Precise tetraquark masses from hypersphere surface volume (HSSV) factoring

D.G. Grossman
March 21, 2021

Abstract

The factoring of tetraquark masses with hypersphere surface volumes has two major benefits: the determination of tetraquark masses to a high degree of accuracy (8 digits), and, insight into their structure. This paper will explain the factoring technique, and the theory behind it, and give numerous factoring examples. A major part of the paper is devoted to displaying over 100 meson (tetraquark) factorings in a six page long mass spectrum (or factoring spectrum) where the masses calculated from factorings are compared with experimental masses.

Contents

1. Introduction

2. Tetraquark Structure
3. Tetraquark mass spectrum - Overview
4. Tetraquark mass spectrum $\mathbf{- 9 7 3} \mathbf{~ M e V}$ to $\mathbf{1 1 0 3 0} \mathbf{~ M e V}$
5. Some c Mesons Factored as Tetraquarks
6. Some cs Mesons Factored as Tetraquarks
7. Some ce Mesons Factored as Tetraquarks
8. Some bs Mesons Factored as Tetraquarks
9. Factorization of the $X(6900)$ Tetraquark Discovered in 2020
10. Factorization of the $X(6200), X(6500)$, and $X(7200)$ Tetraquarks
11. Mass Spectrum of $\boldsymbol{\Phi}$ (1020) 's Experimental Masses
12. Mass Spectrum of $\Psi(2 S)$'s Experimental Masses

13. Conclusion

14. Appendix

Hypersphere Surface Volume Formulae
Hypersphere Surface Volume Formulae Times h

15. References

1. Introduction

Hypersphere surface volume factoring is a powerful and relatively simple technique for determining the masses of mesons to high precision (to the precision of Planck's constant, which is about 8 digits), and for theoretically probing their structure. It is based on the theory, basically, that quarks are not particles in 3D space, but hypersphere surfaces of various dimensions filled with energy. And mesons are not composed of two quark particles orbiting one another in 3D space, but rather they are constructed of two intersecting hypersphere surfaces of energy. (And tetraquarks are not four quark particles orbiting one another in 3D space, but four intersecting hypersphere surfaces of energy.) They have a 3D part, obviously, but it is connected to their higher dimensional parts, and all parts should be considered together in order to understand them fully. This seemingly simple theory gives theorists an easy way to calculate the masses of mesons very accurately (to 8 digits), and provides insights into their structure.

One may immediately object to this theory on the grounds that space is 3D, and hyperspheres are higher dimensional, so cannot possibly exist in our 3D space. That is correct. They do not exist in our 3D space - entirely. The higher dimensional parts of a meson's structure reside in the n-space that is immediately adjacent to our 3D space. What we experience of mesons is the intersection of their higher dimensional components with our 3D space. Just like 2D space (a plane) has zero thickness in the third dimensional direction, our 3D space has zero thickness in the fourth (and higher) dimensional directions, so every point in our 3D space is immediately adjacent to higher dimensional space. The main assumption of the theory is that the 'quark material' of which particles are made, can move around in, or, orbit in higher dimensional space, but the particles (the mesons, the baryons, and, maybe the leptons) they make cannot. The purpose of this paper is to disseminate evidence supporting belief in the validity of this new theory of particle structure.

2. Tetraquark Structure
 $\left(\operatorname{cccc}=(S 5)^{4} \sim S 17\right)$

According to quark theory, a cccc tetraquark, is constructed of four quarks orbiting one another in 3D space. According to hypersphere theory, a cccc tetraquark is constructed of four energy filled 5 -sphere surfaces that all intersect one another, and, the surface of the universe's hypersphere.

Since 5 -spheres are five dimensional, that means part of a tetraquark's structure protrudes out into 5 dimensional space. That is possible because the surface of the universe's hypersphere (the 3D 'space' we live in) has zero thickness in the fourth, and higher, dimensional directions, so every point in our 3D space is immediately adjacent to "higher dimensional space". Higher dimensional space was put in quotation marks because there is no higher dimensional space for us. We are made of matter that has been hadronized (particlized) and hadronized particles can only move around with three degrees of dimensional freedom of movement (can only move around as if in 3D space) as if they were somehow 'attached' to the surface of the universe's hypersphere (which might be just a location, or it might be a physical thing). The quark material, the 5D matter that the 5 -spheres are made of, however, can move around in 5D space, but for whatever reason, doesn't travel far into 5D space. It stays very close to the surface of the universe's hypersphere's surface, orbiting within the surface of a tiny 5 -sphere, which intersects other identical tiny 5 -spheres, formimg diquarks, triquarks, tetraquarks, etc. and each group also intersects the universe's hypersphere's surface, presumably with half their mass on one side and half on the other side of it.

