔) · 𝐺∗(𝜔)

𝜋

−𝜋

𝑑𝜔(16) 

 

The asterisk* means the complex conjugate. All the functions we are dealing in this 

paper with, are real in the time domain so in the left-hand side no conjugation is necessary. 

 

𝑔∗(𝑛) = 𝑔(𝑛)(17) 

 

For the righthand side, yes, we have complex functions. But as you can check all of them 

are exponential based. So, the conjugate is just to change the sign of the imaginary part of 

the exponent. This is immediate from Euler’s formula [9]. 

 

 

𝐺(𝜔) = 𝑒−𝑝𝑗𝜔(18) 
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𝐺∗(𝜔) = 𝑒𝑝𝑗𝜔(19) 

 

So, coming back, this means, we can perform the operation of multiplying point by point 

the two functions in the time domain, just making the definite integral form -π to π of the 

multiplication of the two functions (its Fourier Transform) in the frequency domain.  

 

So, the integral in the frequency domain (that represents the multiplication point by point 

of the functions f(n) and g(n) in the time domain) according Parseval’s theorem is the 

following (and we will call its result as q): 

 

 

𝑞 = ∑ 𝑓(𝑛) · 𝑔∗(𝑛)

𝑛=∞

𝑛=−∞

= ∑ 𝑓(𝑛) · 𝑔(𝑛) =

𝑛=∞

𝑛=−∞

1

2𝜋
∫ 𝐹(𝜔) · 𝐺∗(𝜔)

𝜋

−𝜋

𝑑𝜔

=
1

2𝜋
∫ (∑ 𝑒−2𝑘𝑗𝜔

1 − 𝑒−𝑚𝑘𝑗𝜔

1 − 𝑒−𝑘𝑗𝜔

𝑘=𝑚+1

𝑘=2
) ·

𝜋

−𝜋

𝑒𝑝𝑗𝜔𝑑𝜔

=
1

2𝜋
∫ 𝑒𝑝𝑗𝜔 (∑ 𝑒−2𝑘𝑗𝜔

1 − 𝑒−𝑚𝑘𝑗𝜔

1 − 𝑒−𝑘𝑗𝜔

𝑘=𝑚+1

𝑘=2
)

𝜋

−𝜋

𝑑𝜔(20) 

So, summing up: 

 

 

𝑞 =
1

2𝜋
∫ 𝑒𝑝𝑗𝜔 (∑ 𝑒−2𝑘𝑗𝜔

1 − 𝑒−𝑚𝑘𝑗𝜔

1 − 𝑒−𝑘𝑗𝜔

𝑘=𝑚+1

𝑘=2
)

𝜋

−𝜋

𝑑𝜔(21) 

We will call q the result of above expression. If q is zero, p is prime, if q is different 

from zero, p is composite, and the number q has information regarding the number of fac-

tors.  

 

For possible calculation issues we may find later, it is to be noted that as, k is independent 

from ω the sum can be taken outside the integral, as follows: 

 

 

 

𝑞 =
1

2𝜋
∫ 𝑒𝑝𝑗𝜔 (∑ 𝑒−2𝑘𝑗𝜔

1 − 𝑒−𝑚𝑘𝑗𝜔

1 − 𝑒−𝑘𝑗𝜔

𝑘=𝑚+1

𝑘=2
)

𝜋

−𝜋

𝑑𝜔

=
1

2𝜋
∑ ∫ 𝑒𝑝𝑗𝜔𝑒−2𝑘𝑗𝜔

1 − 𝑒−𝑚𝑘𝑗𝜔

1 − 𝑒−𝑘𝑗𝜔

𝜋

−𝜋

𝑑𝜔

𝑘=𝑚+1

𝑘=2

(22) 

 

There are two problems with above expression. The first one is that the domain is limited 

to (m+1), meaning that not all the composite primes are included in the summation (only 

the ones equal or below 2·(m+1)).  

 

The second problem is that you cannot separate the summation from the exponential 

depending on p, so you have to perform the summation completely every time you calculate 

the integral with different numbers p.  

 

Anyhow, we will continue using this expression to explain the theory and we will handle 
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these two issues from chapter 8 on. 

 

I have attached in Annex B1 a program in Matlab/Octave that performs that operation 

and compare the time of computation with the brute force checking. 

 

We will make some examples later. 

 

7. Number of factors of p 

We know that if p is composite, the number q (result from equation (22)) is the number of 

possible combinations of multiplications of two integer numbers that get the value p. And 

yes, with this number we can get the number of factors that p has. 

 

This is the formula: 

 

𝑞 = (𝑛𝑓1 + 1)(𝑛𝑓2 + 1)(𝑛𝑓3 + 1) …(𝑛𝑓𝑧 + 1) − 2(23) 

 

Being nf1 the number of times the factor f1 is repeated, nf2 the number of times f2 is repeated 

and so on. 

 

Putting in another way is: 

 

𝑞 + 2 = (𝑛𝑓1 + 1)(𝑛𝑓2 + 1)(𝑛𝑓3 + 1)… (𝑛𝑓𝑧 + 1)(24) 

 

So, the factors of the obtained number q+2 (much smaller than p) tell us how many factors 

the number p originally has and how many of them are repeated. 

 

Let’s see with an example. We apply equation (22) to the number 20. To do this operation 

you can use the commented program in Annex B1 in Matlab/Octave. You will see that the 

result is q=4. So, we can check: 

 

 

𝑞 + 2 = 4 + 2 = 6 = (𝑛𝑓1 + 1)(𝑛𝑓2 + 1)(𝑛𝑓3 + 1) …(𝑛𝑓𝑧 + 1) = 3 · 2

= (2 + 1)(1 + 1)(25) 

 

This means, p has to have a factor that is repeated twice and one that appears only once. 

And we see that it is true: 

20 = 2 · 2 · 5(26) 

 

The factor 2 is repeated twice and 5 once. 

 

And the q is 4 because, there are four combinations of multiplications of two integers that 

get the result 20: 

 

2·10, 4·5, 5·4, 10·2 

 

So, everything fits. 
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Let’s check, other ones: 

 

p=102 

q=6 

 

𝑞 + 2 = 8 = 2 · 2 · 2 = (1 + 1)(1 + 1)(1 + 1)(27) 

 

This means, three factors that are not repeated, and in fact 102=2·3·17 

 

Another one: 

p=36 

q=7 

 

𝑞 + 2 = 9 = 3 · 3 = (2 + 1)(2 + 1)(28) 

 

This means two factors repeated twice (each). In fact, 36=2·2·3·3 

 

You can see that the formula (17) works. 

We can use q to know how many factors a number p has if it is composite (or instead, detect 

it is a prime if q=0). 

 

One of the problems, that this system has is that sometimes there are different solutions for 

the number of factors. For example, for q=2, the typical answer is: 

 

 

𝑞 + 2 = 4 = 2 · 2 = (1 + 1)(1 + 1)(29) 

 

This means, two different factors not repeated. For example, 21=3·7=7·3. 

 

But it could be: 

𝑞 + 2 = 4 = (3 + 1)(30) 

 

For example, the number 8=2·4=4·2 

 

It has q=2 (two combinations of factors) but 8=2·2·2 This means one factor three times, as 

seen before. 

 

So, the number q could have some values that have different solutions regarding the num-

ber of factors. 

 

8. Extending the expression of F(ω) when (m+1) tends to infinity 

To do this, we will repeat the exact same steps as before, but with little changes. These 

changes will let the summation converge also when (m+1) tends to infinity.  

 

The way to do it is instead of having unitary deltas, to have deltas that are multiplied by 
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the real factor e-k1·k2·c, being c a real number higher than zero, that we can choose freely. 

The criteria of selection of c will be based in the in the computational efforts that we need 

to get a valid result in the range of numbers desired. We will give some recommendations 

later. 

 

So, we will follow the same steps as before. The only difference is that now we are reducing 

the value of the magnitude of each delta, as k1 and k2 approach infinity. This way we will 

force the last term of the summation to tend to zero when (m+1) tends to infinity. As we 

will see later, we can use a similar trick to introduce valuable information in the magnitude 

of the deltas, but this, we will check later. 

