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Abstract 

The Vacuum Energy Parameter (VEP) of standard cosmology (  ) denotes the fraction of the critical 

density attributed to the accelerated expansion of the Universe. Astrophysical evidence sets the numerical 

range of VEP at 
exp

0.692 0.012


  , yet the root cause of these values is currently unknown. Drawing 

from the stochastic interpretation of early-Universe cosmology, we develop here a derivation of the VEP 

based on classical diffusion theory and the Langevin equation. Predictions are shown to be in reasonable 

agreement with observations.  

Key words: FRW model, accelerated expansion, Vacuum Energy parameter, stochastic cosmology, 

Langevin equation.   

 

1. Introduction 

It is known that the Friedmann-Robertson-Walker (FRW) model is based on the 

cosmological principle, according to which matter distribution in the large-scale 

structure of the Universe is homogeneous and isotropic [1]. Besides homogeneity and 

isotropy, the FRW model implicitly assumes that cosmological processes are governed by 
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deterministic laws excluding - by default – concepts such as randomness and probability 

distributions.  

Over the years, several studies have advocated extending the basis of FRW cosmology, 

arguing that a stochastic description may be better equipped to model the early evolution 

of the Universe [3-6]. We fully subscribe to this viewpoint and go even further in 

suggesting that stochastic cosmology is, in fact, an integral part of complex dynamics. The 

goal of complex dynamics is to explore the evolution of large interacting ensembles 

that are out-of-equilibrium and capable of sustaining a wide spectrum of collective 

behaviors. As the dynamics of complex systems includes non-deterministic 

processes, it provides a natural foundation for the ideas of stochastic cosmology. 

Our approach starts from the premise that the cosmic fluid density of the FRW model 

may be mapped to a classical scalar field. Following the philosophy of stochastic 

cosmology, we show that behavior of this field matches the dynamics of a damped 

harmonic oscillator in contact with a reservoir of random fluctuations. Universe 

expansion supplies the damping mechanism and is embodied in the Hubble parameter. 

Setting the gravitational self-interaction scale as the upper bound energy of the scalar 

field leads to predictions in reasonable agreement with observations. 

The paper is partitioned in the following way: next section delves into the stochastic 

interpretation of early Universe cosmology while section 3 defines the set of assumptions 

and conventions underlying our work. The construction of the Langevin equation and the 

derivation of the VEP form the object of sections 4 and 5. Concluding remarks and follow 

up developments are discussed in the last section.    
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2. Stochastic interpretation of early Universe cosmology 

The mass dimension of fluid density in natural units is given by 

   4 4

3

m m
L

V L
      (1) 

in which  
1

L


  is an arbitrary mass scale.  The FRW fluid density may be associated 

with a classical scalar field as in  

 1 4   (2) 

whose mass dimension in 3+1 spacetime is (see [2] for example) 

   1L    (3) 

It is important to draw an upfront distinction between (2) and the hypothetical fields of 

cosmic inflation, such as “inflaton”, “dilaton” or “quintessence”. These fields supplement 

the standard framework of cosmology but do not share common roots with the fluid 

density concept of the FRW model. Despite their difference in physical nature, both (1) 

and the postulated fields of inflationary cosmology satisfy the scalar field equation [1] 

 
( )

0H

V 
  




  


,      3H H   (4) 

where ( )V   stands for a generic potential function. To understand why this is the case, 

consider the Lagrangian density of any scalar field in curved spacetime [1] 

 
1

( )
2

L g V
x x



 

 


 
 

 
 (5) 
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The corresponding field equation is 

 
1 ( )

( ) 0
V

gg
x xg



 

 



  
  

  
 (6) 

Space derivatives can be safely ignored in comparison with the time derivative, under the 

plausible assumption that the field is spatially homogeneous. If, in addition, the geometry 

is close to being spatially flat, the line element may pe cast in a form compatible with the 

FRW cosmology, i.e.   

 2 2 2 2 2( ) ( )ds dt a t dr r d     (7) 

It follows from these considerations that 3g a  . Then, by (6) and (7), one recovers the 

field equation (4).   