An abstract representation of the intersection of four 5 -spheres is shown below, using circles to represent the 5 -sphere surfaces. The abstract representation shown below is just that, an abstract representation. How the 5 -spheres are arranged in 5 -space, the degree to which they intersect, and other details about their intersection in 5D space is unknown. The size (or 'type') of the 'intersection' of the four 5 -spheres, for purposes of factoring, is found by raising the equation for the surface volume of a single unit radius 5 -sphere (S5) to the 4th power. The resulting expression, $(4096 / 81)\left(\pi^{8} \mathbf{r}^{16}\right)$, has the same $\boldsymbol{\pi}$ power and \mathbf{r} power in it as the expression for the surface volume of a 17 -sphere (S17) does. The only difference between the two expressions is a difference of their constants of multiplication. The ccce intersection expression is 200200 times bigger than the expression for the surface volume of a 17 -sphere (S17).

Intersection Volume Equation of ccce Tetraquarks

Any ccce tetraquark can be factored with unit radius expressions of $(\mathbf{S 5})^{4} \mathrm{~h}$ or $\mathbf{S 1 7 h} .(\mathrm{h}=6.62607015$ is a conversion factor that converts hypersphere surface volume to $\mathrm{MeV} / \mathrm{c}^{2}$.) Throughout this paper $(\mathbf{S 5})^{4} \mathrm{~h}$, with appropriate divisors, will be used to factor tetraquarks. Its value is given below.

$$
\text { ccce Tetraquark's Basic Unit of Factorization }=(\mathbf{S 5})^{4} \mathbf{h}=3179288.507 \mathrm{MeV} / \mathrm{c}^{2}
$$

Since the basic unit of factorization above is hundreds of times larger than the average meson's mass, it should be divided by at least 1000 to reduce it to an optimal size for factoring. By trial and error you will find that most mesons also need a divisor of a power of seven to get rid of power of seven fractions in the factoring results. The most numerous category of tetraquarks seems to be those that factor with divisors of the basic unit of factorization that are powers of 7. The second most numerous group of tetraquarks are those that factor with divisors of the basic unit of factorization that are powers of 7 and 3 multiplied together. One tetraquark (Ds*+) has been found that factors unequivocally with a divisor of 11 (and 2, 5, and 7). Its factoring can be found in the section 'Some cs Mesons Factored as Tetraquarks'.

Some Mesons Factored with (S5) ${ }^{\mathbf{4}} \mathbf{h} / \mathbf{7}^{\mathbf{2}} 1000$

$(S 5)^{4} h / 49000=64.88343891 \mathrm{Mev} / \mathrm{c}^{2}$
In the table below are some tetraquarks that have been factored with a unit of factorization generated by dividing the basic unit of factorization by $7^{2} 1000$, which when totally factored is $7^{2} 5^{3} 2^{3}$. This unit of factorization is still rather large. It is $64.88343891 \mathrm{Mev} / \mathrm{c}^{2}$, yet, as can be seen displayed in the table below, seven tetraquarks factor to small integer multiples of it over a rather narrow mass range, which suggests the correlation is unlikely to be due entirely to chance.

Fact	ing		Thr Mass	Exp Mass	+/-	TM-EM	Meson	Source
56.	$(\mathbf{S 5})^{4} \mathrm{~h} / 49000$	$=$	3633.4725	3633.6	$1.7 / 0.6$. 13	nc(2S)	[1]
60.	$(\mathbf{S 5})^{4} \mathbf{h} / 49000$	$=$	3893.0063	3893.0	$2.3 / 19.9$. 006	Zc(3900) o	[5]
62.	$(\mathbf{S 5})^{4} \mathrm{~h} / 49000$	$=$	4022.7732	4022.9	$0.8 / 2.7$. 13	X(4020)	[1]
64.	$(\mathbf{S 5})^{4} \mathrm{~h} / 49000$	$=$	4152.5400	4152.5	$1.7 / 6.2$. 04	Xc1(4140)	[1]
67.	$(\mathbf{S 5})^{4} \mathrm{~h} / 49000$	$=$	4347.1904	4347	6 / 3	. 19	Xc1(4140)	[1]
68.	$(\mathbf{S 5})^{4} \mathrm{~h} / 49000$	$=$	4412.0738	4412	15	. 07	$\Psi(4415)$	[1]
90.	$(\mathbf{S 5})^{4} \mathrm{~h} / 49000$	$=$	5839.5095	5839.6	$1.1 / 0.7$. 10	Bs2*(5840)o	[1]

Notice that these mesons all factor to integer multiples of the unit of factorization, (S5) ${ }^{4} \mathrm{~h} / 49000$. This, according to the theme of the paper, is evidence that their underlying structure is that of the structure proposed above for cccc tetraquarks, which is the intersection of four 5-sphere energy filled surfaces. What the factorings mean exactly in terms of structure is currently unknown. Factoring is just a first step toward understanding the structure of mesons. The hope is that correlation studies between the way mesons are factored and their other known properties will reveal more about their structure, or at least, suggest new avenues of investigation.