 

So, following the same steps as before, but now with this reduction factor in the magnitude 

of the delta e-k1·k2·c, we have: 

 

 
 

Fig.6 

 

Now, we can get the value of f(n) in this case as: 

 

 

𝑓(𝑛) = ∑ ∑ 𝑒−𝑘1·𝑘2·𝑐𝛿(𝑛 − 𝑘1 · 𝑘2) =

𝑘1=𝑚+1

𝑘1=2

𝑘2=𝑚+1

𝑘2=2

∑ (𝑒−2·𝑘2·𝑐𝛿(𝑛 − 2 · 𝑘2)
𝑘2=𝑚+1

𝑘2=2

+ 𝑒−3·𝑘2·𝑐𝛿(𝑛 − 3 · 𝑘2) + 𝑒−4·𝑘2·𝑐𝛿(𝑛 − 4 · 𝑘2)

+ ⋯𝑒−(𝑚+1)·𝑘2·𝑐𝛿(𝑛 − (𝑚 + 1) · 𝑘2)) = 

= 𝑒−2·2·𝑐𝛿(𝑛 − 2 · 2) + 𝑒−2·3·𝑐𝛿(𝑛 − 2 · 3) + ⋯𝑒−2·(𝑚+1)·𝑐𝛿(𝑛 − 2 · (𝑚 + 1))+ 

+𝑒−3·2·𝑐𝛿(𝑛 − 3 · 2) 

+ 𝑒−3·3·𝑐𝛿(𝑛 − 3 · 3)…𝑒−(𝑚+1)·(𝑚+1)·𝑐𝛿(𝑛 − (𝑚 + 1) · (𝑚 + 1))(31) 

 

Now if we make (m+1) tend to infinity we have: 

 

𝑓(𝑛) = ∑ ∑ 𝑒−𝑘1·𝑘2·𝑐𝛿(𝑛 − 𝑘1 · 𝑘2) =

𝑘1=∞

𝑘1=2

𝑘2=∞

𝑘2=2

∑ (𝑒−2·𝑘2·𝑐𝛿(𝑛 − 2 · 𝑘2)
𝑘2=𝑚+1

𝑘2=2

+ 𝑒−3·𝑘2·𝑐𝛿(𝑛 − 3 · 𝑘2) + 𝑒−4·𝑘2·𝑐𝛿(𝑛 − 4 · 𝑘2) + ⋯0) = 

= 𝑒−2·2·𝑐𝛿(𝑛 − 2 · 2) + 𝑒−2·3·𝑐𝛿(𝑛 − 2 · 3) + ⋯0 + 

+𝑒−3·2·𝑐𝛿(𝑛 − 3 · 2) + 𝑒−3·3·𝑐𝛿(𝑛 − 3 · 3)… 0(32) 

 

The zeroes in the end of the series appear because the exponential e-k1·k2·c tends to zero as 

k1 and k2 tend to infinity (and we have also defined c as a real number higher than zero). 

Remind that the previous limit for k1 and k2 was (m+1) before, and now (m+1) tends to 

infinity.  

 



J. Sánchez 

 

 

 12  

 

We can calculate the Fourier transform as in chapter 5 like this: 

 

 

𝐹(𝜔) = ∑ ∑ 𝑒−𝑘1·𝑘2·𝑐𝑒−𝑘1·𝑘2𝑗𝜔

𝑘2=𝑚+1

𝑘2=2

𝑘1=𝑚+1

𝑘1=2

= 

= 𝑒−2·2·𝑐𝑒−2·2𝑗𝜔 + 𝑒−2·3·𝑐𝑒−2·3𝑗𝜔 + ⋯+ 0 + 

+𝑒−3·2·𝑐𝑒−3·2𝑗𝜔 + 𝑒−3·3·𝑐𝑒−3·3𝑗𝜔 + ⋯ + 0 + 

+⋯+ ⋯+ ⋯+ ⋯+ 
+0 + 0… + 0(33) 

 

 

And now, we can also simplify it as geometric sums, but with a difference. As the last term 

tends to zero as k1 and k2 tend to infinity, we can eliminate it from the geometric sum 

expression [8] like this: 

 

 

𝐹(𝜔) = 𝑒−2·2·𝑐𝑒−2·2𝑗𝜔
1

1 − 𝑒−2·𝑐𝑒−2𝑗𝜔
+ 

 

+𝑒−2·3·𝑐𝑒−2·3𝑗𝜔
1

1 − 𝑒−3·𝑐𝑒−3𝑗𝜔
+ 

+𝑒−2·4·𝑐𝑒−2·4𝑗𝜔
1

1 − 𝑒−4·𝑐𝑒−4𝑗𝜔
+ 

 

+⋯ + 

+0 = 

 

= ∑ 𝑒−2·𝑘·𝑐𝑒−2𝑘𝑗𝜔
1

1 − 𝑒−𝑘·𝑐𝑒−𝑘𝑗𝜔

𝑘=∞

𝑘=2
= ∑

(𝑒−2·𝑐−2𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘

𝑘=∞

𝑘=2
(34) 

 

Regarding the function g(n), it is exactly the same as in chapter 5. So, we will follow 

the same process: 

 

𝑔(𝑛) = 𝛿(𝑛 − 𝑝)(35) 

 

The Fourier transform G(ω) of g(n) would be: 

 

 

𝑔(𝑛) = 𝛿(𝑛 − 𝑝) → 𝐺(𝜔) = 𝑒−𝑝𝑗𝜔(36) 

 

9. Relation of F(ω) with the q-polygamma function 

 

 

If we want to get rid of the summation in equation (22), there is a way. It exists a function 

called q-polygama function ψk(z) [2] which definition is:  

 

𝜓𝑞(𝑧) = − ln(1 − 𝑞) + ln(𝑞)∑
𝑞𝑛+𝑧

1 − 𝑞𝑛+𝑧

𝑛=∞

𝑛=0
(37) 

For z=2, we have: 
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𝜓𝑞(2) = − ln(1 − 𝑞) + ln(𝑞)∑
𝑞𝑛+2

1 − 𝑞𝑛+2
(38)

𝑛=∞

𝑛=0
 

If we substitute by k=n+2: 

 

𝜓𝑞(2) = − ln(1 − 𝑞) + ln(𝑞)∑
𝑞𝑘

1 − 𝑞𝑘
(39)

𝑘=∞

𝑘=2
 

For the geometric sum form qk/(1-qk) that is inside the summation we can separate the first 

element and leave it as qk+ (q2k/(1-qk)), starting the geometric form sum in the second ele-

ment: 

 

𝜓𝑞(2) = − ln(1 − 𝑞) + ln(𝑞) ∑ (𝑞𝑘 +
𝑞2𝑘

1 − 𝑞𝑘
)

𝑘=∞

𝑘=2
=

= − ln(1 − 𝑞) + ln(𝑞) ∑ 𝑞𝑘 + ln(𝑞)∑
𝑞2𝑘

1 − 𝑞𝑘
=

𝑘=∞

𝑘=2

𝑘=∞

𝑘=2

= − ln(1 − 𝑞) + ln(𝑞)
𝑞2

1 − 𝑞
+ ln(𝑞)∑

𝑞2𝑘

1 − 𝑞𝑘

𝑘=∞

𝑘=2
(40) 

 

 

 

This is: 

 

𝜓𝑞(2) = − ln(1 − 𝑞) + ln(𝑞)
𝑞2

1 − 𝑞
+ ln(𝑞)∑

𝑞2𝑘

1 − 𝑞𝑘

𝑘=∞

𝑘=2
(41) 

 

Now isolating the summation, we have: 

 

∑
𝑞2𝑘

1 − 𝑞𝑘

𝑘=∞

𝑘=2
=

1

ln(𝑞)
(𝜓𝑞(2) + ln(1 − 𝑞)) −

𝑞2

1 − 𝑞
(42) 

 

 

 

Being Γq(z) the q-gamma function [10]. 

 

One of the properties of q-polygamma function ψk(z) is that is part of the solution of the 

following summation [2]: 

 

∑
𝑞𝑘

1 − 𝑞𝑘
=

𝜓𝑞(1) + ln(1 − 𝑞)

ln(𝑞)
(43)

𝑘=∞

𝑘=1
 

We can see that this summation is very similar to the one in (34) but there are two main 

differences.  

 

The first one is that element in the numerator (first element of each series) is the one 

squared instead of the one that starts as the power of one. 