It is not unreasonable to think that (4) may be generalized to a scenario including random 

fluctuations present in the evolution of the early Universe. The most straightforward path 

to this scenario consists of adding a “thermal-like noise” term in the right-hand side of 

(4). This leads to 

 
( )

( )H

V
t


   




  


 (8) 

For simplicity, we take the statistics of the noise term to be delta correlated as in 

 ( ) ( ') ( ')t t D t t     (9) 

where D  denotes the strength of noise correlations. In line with classical diffusion theory 

in a harmonic potential, we posit that ( )V   is a quadratic function 
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 2 21
( )

2
V     (10) 

so that 

 2( )V 





 


 (11) 

Next section defines the main set of assumptions and conventions used below in the 

analysis of (8).    

3. Assumptions and conventions 

A1) In section 5, both scalar field and time parameters are cast in dimensionless form and 

written as 0x , where  ,x t . Carrying out this operation means normalizing x  with the 

appropriate powers of the mass scale  . The rationale for the most natural choice of   

in the context of our paper is also given in section 5.    

A2) To fix the initial conditions, we posit that the amplitude of the scalar field starts from 

an arbitrarily chosen lower value and develops larger values at later times. Hence, we 

assume  

 0( ) ( )t t    for 0t t  (12a) 

A3) The vacuum of the FRW model evolves from a regime of out-of-equilibrium 

fluctuations in the early Universe and settles into a stationary state p    in the long- 

time limit 0t t t   . This is a state of full thermal equilibrium where expectation and 

instantaneous parameter values coincide viz. 
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 0( )t      (12b) 

4. Vacuum state and the stationary regime of the Langevin equation  

The evolution of field expectation value in the long-time limit of classical diffusion theory 

( 0t t ) satisfies (cf. the Appendix section) 

 
d

dt

 


   (13) 

and leads to the exponential decay equation 

 0( ) ( ) exp( )
t

t t 


   (14) 

Here, 1

H    plays the role of a time constant associated with the Langevin equation (8). 

By analogy with (13) and (14), one may define a time constant which is formally equivalent 

to   and refers to the instantaneous realization of the field variable. Explicitly, this 

equivalent time constant is defined by 

 
0

( )

( )

t

t

equiv

d s
ds

ds

t









 (15) 

so that  

 0( ) ( ) ( )echivt t t       (16) 

Direct substitution of (16) in (8) – (11) and on account of A2) gives 
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 ,( ) ( )H c H t        (17) 

in which 

 2 2 2

,( )equiv c H equiv           (18) 

It is instructive to evaluate next the analogy between (17) and the local energy 

conservation equation of the FRW cosmology. To this end, we start from the stochastic 

model of early Universe discussed in [9], whereby the state parameter   is assumed to 

be a fluctuating entity. The conservation equation reads 

 [1 ( )] 0H t       (19) 

in which ( ) ( ) ( )p t t t  represents the time-dependent generalization of the equation of 

state. Differentiating (19) leads to 

 [1 ( )] ( ) 0H Ht t           (20) 

Comparative inspection of (17) and (20) reveals the following mapping 

 , [1 ( )]H c H H t       (21a) 

 ( ) ( )H t t    (22b) 

The limit , 0H c H    corresponds to fixing the state parameter at 1   ,  so that 0   

and ( ) 0t  . By A3), these settings recover the equilibrium conditions of the vacuum 

regime in standard FRW cosmology [1]. 
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In closing this section, we mention that there are two key relationships linking the 

coefficient D  of (9), the damping coefficient ,H c H   of  (17) and the eigenfrequency   

of the harmonic potential (10) [7]: 

a) The first relationship follows from the fluctuation-dissipation theorem of thermal 

equilibrium at long times ( 0t t ), and it requires  

 ,( )H c H BD k T    (23) 

where Bk  is the Boltzmann constant and T  the temperature. 

b) The second relationship stems from the equipartition theorem of Thermodynamics 

and takes the form  

 2 ( ) Beq
t k T   (24) 

5. Derivation of the Vacuum Energy Parameter (VEP) 

To further proceed with our derivation, we recall that the Einstein-Hilbert action in the 

absence of matter or radiation takes the form [1, 10] 

 4 2 41

16
G

N

S d x g R M d x g R
G

      (25) 

where R  represents the scalar curvature, NG  is Newton’s constant and   

 1 2(16 )G NM G   (26) 

sets the natural scale of gravitational self-interaction, induced by gravitation in empty 

space. Hence, by assumption A1), the relevant choice for the mass scale is  
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 GM   (27) 

