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Abstract

Following the coincidence A x atomic year ∼ Earth year (s), (A
=Avogardo number, atomic year= aB/αc, aB = Bohr radius, α = fine
structure constant, c = light velocity) and considering the ,,niche” for
α, i. e. 180−1 ≤ α ≤ 85−1, the Ecosphere radius is calculated.
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Introduction

The existence of Extra-Solar planets is well established. In the contemporary
status of the searching program (e. g. DARWIN space infrared interferometer
project) the following categories of extra-solar planets are described: Definite
planets (20), possible planets (8), microlensed planets (5), borderline planets
(2), dust clump planets (7) and pulsar planets (4), number in paranthesis
denotes the number of planet.1 It is well known that round the Sun the
habitable zone – Ecosphere exists. Within the Sun Ecosphere are: Venus,
Earth and Mars and Sun. It will be interesting to calculate the Ecosphere
radius for “average” star with mass Ms = a

3/2
G mp (aG = the gravity fine

structure constant and mp = proton mass).
To that aim in this paper we investigate the possibility of the calculations

of the planet orbit radii as the function of the fine structure constant α. We
argue that the Ecosphere is defined as the part of space rounded the star
which can be calculated assuming the present day value of the electromag-
netic fine structure constant. Considering the existence of the ,,niche” for
fine structure constant we calculate the niche for planet orbit radii and obtain
Rrel = R(α)/R(α = 1/137) = 0.5− 1.5 where Rrel denotes the relative orbit
radii. In the case of the Solar system in Ecosphere we find out the orbits of
Venus, Earth and Mars. Considering the agreement of the calculation with
the Ecosphere radius for Solar system we argue that our model for habitable
zone can be applied to other planet systems also.

Coincidence

In paper [1] the quantum heat transport on the atomic, nuclear and quark
scale was discussed and the characteristic time scales were obtained. For
atomic scale:

τa =
h̄

meα2c2
, (1)

where me is electron mass, α is the electromagnetic fine structure constant,
c is the light velocity. For nuclear scale:

τn =
h̄

mn(αs)2c2
, (2)

1Data taken from http://art.star.rl.ac.uk/darwin/planets
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where mn denotes nucleon mass, αs ∼ 0.15 is the coupling constant for strong
interactions. In the case of free quark gas (if it exist!):

τq =
h̄

mq(α
q
s)2c2

(3)

and αq
s, mq are the fine structure constant for quark-quark interaction and

quark mass respectively.
The atomic time scale, τa, is proportional to the ,,atomic year”, Ta, viz.:

τa =
h̄

meα2c2
∼ aB

α c
= Ta, (4)

where aB is the Bohr radius.
It is quite interesting to observe that the ,,coincidence” holds:

A Ta ∼ TEarth, (5)

A mp = 1g,

where A is the Avogardo number, A = 6.02 1023, mp = 1.66 10−27 kg is the
proton mass and TEarth denotes the Earth year (in seconds).

From Kepler law the relation TEarth → REarth can be concluded:

T 2
Earth =

(
2mEarthπ

(−mEarthK)1/2

)2

R3
Earth. (6)

In formula (6) we approximate Earth orbit as the circle with radius REarth

and mEarth is the Earth mass, K is equal:

K = −GmEarthM, (7)

where G is gravity constant and M denotes the mass of the central body
(the Sun) which creates gravity forces. In the following we approximate the
M mass of the central body by the mass of the ,,average” star [2, 3]

M ∼= a
−3/2
G mp = Nmp, (8)

where N = a
−3/2
G is the Landau-Chandrasekhar number, aG denotes the fine

structure constant for gravity force. Comparing formulae (5) and (6) one
obtains:

R3/2 =
Ah̄c

2πα2

1

mec2

(
Mpl

mp

)1/2 (
h̄c

mpc2

)1/2

. (9)
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In formula (9) for planet radius we omit the subscript ,,Earth” because the
radius does not depend on the planet mass. The R denotes the planet orbit
radius for average star with mass described by formula (8). The planet radius
depends only on the three fundamental constant of the Nature: G, h̄, c. The
mass Mpl = ( h̄c

G
)1/2 is the Planck mass.

Considering formula (5), A mp=1 g the planet radius (9) can be formu-
lated in more ,,elegant” form:

R3/2 =
h̄c

mpα2

1

mec2

(
Mpl

mp

)1/2 (
h̄c

mpc2

)1/2

. (10)

The dependence of R on α is quite interesting. For, it is well known that
grand unified theories allow very sharp limits to be placed on the possible
vales of the fine structure constant in a cognizable universe. The possibility
of the doing physics on the background space-time at the unification energy
and the existence of stars made of protons and neutrons endorse α in the
niche [4]:

1

180
≤ α ≤ 1

85
(11)

or [5]
1

195
≤ α ≤ 1

114
. (12)

It is interesting to observe that one obtains the niche for planet radii — the
Ecosphere which is the consequence of formulae (11) and (12). The Ecosphere
spans from Rrel ∼ 0.5 to Rrel ∼ 1.5. In the case of the Solar system in
this niche we find only the orbits of Venus Earth and on the border of the
Ecosphere: Mars.

Considering the agreement of the calculations present in this paper with
the habitable zone for Sun, we argue that our model for Ecosphere can be
applied to other planet systems (other “worlds”) also.
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Results

In conclusion in the paper the Ecosphere radius as the function of α - fine
structure constant was calculated. Following the existence of the niche for α
the niche for planet orbit radii was obtained. In the Sun Ecosphere only the
orbit of Venus, Earth and Mars are placed. We argue that the formula (10)
describes the Ecosphere radius for other planet systems (other “worlds”) also.
Moreover with the new results concerning a time – varying fine structure
constant [6] we speculate that for a distant planetary systems the Ecosphere
can be quite different. The change of Ecosphere radius as the function of α
can be calculated from formula (10).
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