 

But we can solve that doing: 

 

∑
(𝑒−2·𝑐−2𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘

𝑘=∞

𝑘=2
= ∑ (

(𝑒−𝑐−𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘
− 𝑒−𝑐−𝑗𝜔)

𝑘=∞

𝑘=2

= ∑
(𝑒−𝑐−𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘
− ∑ 𝑒−𝑐−𝑗𝜔

𝑘=∞

𝑘=2
= ∑

(𝑒−𝑐−𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘
−

𝑒−2𝑐−2𝑗𝜔

1 − 𝑒−𝑐−𝑗𝜔
(44)

𝑘=∞

𝑘=2

𝑘=∞

𝑘=2
 

 

The second issue is that the summation starts in k=2 instead of in k=1. This can be solved 

in a similar way -starting in k=1 and subtracting the first element): 
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∑
(𝑒−2·𝑐−2𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘

𝑘=∞

𝑘=2
= ∑

(𝑒−𝑐−𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘
−

𝑒−2𝑐−2𝑗𝜔

1 − 𝑒−𝑐−𝑗𝜔
=

𝑘=∞

𝑘=2
 

∑
(𝑒−𝑐−𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘
−

(𝑒−𝑐−𝑗𝜔)1

1 − (𝑒−𝑐−𝑗𝜔)1
−

𝑒−2𝑐−2𝑗𝜔

1 − 𝑒−𝑐−𝑗𝜔
=

𝑘=∞

𝑘=1
 

 

∑
(𝑒−𝑐−𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘
−

𝑒−𝑐−𝑗𝜔 + 𝑒−2𝑐−2𝑗𝜔

1 − 𝑒−𝑐−𝑗𝜔
(45)

𝑘=∞

𝑘=1
 

Now yes: 

 

∑
(𝑒−2·𝑐−2𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘

𝑘=∞

𝑘=2
= ∑

(𝑒−𝑐−𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘
−

𝑒−𝑐−𝑗𝜔 + 𝑒−2𝑐−2𝑗𝜔

1 − 𝑒−𝑐−𝑗𝜔

𝑘=∞

𝑘=1
(46) 

 

The first element of the second right hand above has the form of the left-hand side of the 

commented equation (34): 

 

 

∑
𝑞𝑘

1 − 𝑞𝑘
=

𝜓𝑞(1) + ln(1 − 𝑞)

ln(𝑞)
(47)

𝑘=∞

𝑘=1
 

 

With: 

𝑞 = 𝑒−𝑐−𝑗𝜔(48) 

 

So, coming up to equation (34), we have: 

 

 

𝐹(𝜔) = ∑
(𝑒−2·𝑐−2𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘

𝑘=∞

𝑘=2


= 
𝜓𝑞(1) + ln(1 − 𝑒−𝑐−𝑗𝜔)

ln(𝑒−𝑐−𝑗𝜔)
−

𝑒−𝑐−𝑗𝜔 + 𝑒−2𝑐−2𝑗𝜔

1 − 𝑒−𝑐−𝑗𝜔
(49) 

 

 

This means, we can write the equation (34) not using summations but just with functions:  

 

𝐹(𝜔) =
𝜓𝑞(1) + ln(1 − 𝑒−𝑐−𝑗𝜔)

ln(𝑒−𝑐−𝑗𝜔)
−

𝑒−𝑐−𝑗𝜔 + 𝑒−2𝑐−2𝑗𝜔

1 − 𝑒−𝑐−𝑗𝜔
(50) 

 

10. Using Parseval’s theorem when (m+1) tends to infinity 

 

Now, as in chapter 6 we want to calculate the following expression: 

  

 

∑ 𝑓(𝑛) · 𝑔(𝑛)

𝑛=∞

𝑛=−∞

= ∑ 𝑓(𝑛) · 𝑔(𝑛)

𝑛=(𝑚+1)(𝑚+1)

𝑛=4

(51) 

 

If the result is different from zero, it means that p is composite, as it means that: 

 

𝑔(𝑛) = 𝛿(𝑛 − 𝑝)(52) 

 

g(n) has found another delta/s in the same position for the function f(n) defined before, 

that has only deltas in composite number positions. 
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We can perform this operation using the Parseval theorem as we made in chapter 6. 

 

∑ 𝑓(𝑛) · 𝑔∗(𝑛)

𝑛=∞

𝑛=−∞

=
1

2𝜋
∫ 𝐹(𝜔) · 𝐺∗(𝜔)

𝜋

−𝜋

𝑑𝜔(53) 

 

Being he asterisk* means the complex conjugate. As in point 5, the functions in the left 

hand-side are real so: 

 

𝑔∗(𝑛) = 𝑔(𝑛)(54) 

 

For the righthand side, yes, we have complex functions. But as all of them are exponen-

tial based, the conjugate is just to change the sign of the imaginary part of the exponent. 

This is immediate from Euler’s formula [9]. 

 

 

𝐺(𝜔) = 𝑒−𝑝𝑗𝜔(55) 

 

𝐺∗(𝜔) = 𝑒𝑝𝑗𝜔(56) 

 

So, coming back, we can operate now the integral but using the new F(ω) and G(ω) 

calculated in chapters 8 and 9.  

 

𝑞2 = ∑ 𝑓(𝑛) · 𝑔∗(𝑛)

𝑛=∞

𝑛=−∞

= ∑ 𝑓(𝑛) · 𝑔(𝑛) =

𝑛=∞

𝑛=−∞

1

2𝜋
∫ 𝐹(𝜔) · 𝐺∗(𝜔)

𝜋

−𝜋

𝑑𝜔

=
1

2𝜋
∫ (∑

(𝑒−2·𝑐−2𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘

𝑘=∞

𝑘=2
) ·

𝜋

−𝜋

𝑒𝑝𝑗𝜔𝑑𝜔

=
1

2𝜋
∫ 𝑒𝑝𝑗𝜔 (∑

(𝑒−2·𝑐−2𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘

𝑘=∞

𝑘=2
)

𝜋

−𝜋

𝑑𝜔

=
1

2𝜋
∫ 𝑒𝑝𝑗𝜔

𝜋

−𝜋

(
𝜓𝑞(1) + ln(1 − 𝑒−𝑐−𝑗𝜔)

ln(𝑒−𝑐−𝑗𝜔)


−
𝑒−𝑐−𝑗𝜔 + 𝑒−2𝑐−2𝑗𝜔

1 − 𝑒−𝑐−𝑗𝜔
)𝑑𝜔(57) 

So, summing up: 

 

 

𝑞2 =
1

2𝜋
∫ 𝑒𝑝𝑗𝜔 (∑

(𝑒−2·𝑐−2𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘

𝑘=∞

𝑘=2
)

𝜋

−𝜋

𝑑𝜔(58) 

 

𝑞2 =
1

2𝜋
∫ 𝑒𝑝𝑗𝜔 (

𝜓𝑞(1) + ln(1 − 𝑒−𝑐−𝑗𝜔)

ln(𝑒−𝑐−𝑗𝜔)
−

𝑒−𝑐−𝑗𝜔 + 𝑒−2𝑐−2𝑗𝜔

1 − 𝑒−𝑐−𝑗𝜔
)

𝜋

−𝜋

𝑑𝜔(59) 

 

As you can see in equation (59) we have gotten rid of the summation. And it is the 

formula, that we will use whenever possible. But we will keep an eye in equation (58) also, 

as it is the only one that can be used in some cases (even if the computation time is higher 

due to the summation). For example, the program Mathematica does include the q-
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polygamma function in its library, but Matlab/Octave does not. And also, we will see later 

that, for example, to calculate the factors of a number we cannot use a simple equation as 

(59) and there is no other way as using a similar one to (58) -one that includes the summa-

tion-. 

 

We will call q2 the result of above expression. If q2 is zero, p is prime, if q2 is different 

from zero, q2 has information regarding the number of factors.  

 

But now, this information is not as immediate as in chapter 7. Take into account that all 

the deltas in (n-p) have been multiplied by e-k1k2c which in fact is the same as e-pc in this 

case. The reason for this, is that the integral has found that in (n-p) we have deltas of the 

type (n-k1k2), so this means that p=k1k2. Only when there is no k1k2=p, the result of the 

integral is zero, meaning p is prime. 

 

So, to revert the multiplication by e-pc that has been done in the process, we have to 

multiply by the inverse (epc) to get the number q equivalent we commented in chapter 7. 

  

𝑞 = 𝑒𝑝𝑐𝑞2(60) 

 

And now, yes, q is exactly the same as in chapter 7. Meaning that all the study we have 

done regarding the relation of number of factors with q in point 7 is the same. 

 

For the calculation of (60) you can use the program in Annex A1 in Mathematica that 

uses the expression (59) for the calculation of q2 -it uses the q-polygmma function-. Or if 

you use Matlab/Octave you can use the program in Annex B2 (that uses the expression (58) 

for the calculation of q2). Anyhow, both programs should give the same results. 