The dimensionless parametrization of the field and its time rate are then given by 

 0

GM


   (28) 

 0

,( )H c Ht t    (29) 

Using (28) and (29) leads to     

 
0

0

0

, ,

1 1

( ) ( )H c H G H c H G

d d

dt M dt M

 
 

   
  

 
 (30) 

By (28)-(30) and on account of (10) and (18), the expectation values for the kinetic and 

potential terms for the dynamics of the scalar field can be presented as 

 2 2 2 0 2

,

1 1
( ) ( )

2 2
kin H c H GT M       (31a) 

 ,2 2 2 0 21 1
( ) ( )

2 2

c H

G

equiv

V M


  


    (31b) 

The expectation values for the energy density and pressure associated with the scalar field 

assume the form [1] 

 ( )kinT V    (32a) 

 ( )kinp T V    (32b) 
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Demanding compliance with the equation of state for the vacuum in the FRW model 

yields the following constraint expressed in terms of expectation values  

 2 0kinp T       (33) 

By (23) and (31a), (33) implies two equilibrium conditions for asymptotically long times 

t t   

 , 0 , 0H c H D     (34) 

and 

 2 0 21
( ) ( )

2

H
G

equiv

V M


 


  (35) 

It is instructive to confirm, at this point, that (33) is consistent with (24) near thermal 

equilibrium, when the Universe temperature drops close to zero in the long-time limit [7]  

 2 2( ) ( ) 0Beq
t k T t      (36) 

Referring now to the Appendix equation (A7), a plausible hypothesis is that the time 

constant and instantaneous time constants defined in (13) to (15) become equal near or 

at thermal equilibrium. It follows that,     

 1 1

,equiv c H H       for  t t  (37) 

It is also reasonable to expect that, in the asymptotic vacuum state defined by (33), the 

energy carried by the scalar field   is upper limited by the gravitational scale GM . On 
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account of these considerations and by (28), (35) and (37), one obtains the following 

stationary expectation value of the vacuum density   

 
0 2 29

1 ( )
2

GV H M       (38) 

The critical density of the FRW model is given by (in natural units 1c  ),  

 
2

2 23
6

8
c G

N

H
H M

G



   (39) 

Dividing (38) to (39) produces the main result of our paper, namely, 

 .75
c







    (40) 

in reasonable agreement with current astrophysical data ( exp 0.692 0.012  ). Recall 

that, by assumption A3), the instantaneous and expectation values of the vacuum density 

  are set to be identical. 

6. Conclusions and outlook 

Our work has developed from the premise that the cosmic fluid density of the FRW model 

may be mapped to a classical scalar field. Following in the footsteps of stochastic 

cosmology, we have found that the behavior of this field corresponds to the dynamics of 

a damped harmonic oscillator in contact with a reservoir of random fluctuations. In this 

picture, Universe expansion supplies the damping mechanism as embodied in the Hubble 
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parameter. Setting the gravitational self-interaction scale as the upper bound energy of 

the scalar field yields a VEP prediction in reasonable agreement with observations. 

In line with [11-12], a sequel to this work will attempt bridging the gap between stochastic 

cosmology and self-organized criticality (SOC). The plan is to show that SOC sheds new 

light on the inner workings of the early-Universe cosmology [13]. 

 
APPENDIX 

The goal of the Appendix section is to recover (13) from the classical diffusion theory 

applied to Brownian motion [8]. The evolution of the field expectation value is described 

by 

 0
0

( )
( ) ( ) [1 exp( )]H

H

t
t t t


  


     (A1) 

Assumption (12) reduces (A1) to the following approximation 

 ( ) [1 exp( )]Ht K t     (A2) 

where 

 0( )

H

t
K




  (A3) 

Differentiating (A2) yields 

 0( ) ( )exp( )H

d
t t t

dt
     (A4) 

By (A2), (A4) becomes 
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 0( ) ( ) ( )H

d
t t t

dt
      (A4) 

A suitable linear shift of the form 

 0( )
( ) ( ) ( )

s
H

t
t t K t


  


     (A5) 

turns (A4) into  

 
1

( ) ( )
s s

d
t t

dt
 


   (A6) 

which recovers (13) upon the identification 

 1 1

3
H

H
     (A7) 
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