 

Once you have calculated the value of q (the number of combinations of 2-factor prod-

ucts), the equation (23) is the same, this means: 

 

𝑞 = (𝑛𝑓1 + 1)(𝑛𝑓2 + 1)(𝑛𝑓3 + 1) …(𝑛𝑓𝑧 + 1) − 2(61) 

 

So, 

 

𝑞 = 𝑒𝑝𝑐𝑞2 = (𝑛𝑓1 + 1)(𝑛𝑓2 + 1)(𝑛𝑓3 + 1) … (𝑛𝑓𝑧 + 1) − 2(62) 

 

I invite you to make some testing with the programs A1 and/or B2 to check results and 

even compare with brute-force testing.  

 

Anyhow, remember that the pre-calculation is repeated every time you open the program 

because it is not stored. The important thing is that if you stored the result of the pre-cal-

culation, it would not be needed to be repeated anytime, making the real time of calculation 

very small as you can check with the programs. 

 

It is important to remark that the pre-calculation precision should be decided carefully 

(this means the number of steps n or n4 of the integral -the higher the better- and the lower 
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in absolute value of c or c2 -the lower the better but different from zero-). 

 

Once you have decided the precision and you perform the pre-calculation -even taking 

days if you want, or various computers-, you do not have to repeat it anymore. And the 

time of calculation for all the numbers in the range of validity for that precision will be 

very small -meaning linear with the size of the number, not exponential-. 

 

11. Sum of the exponential of the factors of the number p 

 

In the chapter 2 we have put all the Dirac deltas as unitary Dirac deltas. And in the chapter 

8 we have used an exponential that includes the product of the factors (but this does not 

add information, as we know that the product is already p). But we can introduce more 

information, if instead of putting unitary Dirac deltas of the product of the factors, we in-

troduce the deltas multiplied by a number that represents the sum of the value of the factors. 

This means, in the position of each delta will be adding up deltas which magnitude is re-

lated to the sum of the factors. When we recover the information of the magnitude of delta 

in one position, we will have not only the product (that we know is p) but also the sum of 

the factors. We will see that for the special case of semiprime numbers, having the infor-

mation of the product and the sum of the two factors, it is immediate to obtain these two 

factors using a simple equation.  

 

We can check an example (see figure 7). We can multiply the delta by an exponential of 

the sum of the two factors. As before (in the chapter 8), we will also multiply by the factor 

-c to get a convergent sum in the end (being c a non-zero positive real number). We will 

see from experience that a value of c in the range of the square root of p is sufficient. 

 

 

 

 

Fig.7 

 

 

 

So, in this case: 
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𝑓(𝑛) = ∑ ∑ 𝑒−𝑐(𝑘1+𝑘2)𝛿(𝑛 − 𝑘1 · 𝑘2) =

𝑘1=𝑚+1

𝑘1=2

𝑘2=𝑚+1

𝑘2=2

∑ (𝑒−𝑐(2+𝑘2)𝛿(𝑛 − 2 · 𝑘2)
𝑘2=𝑚+1

𝑘2=2

+ 𝑒−𝑐(3+𝑘2)𝛿(𝑛 − 3 · 𝑘2) + 𝑒−(4+𝑘2)𝛿(𝑛 − 4 · 𝑘2)

+ ⋯𝑒−𝑐((𝑚+1)+𝑘2)𝛿(𝑛 − (𝑚 + 1) · 𝑘2)) = 

= 𝑒−𝑐(2+2)𝛿(𝑛 − 2 · 2) + 𝑒−𝑐(2+3)𝛿(𝑛 − 2 · 3) + ⋯𝑒−𝑐(2+(𝑚+1))𝛿(𝑛 − 2 · (𝑚 + 1))+ 

+𝑒−𝑐(3+2)𝛿(𝑛 − 3 · 2) 

+ 𝑒−𝑐(3+3))𝛿(𝑛 − 3 · 3)…𝑒−𝑐((𝑚+1)+(𝑚+1))𝛿(𝑛 − (𝑚 + 1)

· (𝑚 + 1))(63) 

 

 

Now if we make (m+1) tend to infinity we have: 

 

𝑓(𝑛) = ∑ ∑ 𝑒−𝑐(𝑘1+𝑘2)𝛿(𝑛 − 𝑘1 · 𝑘2) =

𝑘1=∞

𝑘1=2

𝑘2=∞

𝑘2=2

∑ (𝑒−𝑐(2+𝑘2)𝛿(𝑛 − 2 · 𝑘2)
𝑘2=𝑚+1

𝑘2=2

+ 𝑒−𝑐(3+𝑘2)𝛿(𝑛 − 3 · 𝑘2) + 𝑒−𝑐(4+𝑘2)𝛿(𝑛 − 4 · 𝑘2) + ⋯0) = 

= 𝑒−𝑐(2+2)𝛿(𝑛 − 2 · 2) + 𝑒−𝑐(2+3)𝛿(𝑛 − 2 · 3) + ⋯0 + 

+𝑒−𝑐(3+2)𝛿(𝑛 − 3 · 2) + 𝑒−𝑐(3+3)𝛿(𝑛 − 3 · 3)… 0(64) 

 

The zeroes in the end of the series appear because the exponential e-c(k1+k2) tends to zero as 

k1 and k2 tend to infinity (and we have also defined c as a real number higher than zero). 

Remind that the previous limit for k1 and k2 was (m+1) before, and now (m+1) tends to 

infinity.  

 

We can calculate the Fourier transform as in chapter 5 like this: 

 

 

𝐹(𝜔) = ∑ ∑ 𝑒−𝑐(𝑘1+𝑘2)𝑒−𝑘1·𝑘2𝑗𝜔

𝑘2=𝑚+1

𝑘2=2

𝑘1=𝑚+1

𝑘1=2

= 

= 𝑒−𝑐(2+2)𝑒−2·2𝑗𝜔 + 𝑒−𝑐(2+3)𝑒−2·3𝑗𝜔 + ⋯+ 0 + 

+𝑒−𝑐(3+2)𝑒−3·2𝑗𝜔 + 𝑒−𝑐(3+3)𝑒−3·3𝑗𝜔 + ⋯ + 0 + 

+⋯+ ⋯+ ⋯+ ⋯+ 
+0 + 0… + 0(65) 

 

 

And now, we can also simplify it as geometric sums: 

 

𝐹(𝜔) = 𝑒−𝑐(2+2)𝑒−2·2𝑗𝜔
1

1 − 𝑒−𝑐𝑒−2𝑗𝜔
+ 

 

+𝑒−𝑐(2+3)𝑒−2·3𝑗𝜔
1

1 − 𝑒−𝑐𝑒−3𝑗𝜔
+ 

+𝑒−𝑐(2+4)𝑒−2·4𝑗𝜔
1

1 − 𝑒−𝑐𝑒−4𝑗𝜔
+ 

 

+⋯ + 

+0 = 

 

= ∑ 𝑒−𝑐(2+𝑘)𝑒−2𝑘𝑗𝜔
1

1 − 𝑒−𝑐𝑒−𝑘𝑗𝜔

𝑘=∞

𝑘=2
= ∑

𝑒−2𝑐(𝑒−𝑐−2𝑗𝜔)𝑘

1 − (𝑒−𝑐−𝑗𝜔)𝑘

𝑘=∞

𝑘=2
(66) 

 

Regarding the function g(n), it is exactly the same as in previous chapters. So, we will 



J.Sánchez 
 

 

 19  

 

follow the same process: 

 

𝑔(𝑛) = 𝛿(𝑛 − 𝑝)(67) 

 

The Fourier transform G(ω) of g(n) would be: 

 

 

𝑔(𝑛) = 𝛿(𝑛 − 𝑝) → 𝐺(𝜔) = 𝑒−𝑝𝑗𝜔(68) 

 

 

 

So now, we can apply the Parseval’s theorem [6] [7] again (this time to (66) and (68)) 

and see the result: 

 

 

𝑞3 =
1

2𝜋
∫ 𝑒𝑝𝑗𝜔 (∑ 𝑒−𝑐(2+𝑘)𝑒−2𝑘𝑗𝜔

1

1 − 𝑒−𝑐𝑒−𝑘𝑗𝜔

𝑘=∞

𝑘=2
)

𝜋

−𝜋

𝑑𝜔(69) 

 

We call q3 this value that has this information regarding the factors. We will see how to 

use it in the next chapter. 

 

One important thing to remark is that the summation inside the integral does not depend 

on p. this means I can pre-calculate that summation -with the precision I decide. And then 

I can apply the integral to the different numbers p I need -not needing to make the sum-

mation again-. This means using a high computation time once to make the summation. 

But then, the computation time is much lower for every p I want to check. 

 

When I say the precision I decide, there are two factors I can play with. The parameter c, 

the lower the better -but always higher than zero-. And the second parameter is the num-

ber of elements in the summation I want to use (we will call it n or n4 in the programs). 

The higher this number, the most precise the summation is. 

 

 

12. Discovering the factors of a semiprime (pq-number)  
 
There are two cases where with all this information, it is immediate to calculate the factors 

of a number. One of the cases is trivial. When using equations (58,59,60) and obtaining 

q=1, it means that p is a perfect square, so you can just make the square root to get it. 

 

But there is another special case. When q=2, it means that the number is composite but 

only by two factors (it is a semiprime or pq-number). This case is used for example in 

RSA encryption [11]. 

 

So, for this case when p is a semiprime number, we can calculate the two factors of p the 

following way. We will call a and b these unknown factors of p (that it is semiprime in 

this case):  

 

-First you calculate the q (58,59,60). And if q= 2, this means that the number is a semi-

prime (aka pq- number). 

-Then you calculate the q3 according (69). In the case of a semiprime number q3 will be 2 

times the exponential e-c(k1+k2). 

-As the delta is located in the position of the factors of p, k1 and k2 are, for this case, a 

and b, the factors of p. So q3 is in fact two times e-c(a+b). 

-We will call d the sum of the two factors (a+b). And we will calculate it (d) according to 

the following equation: 
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𝑑 = (𝑎 + 𝑏) = −
1

𝑐
𝐿𝑛 (

𝑞3

2
)(70) 

 

Being c the calibration factor we have chosen before, a positive real number different 

from zero. 

 

If you want to know how we have arrived to equation (70). It is the following way:  

 

𝑞3 = 2𝑒−𝑐(𝑎+𝑏) = 2𝑒−𝑐·𝑑 (71) 

 

So, dividing by 2: 

 
𝑞3

2
= 𝑒−𝑐·𝑑 (72) 

 

Taking natural logarithm: 

 

𝐿𝑛 (
𝑞3

2
) = −𝑐 · 𝑑(73) 

 

Isolating d: 

𝑑 = (𝑎 + 𝑏) = −
1

𝑐
𝐿𝑛 (

𝑞3

2
)(74) 

 

 

-And, then we solve the following equation system (being a and b the unknown factors 

of p) and d is the known number calculated before (the sum of the two factors: 

 

𝑎 · 𝑏 = 𝑝(75) 

𝑎 + 𝑏 = 𝑑(76) 

You have the solution: 

 

𝑏 =
𝑑 + √𝑑2 − 4𝑝

2
(77) 

 

𝑎 =
𝑝

𝑏
= 𝑑 − 𝑏 =

𝑑 − √𝑑2 − 4𝑝

2
(78) 

 

So, you can get, immediately the factors a and b. This, of course is tricky. As for the 

calculation of q3 you have used exponentials, summations and numerical integrals. So, 

the complete process, as commented, is at this stage is inefficient. 

 

-So, summing up the process to calculate the two factors of a semiprime number are: 

 

 -Calculate q3: 

 

𝑞3 =
1

2𝜋
∫ 𝑒𝑝𝑗𝜔 (∑ 𝑒−𝑐(2+𝑘)𝑒−2𝑘𝑗𝜔

1

1 − 𝑒−𝑐𝑒−𝑘𝑗𝜔

𝑘=∞

𝑘=2
)

𝜋

−𝜋

𝑑𝜔(79) 

 

 -Calculate d: 

 

𝑑 = (𝑎 + 𝑏) = −
1

𝑐
𝐿𝑛 (

𝑞3

2
)(80) 

  

-Then, it is immediate to calculate b and a: 

 

𝑏 =
𝑑 + √𝑑2 − 4𝑝

2
(81) 
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𝑎 = 𝑑 − 𝑏 =
𝑑 − √𝑑2 − 4𝑝

2
(82) 

 

 

In the Annex A2 you can find a Mathematica program that performs this calculation. An 

in the Annex B3 a Matlab/Octave program that performs it. 

 

Please, take into account that in the program, some “shortcuts” are used but having in the 

end the same equations. For example, for the calculation d instead of dividing by 2 the 

result q (the integral which is divided by 2π), the integral is divided directly by 4π in the 

first place. 

 

Also, take into account that in the program of Matlab/Octave in Annex B3 to perform an 

exact calculation you need to put the variable multic=50. If you put multic=30, you will 

perform an approximate calculation but having in the end the exact result (see next chap-

ter, to see why this is really possible). 

 

 

13. Calculating an approximation of the integral instead of the ex-
act value  
 
In general, we have seen that the brute force checking is quicker than calculating using 

the integral. This applies both to check if a number is prime or to calculate the two factors 

of a semiprime number. 

 

But we have two aces in the sleeve: 

 

-The first one, as we have commented, is that we can make a pre-calculation of the com-

ponents of the integral not depending on the prime or semiprime number we are checking. 

This means, we can use a number of computers during certain time (even months) to make 

this pre-calculation. And then, to use just some minutes for whatever number we decide 

(in a certain predefined range) to check it or factorize it. 

 

-But we have a second trick. This one, we can use only to factorize semiprimes, not to 

check if a number is prime or not. To know if a number is prime the result of the integral 

must be zero or a very small number. To check this, we need a very precise result to avoid 

errors. But to make the factorization we do not need a precise result of the integral. As 

the result of the integral is the exact sum of the factors, what we can do is to obtain a 

result near the exact sum and to use the equations (77)(78) to start obtaining possible 

candidates of the factors. Then we can check if they are correct candidates, just multiply-

ing them. If they are not correct, we go to another possible sum. 

 

We can see it with one example. Imagine we want to factorize the number 221. We can 

use the integral to obtain a perfect sum of the factors. In this case, we will obtain 30. And 

using equations (77)(78), we will see immediately that the factors are 13 and 17. 

 

But we can another thing. We can calculate the integral very roughly (to have a quicker 

result) and for example we obtain the number 28 instead of 30. If we consider that the 

real sum is in the range of 28±3 (we will see how to calculate this ±3). We can apply the 

equations (77)(78) considering the sums from 25 to 31 until we get the values of the 

factors that are correct.  

 

As commented, we can know which factors are correct, just performing the multiplica-

tion. That is the reason we can get a not perfect result of the integral and start iterating on 

the surroundings. In the case of trying to know if a number is prime or not, there is no 

way to make an after checking -apart from brute force of course-. This is the reason the 

integral has to be exact in the case of primality checking, but not needed in the case of 

factorization of a semiprime number. 
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You can check this with the Mathematica program in Annex A3. The surroundings of the 

exact result are considered in the domain d±4*Ln(d). This works as far as I have checked. 

If we have to go to other values as d±√(d), probably to make this approximation would 

not be useful. Anyhow, more checking is needed to check this and if possible with big 

numbers. 

 

If you use Matlab/Octave, you can use the program in Annex B3. You can use “mul-

tic=30” and the result of the integral will not be correct (just an approximation). Then the 

program looks in the domain of d±4*Ln(d) for the exact solution and shows it. 

 

14. Testing the factorization of prime numbers 
 
We will use a computer OMEN by HP Laptop 17-an0xx Intel Core i7-7700HQ CPU 2.80 

GHz 32.0 GB GeForce GTX 1070 8.0GB Windows 10 Home 20H2. 

 

Wolfram Mathematica Version 12.1 and Matlab R2020b.  

 

I will make all the examples using Mathematica 12.1, program in Annex A3.. 

 

When using Mathematica to calculate the examples (the computer is working in parallel 

with other programs) the CPU is between 25-30% 3.52 GHz, the memory 13/31.9 GB 

and the GPU 1-6% approx. 

 

 

-Semiprime 15: 

 

 
 

-Semiprime 39: 
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-Semiprime 69: 

 

 
 

-Semiprime 115: 

 

 
 

-Semiprime 253: 

 

 
-Semiprime 187: 
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-Semiprime 323: 

 

 
-Semiprime 493: 

 

 
 

-Semiprime 667: 
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We can see that the time for pre-calculation depends on x2: 

 

 
 

But also, that the time for factorization of a specific semiprime -once the pre-calculation 

has been done is linear depending on x-. 

 

 
 

Anyhow, this is not exactly true, as the calculations have done using a fixed number of 

decimals (precision of the calculations). As we increase the numbers, the precision of the 

calculation should be increased. Leading very probably to an exponential or a very high 

grade polynomial result.  

 

Anyhow, considering these numbers true, we can see that for a typical 2256 number we 

would need:  

 

𝑦 = 0.0078 · (2256)2 − 0.2543 · 2256 + 11.745 = 1.0458 · 10152𝑠 

 

This is 3.314·10144 years for the pre-calculation. 

 

Once this pre-calculation has been done, we would need: 

 

𝑦 = 0.0001 · 2256 + 0.002 = 1.15792 · 1073𝑠 

 

This is 3.66923·1065 years. 

 

y = 0.0078x2 - 0.2543x + 11.745
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Of course, these times would be shorter for lower numbers, better computers (that uses 

powerful GPUs for the calculation) and many computers in parallel. Anyhow, we are very 

far for trying to get practical numbers. 

 

It is also to be noted, that when I have performed similar tests with Matlab, the results of 

computation time also improve (probably the program in Annex B3 is more optimized 

than the programs in A2 and A3). Anyhow, there are other issues with Matlab, as not 

having the q-polygamma function integrated, for example. It is not the intention of this 

paper to compare both applications. Both are incredibly good for the use. 

 

 

15. Conclusions 
 

In this paper, it has been shown a way of checking if a number is prime or not, using 

numerical integration in the complex plane. One of the advantages of the way shown here, 

compared to previous papers [4], is that here we can make a pre-calculation of the part of 

the integral that does not depend on the number to be checked. This way, using only once 

a lot of computation time to create the necessary tables, we can make primality test for 

different numbers in very short time. 

 

The same concept has been applied to factorize semiprime numbers (pq-numbers). We 

have shown a way of make this factorization in polynomial time using a numeric integral. 

And we have taken into account two aspects: 

 

• It is necessary a pre-calculation for the parts of the integral not depending in the 

semiprime number (polynomial quadratic time). Once this pre-calculation is 

done, we can check the semiprime number in a computation time depending 

linearly in the number. 

• We can use a second “trick”. Instead of calculating the integral very precisely, 

we can obtain an approximation. And then, to work with the numbers near the 

approximation until we get the correct answer. This reduces the time of calcula-

tion drastically. 

 

 

Bilbao, 7th April 2021 (viXra-v1). 
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A1. Annex A1. Mathematica program to calculate integral (59)  
 
With this program of Mathematica. you can calculate the integral (59) using the q-polyg-

mma function: 

 
p2=Input["Input a number"]; 

p2=N[p2]; 

 
(* the lower is c2, the more exact is the result but with more computation time *) 

 

c2=1/p2; 
 

pi2=N[Pi]; 
Remove[func]; 

Remove[func2]; 

 
Remove[y]; 

 

Remove[y2]; 
 

func[p_,c_,w_]:=Exp[p*(c+I*w)]*((QPolyGamma[2,Exp[-c-I*w]]+Log[1-Exp[(-c-I*w)]])/Log[Exp[-c-I*w]]-

Exp[(-c-I*w)]^2/(1-Exp[(-c-I*w)])); 
func2[c_,w_]:=((QPolyGamma[2,Exp[-c-I*w]]+Log[1-Exp[(-c-I*w)]])/Log[Exp[-c-I*w]]-Exp[(-c-I*w)]^2/(1-

Exp[(-c-I*w)])); 

(*In func 3 I remove the exp (p*c) because it is constant and I re-introduce it in the final expression *) 
 

func3[p_,c_,w_]:=Exp[p*(I*w)]; 

(* Integration using Mathematica function *) 
 

tiempo=Timing[NIntegrate[func[p2,c2,w],{w,-pi2,pi2}]/(2*pi2)]; 

Print["Number ",p2," The result of the integration (using the Mathematica internal numerical integration function 
and the q-polygamma function) is q=",Last[tiempo]," Time ",First[tiempo]," s"]; 

 

(* Integration using a "manual" loop but with prework for the parts of the integrand that are not depending on p2 
*) 

 

(* the higher n, the more exact os the integration with calculated with "manual loop" nut with  more computation 
time*) 

 

n=Round[p2^3]; 
 

 

Array[y,0,n]; 
y[-1]=0; 

 

(* I could put liminf=0 and then multiply by two -taking the real part, the integral is symmetric- but I leave it in -
pi2, to receive the information also of the imaginary part that should be always zero (or very close to zero) if the 

result is ok*) 

 
liminf=-pi2; 

limsup=pi2; 

n2=(limsup-liminf)/n; 
n3=liminf; 

tiempo=Timing[For[i=0,i<n+1,i++, 

     

    y[i]=func2[c2,n3]; 

    n3=n3+n2;]]; 

Print[""]; 
Print["Prework done in ",First[tiempo]," s"]; 

 

Array[y2,0,n]; 
y2[-1]=0; 

https://en.wikipedia.org/wiki/Geometric_series
https://en.wikipedia.org/wiki/Euler%27s_formula
https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
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n3=liminf; 

tiempo=Timing[For[i=0,i<n+1,i++, 

     
    y2[i]=y2[i-1]+func3[p2,c2,n3]*y[i]; 

    n3=n3+n2;]]; 

 
solman=y2[n]*n2*Exp[p2*c2]/(2.*pi2); 

Print["Numeric Integration for the number ",p2," using a loop of ",n," steps, once the prework has been done."]; 

Print["Result q=",solman," Time for the numeric integration (using a manual loop and q-polygamma function) ", 
First[tiempo]," s, once the prework has been done."];  

 

A2. Annex A2. Mathematica program to find the factors of a semi-
prime number (using exact integral (69)) 
 
With this program of Mathematica. you can find the two factors of a semiprime number 

using integral (69).  

 

The first step is a pre-calculation that could be stored in a database and not done again (it 

does not depend in the number to check, just in the precision we need -the order of magni-

tude of the numbers we will need to factorize-). 

 

The second step is the calculation that depends in the number and you can see that the 

computation time is very low compared to the previous one. Probably higher than brute 

checking for low numbers, but to be checked if better in very big numbers. 

 

In Annex A3, you will see even a better way to perform the calculation. 

 
 

SetOptions[EvaluationNotebook[],CellContext->Notebook]; 
  

k2=0.; 

pi2=N[Pi]; 
 

 

 
p2=Input["Input a semiprime number"]; 

p2=N[p2]; 

 
c2=-1/Sqrt[p2]; 

 

 
f[c_,w_,n_]:=Exp[c*(n+2)]*Exp[2*n*I*w]/(1-Exp[c]*Exp[n*I*w]); 

 

 
 

func2[c_,w_]:=((QPolyGamma[2,Exp[c+I*w]]+Log[1-Exp[(c+I*w)]])/Log[Exp[c+I*w]]-Exp[(c+I*w)]^2/(1-

Exp[(c+I*w)])); 
 

 

func3[p_,k_]=Exp[-p*k]; 
 

func4[p_,w_]=Exp[-p*(I*w)];  
 

n4=Round[p2*50]; 

n=Round[p2*50]; 
 

Array[y,0,n]; 

 
 

(* I could put liminf=0 and then multiply by 2 (integral symmetric). I do not do it to keep imaginary part as a 

checking -should be close to zero if everything ok- *) 

liminf=-pi2; 

limsup=pi2; 

w2=(limsup-liminf)/n; 
w3=liminf; 

tiempo=Timing[For[i2=0,i2<n+1,i2++, 
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    y4=0.; 

    For[i=2,i<n4+1,i++,y4=N[y4+f[c2,w3,i]]]; 

    y[i2]=y4; 
     

    w3=w3+w2;  

     
    ]]; 

 

(*End of i2 loop*) 
 

Print["Prework done in ",First[tiempo]," s"]; 

 
 

w3=liminf; 

 
y5=0.; 

 

tiempo=Timing[For[i3=0,i3<n+1,i3++, 
      

     y5=N[y5+func4[p2,w3]*y[i3]];  

     w3=w3+w2; ];]; 
 

 

 
Print["Factorization of semiprime number ",p2," using ",n," steps"]; 

Print["Time of calculation (once prework is done):",First[tiempo]," s"]; 

 
d=y5*w2*(func3[p2,k2]/(4*pi2)); 

 

Print["Integral result = ",d]; 
 

d= Log[d]/c2; 

 
 

 

Print["Value of d = ",d]; 
d=Round[d]; 

Print["Sum of factors ",d]; 

b=(d+Sqrt[d^2-4*p2])/2; 
a=d-b; 

Print["First factor is ",Round[a]]; 

Print["Second factor is ",Round[b]]; 
 

 
A3. Annex A3. Mathematica program to find the factors of a semi-
prime number (using an approximation of the integral (69)) 
 
With this program of Mathematica. you can find the two factors of a semiprime number 

using integral (69). It is similar to the one of A2, but with one difference. 

 

In A2 we try to get the most precise possible result of the integral (69) to get an exact sum 

of the factors. And subsequently to obtain immediately after, the value of the factors. 

 

Here, we will have a different approach. Instead of trying to obtain the perfect result of the 

integral (increasing the computation), we will get an approximate result (with less compu-

tation). Then, knowing that the real result should be near it, we calculate the possible factors 

near the approximate solution until we find the correct ones. This approach is much quicker 

than in A2. But it is still perfectly valid, as we can check when the factors are ok (no pos-

sibility of incorrect results, in the worst case -but it has not happened in all the tests- no 

result at all, but not incorrect). In case of no result, we should increase the precision of the 

integral or increase the range of possible solutions to be checked near the approximate 

result.  

 

Also, you will see that after the calculation of the first number, you will be asked to input 

a second number. For this second number, the pre-calculation will not be repeated, and you 

will see the difference in time needed (only post-calculation linear time is needed, not the 

quadratic for the precalculation).  
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SetOptions[EvaluationNotebook[],CellContext->Notebook]; 

  

k2=0.; 
pi2=N[Pi]; 

 

 
 

p2=Input["Input a semiprime number"]; 

p2=N[p2]; 
 

c2=-1/Sqrt[p2]; 

 
 

f[c_,w_,n_]:=Exp[c*(n+2)]*Exp[2*n*I*w]/(1-Exp[c]*Exp[n*I*w]); 

 
 

 

func2[c_,w_]:=((QPolyGamma[2,Exp[c+I*w]]+Log[1-Exp[(c+I*w)]])/Log[Exp[c+I*w]]-Exp[(c+I*w)]^2/(1-
Exp[(c+I*w)])); 

 
 

func3[p_,k_]=Exp[-p*k]; 

 
func4[p_,w_]=Exp[-p*(I*w)];  

 

(* As we look for approxiamte solution, the number of steps will only be 10 times the value of the number. For 
the precalculation (can be done only one time not knowing the number to factorize) goes to the square *) 

(*For the final calculation, once we know the number to factorize and we have done the precalculation the com-

putation is linear with the number *) 
(* ñiradacapovt *) 

 

n4=Round[p2*30]; 
n=Round[p2*30]; 

 

Array[y,0,n];  
 

 

(* I could put liminf=0 and then multiply by 2 (integral symmetric). I do not do it to keep imaginary part as a 
checking -should be close to zero if everything ok- *) 

liminf=-pi2; 

limsup=pi2; 
w2=(limsup-liminf)/n; 

w3=liminf; 

tiempo=Timing[For[i2=0,i2<n+1,i2++, 
     

     

     
    y4=0.; 

    For[i=2,i<n4+1,i++,y4=N[y4+f[c2,w3,i]]]; 

    y[i2]=y4; 
     

    w3=w3+w2;  

     
    ]]; 

 

(*End of i2 loop*) 
 

Print["Prework done in ",First[tiempo]," s"]; 

 
 

w3=liminf; 

 
y5=0.; 

 

tiempo=Timing[For[i3=0,i3<n+1,i3++, 
     

    y5=N[y5+func4[p2,w3]*y[i3]];  

    w3=w3+w2; ]]; 
 

 
 

Print["Factorization of semiprime number ",p2," using ",n," steps"]; 

Print["Time of calculation of the approximation (once prework is done):",First[tiempo]," s"]; 
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d=y5*w2*(func3[p2,k2]/(4*pi2)); 

 
Print["Integral result = ",d]; 

 

d=Abs[d]; 
d= Log[d]/c2; 

 

 
 

Print["Value of d = ",d]; 

d=Round[Abs[d]]; 
Print["Approximate sum of factors ",d]; 

b=(d+Sqrt[d^2-4*p2])/2; 

a=d-b; 
Print["Approximate First factor is ",Round[a]]; 

Print["Approximate Second factor is ",Round[b]]; 

Print ""; 
 

d2=Round[d-4*Log[d]-1]; 

 
a=1; 

 

tiempo=Timing[For[i6=1,i6<(8*Log[d]+2),i6++, 
     

    b=Round[((d2+i6)+Sqrt[(d2+i6)^2-4*p2])/2]; 

     
     

     

    If[Round[b*((d2+i6)-b)]==Round[p2],a=(d2+i6)-b,a=a]]]; 
Print["Time for exact calculation in the neighbouring of the approximate solution(+-Log[d]) ",First[tiempo]," s"] 

Print["If first factor=1, no solution has been found"]; 

Print["Exact First factor is ",Round[a]]; 
Print["Exact Second factor is ",Round[p2/a]]; 

 

 
Print[""]; 

 

 
p2=Input["Input a semiprime number of the same order or lower than the previous one. This will be calculated 

with the prework already done, so you can see the difference"]; 

 
 

 

w3=liminf; 
 

y5=0.; 

 
tiempo=Timing[For[i3=0,i3<n+1,i3++, 

     

    y5=N[y5+func4[p2,w3]*y[i3]];  
    w3=w3+w2; ]]; 

 
 

 

Print["Factorization of semiprime number ",p2," using ",n," steps"]; 
Print["Time of calculation of the approximation (once prework is done):",First[tiempo]," s"]; 

 

d=y5*w2*(func3[p2,k2]/(4*pi2)); 
 

Print["Integral result = ",d]; 

 
d=Abs[d]; 

d= Log[d]/c2; 

 
 

 

Print["Value of d = ",d]; 
d=Round[Abs[d]]; 

Print["Approximate sum of factors ",d]; 

b=(d+Sqrt[d^2-4*p2])/2; 
a=d-b; 

Print["Approximate First factor is ",Round[a]]; 

Print["Approximate Second factor is ",Round[b]]; 
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Print ""; 
 

d2=Round[d-4*Log[d]-1]; 

 
a=1; 

 

tiempo=Timing[For[i6=1,i6<(8*Log[d]+2),i6++, 
     

    b=Round[((d2+i6)+Sqrt[(d2+i6)^2-4*p2])/2]; 

     
     

     

    If[Round[b*((d2+i6)-b)]==Round[p2],a=(d2+i6)-b,a=a]]]; 
Print["Time for exact calculation in the neighbouring of the approximate solution(+-Log[d]) ",First[tiempo]," s"] 

Print["If first factor=1, no solution has been found"]; 

Print["Exact First factor is ",Round[a]]; 
Print["Exact Second factor is ",Round[p2/a]]; 

 

 

B1. Annex B1. Matlab/Octave program for expression (21) 
 
With this program for Matlab/Octave you can check if a number is prime or not (and the 

number of factors that it has) using the expression (58) and compare the time of computa-

tion when using brute-force checking. You can check that brute-force checking is better. 

That is the reason the expression (58) is not sufficient, and we have to look for an improved 

way of calculation (from chapter 8 to 10 to get to expression (58)). 
 

B=0; 

p=input(‘Input a number : ‘); 

%using numerical integration 

t1=cputime; 

m=fix((p+1)/2); 

for k=2:m+1; 

    fun=@(w) exp(p.*1j.*w).*exp(-2.*k.*1j.*w).*(1-exp(-m.*k.*1j.*w))./(1-exp(-

k.*1j.*w)); 

    a=integral(fun,-pi,pi,’AbsTol’,0.24); 

    b=b+a; 

end; 

b=b/(2*pi); 

disp(‘------------------------------'); 

disp(‘Using numerical integration’); 

disp (num2str(b)); 

c=round(abs(b)); 

if c==0; 

  

    disp([num2str(p),’ is a prime number’]); 

else 

    disp([num2str(p),’ is a composite number and has ‘,num2strI,’ permutations of 2 

factors’]); 

end 

  

t1=cputime-t1; 

disp([num2str(t1),’ seconds’]); 

  

%Brute force checking 

t2=cputime; 

disp(‘------------------------------'); 

disp([‘Using brute-force checking’]); 

if rem(p,2)==0; 

    disp([num2str(p),’ is a composite number and 2 is one of the factors’]); 

else; 

    k=3; 

    c=sqrt(p); 

    while k<=c; 

      if mod (p,k)==0; 

       disp([num2str(p),’ is a composite number and ‘,num2str(k),’ is one of the fac-

tors’]);  

       k=c+10; 

      else 

          k=k+2; 

      end 

    end 

    if k~=(c+10) 

        disp([num2str(p),’ is a prime number’]); 

    end 

end 

t2=cputime-t2; 

disp([num2str(t2),’ seconds’]) 

disp(‘------------------------------'); 
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disp([‘Numerical integration is ‘,num2str(t1/t2), ‘ times slower’]);  

         

     

B2. Annex B2. Matlab/Octave program for expression (58) 
 
With this program for Matlab/Octave you can check if a number is prime or not (and the 

number of factors that it has) using the expression (58). The difference with the expression 

(21) used in Annex B1 is that here, as the infinite sum has the last element=0, you can make 

a pre-calculation of the sum valid for all the numbers (with a certain precision). And once 

the pre-calculation is finished, the calculation for a specific number is much lower in com-

putation time. 

 

Apart from the input number, I have included more examples to confirm this is issue (you 

can check the real time of calculation once the pre-calculation has been done and it is not 

needed to be repeated anymore). If this pre-calculation were included in a data base, it 

would not need to be repeated anymore. 

 

The higher n, n4 and the lower c (in absolute value but different from zero) the more accu-

rate the pre-calculation will bed (it will be valid for higher numbers). 
 
 

format long; 

  

pi2=pi; 

  

k2=0; 

  

w5=1.5; 

  

p3=input('Input a natural number: '); 

  

reference=107; 

  

p3=abs(round(p3)); 

  

if p3>reference 

     

    reference=p3; 

     

end 

  

  

  

c2=-1/reference; 

  

  

f= @(c,w,n) exp(c*2*n)*exp(2*n*w*1i)/(1-exp(n*c)*exp(n*w*1i)); 

  

  

func3=@(p,k) exp(-p*k); 

func4=@(p,w) exp(-p*w*1i); 

  

n4=10*reference; 

n=100*reference; 

  

% array y from 0 to n 

y=zeros(1,(n+1)); 

  

liminf=-pi2; 

limsup=pi2; 

w2=(limsup-liminf)/n; 

w3=liminf; 

tiempo=cputime; 

  

disp('I start the prework'); 

  

for i2=1:(n+1) 

     

    y4=0; 

     

    for i1=2:n4 

         

        y4=y4+f(c2,w3,i1); 

         

    end 

             

        y(i2)=y4; 

        w3=w3+w2; 
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end 

tiempo2=cputime; 

disp('I have done the prework'); 

disp(['Time of prework ',num2str(tiempo2-tiempo),' secs']); 

  

  

disp('I start the calculations'); 

  

  

%First number to check  

  

p2=7; 

tiempo=cputime; 

w3=liminf; 

  

y5=0; 

  

for i3=1:(n+1) 

     

    y5=y5+func4(p2,w3)*y(i3); 

    w3=w3+w2; 

     

end 

  

  

tiempo2=cputime; 

d=y5*w2*(func3(p2,c2))/(2*pi2); 

  

disp(d); 

disp(['Number ',num2str(p2),' has ',num2str(round(abs(d))), ' combinations of 2 factor 

products']); 

disp('Time of calculation (secs)'); 

disp(tiempo2-tiempo); 

  

%Second number to check 

p2=9; 

  

tiempo=cputime; 

w3=liminf; 

  

y5=0; 

  

for i3=1:(n+1) 

     

    y5=y5+func4(p2,w3)*y(i3); 

    w3=w3+w2; 

     

end 

  

  

tiempo2=cputime; 

d=y5*w2*(func3(p2,c2))/(2*pi2); 

  

disp(d); 

disp(['Number ',num2str(p2),' has ',num2str(round(abs(d))), ' combinations of 2 factor 

products']); 

disp('Time of calculation (secs)'); 

disp(tiempo2-tiempo); 

  

  

%Third number to check 

p2=20; 

  

tiempo=cputime; 

w3=liminf; 

  

y5=0; 

  

for i3=1:(n+1) 

     

    y5=y5+func4(p2,w3)*y(i3); 

    w3=w3+w2; 

     

end 

  

  

tiempo2=cputime; 

d=y5*w2*(func3(p2,c2))/(2*pi2); 

  

disp(d); 

disp(['Number ',num2str(p2),' has ',num2str(round(abs(d))), ' combinations of 2 factor 

products']); 

disp('Time of calculation (secs)'); 

disp(tiempo2-tiempo); 
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%Fourth number to check the input number 

p2=p3; 

  

tiempo=cputime; 

w3=liminf; 

  

y5=0; 

  

for i3=1:(n+1) 

     

    y5=y5+func4(p2,w3)*y(i3); 

    w3=w3+w2; 

     

end 

  

  

tiempo2=cputime; 

d=y5*w2*(func3(p2,c2))/(2*pi2); 

  

disp(d); 

disp(['Number ',num2str(p2),' has ',num2str(round(abs(d))), ' combinations of 2 factor 

products']); 

disp('Time of calculation (secs)'); 

disp(tiempo2-tiempo); 

     

  

B3. Annex B3. Matlab/Octave program for factorization of a semi-
prime number (69) 
 
You can find here attached a program in Matlab/Octave to calculate the expression (69) 

and to find the factors of a semiprime number. With the variable “multic” you can modify 

the precision. For multic=50, the precision is good, and you will get the result directly form 

the integral. 

 

For multic=30, the precision is worse but with less computation time. Instead of obtaining 

the correct result directly, the program will test numbers in the neighborhood of the result 

until it finds the correct result. With a total time much lower, 

 

For both methods, there is a pre-calculation that once done with the precision considered, 

it will be valid for all the numbers that can be checked with that precision, not needing to 

repeat the pre-calculation again (if this was stored in a data base). 
 

 

format long; 

  

pi2=pi; 

  

k2=0; 

  

p2=input('Introduce a semiprime number: '); 

  

p2=abs(round(p2)); 

reference=p2; 

  

c2=-1/sqrt(reference); 

  

  

f= @(c,w,n) exp(c*(n+2))*exp(2*n*w*1i)/(1-exp(c)*exp(n*w*1i)); 

  

  

func3=@(p,k) exp(-p*k); 

func4=@(p,w) exp(-p*w*1i); 

  

% If you want exact calculation put multic=50 

% If you want an approximate result and then fine tune  

% in the neighbouring, multic=30 is sufficient 

  

multic=50; 

  

n4=multic*reference; 

n=multic*reference; 

  

% array y de 0 a n 

y=zeros(1,(n+1)); 

  

liminf=-pi2; 

limsup=pi2; 

w2=(limsup-liminf)/n; 
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w3=liminf; 

disp('I start the prework'); 

tiempo=cputime; 

for i2=1:(n+1) 

     

    y4=0; 

     

    for i1=2:n4 

         

        y4=y4+f(c2,w3,i1); 

         

    end 

             

        y(i2)=y4; 

        w3=w3+w2; 

         

end 

tiempo2=cputime; 

disp(['Time of prework ',num2str(tiempo2-tiempo),' secs']); 

  

%i5=fix((w5-liminf)*n/(limsup-liminf))+1; 

  

%disp(y(i5)); 

  

%salto los siguientes prints que no tengo func2 

  

  

%First number 

tiempo=cputime; 

  

w3=liminf; 

  

y5=0; 

  

for i3=1:(n+1) 

     

    y5=y5+func4(p2,w3)*y(i3); 

    w3=w3+w2; 

     

end 

  

  

tiempo2=cputime; 

d=log(y5*w2*(func3(p2,k2)/(4*pi2)))/c2; 

disp(d); 

d=round(abs(d)); 

disp('The approximate sum of factors is'); 

disp(d); 

  

b=(d+sqrt(d^2-4*p2))/2; 

  

a=d-b; 

disp(['If ',num2str(p2),' has 2 factors, approximately these are']); 

disp(round(a)); 

disp(round(b)); 

disp('Time of calculation (secs)'); 

disp(tiempo2-tiempo); 

  

tiempo=cputime; 

  

m=round(log(reference)); 

d=d-4*m; 

  

for i3=1:(8*m) 

     

b=(d+sqrt(d^2-4*p2))/2; 

  

b=round(b); 

a=d-b; 

  

if (abs(a)*abs(b))==p2 

  

    disp('The exact sum is '); 

disp(d); 

  

  

disp(['If ',num2str(p2),' has 2 factors, these exactly are']); 

disp(round(a)); 

disp(round(b)); 

  

  

end  

d=d+1; 

  

end 

tiempo2=cputime; 
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disp('Time of calculation (secs)'); 

disp(tiempo2-tiempo); 

  