3. Tetraquark mass spectrum - Overview

A mass spectrum (or factoring spectrum) of tetraquarks of divisor types $7^{1}, 7^{2}$, and 7^{3}, which seem to be the most numerous types of tetraquarks, is presented below. It shows that there are not only tetraquarks among the cc mesons (the charmoniums), but also among the light unflavored mesons, the c mesons, the cs mesons, the bs mesons, and the bb mesons (the bottomoniums). Even some baryons factor as ccce tetraquarks. (The Lambda baryon factors as a divisor type 7^{7} ccce tetraquark.) Other mesons that factor as tetraquarks, but with other divisors, such as $7^{2} 3^{4}$, are not shown in the table below.

Notice that most of the factorings in the table below involve integer multipliers of the unit of factorization or an integer and a half multiplier. Also notice that the difference between the theoretical and experimental mass for almost every tetraquark factored is less than .5 MeV . Many are less than .1 MeV . Consider that together with the fact that the size of the unit of factorization is approximately 9.26 MeV , and it can be seen that it is highly unlikely that the good correlation between theoretical and experimental masses is due entirely to chance.
4. Tetraquark mass spectrum specified by (S 5$)^{4} h / 7^{3} \mathbf{1 0 0 0}$ factoring

> UoF = Unit of Factorization $=(\mathrm{S} 5)^{4} \mathrm{~h} / 7^{3} 1000=9.269062702 \mathrm{MeV} / \mathrm{c}^{2}$
> $973 \mathrm{MeV}-11030 \mathrm{MeV}$

Factoring			Thr Mass	Exp Mass	+/-	Meson	TM-EM	Source
105	UoF	$=$	973.251584					
105.5	UoF	=	977.886115					
106	UoF	$=$	982.520646	982.5	1.6/1.1	ao (980)	. 02	
106.5	UoF	=	987.155178					
107	UoF	=	991.789709					
107.5	UoF	=	996.424240					
108	UoF	$=$	1001.05877					
108.5	UoF	$=$	1005.69330					
109	UoF	$=$	1010.32783					
109.5	UoF	$=$	1014.96237					
110	UoF	$=$	1019.59690					
110.5	UoF	$=$	1024.23143					
111	UoF	$=$	1028.86596					
125	UoF	=	1158.63284					
125.5	UoF	=	1163.26737					
126	UoF	=	1167.90190	1168	4	h1 (1170)	. 1	
126.5	UoF	=	1172.53643					
127	UoF	$=$	1177.17096					
127.5	UoF	$=$	1181.80549					
128	UoF	=	1186.44003					
128.5	UoF	$=$	1191.07456					
129	UoF	$=$	1195.70909	1196	4/5	a1 (1260)	. 3	
129.5	UoF	$=$	1200.34362					
130	UoF	=	1204.97815					
130.25	UoF	=	1207.29542	1207	5/8	a1 (1260)	. 3	
130.50	UoF	$=$	1209.61268	1210	7/2	a1 (1260)	. 4	
131	UoF	$=$	1214.24721					
131.5	UoF	=	1218.88175					
132	UoF	$=$	1223.51628					
132.5	UoF	$=$	1228.15081					
133	UoF	=	1232.78534					
133.5	UoF	=	1237.41987					
134	UoF	$=$	1242.05440					
134.5	UoF	=	1246.68893					
135	UoF	=	1251.32346	1251	8	b1 (1235)	. 3	
135.5	UoF	$=$	1255.95800					
136	UoF	$=$	1260.59253					
136.5	UoF	=	1265.22706	1265	8	f1 (1270)	. 2	
137	UoF	=	1269.86159	1269.7	5.2	f1 (1270)	. 2	
137.25	UoF	=	1272.17886	1272	4	f1 (1270)	. 2	
137.5	UoF	$=$	1274.49612					
137.75	UoF	=	1276.81339	1277	4	f1 (1270)	. 2	
138	UoF	=	1279.13065	1279	5	f1 (1270)	. 1	
138.5	UoF	$=$	1283.76518					
138.75	UoF	=	1286.08245	1286	1	f1 (1270)	. 08	
139	UoF	$=$	1288.39972	1288	4/5	f1 (1285	. 4	
139.5	UoF	=	1293.03425					
140	UoF	=	1297.66878					
140.5	UoF	=	1302.30331	1302	9/8	$\boldsymbol{\eta}$ (1295)	. 3	
141	UoF	=	1306.93784					
141.5	UoF	$=$	1311.57237					
142	UoF	=	1316.20690					
142.5	UoF	$=$	1320.84144					
143	UoF	$=$	1325.47597					
143.5	UoF	$=$	1330.11050					
144	UoF	=	1334.74503					
144.5	UoF	=	1339.37956					
145	UoF	$=$	1344.01409					
145.5	UoF	=	1348.64862					
146	UoF	=	1353.28315					
146.5	UoF	$=$	1357.91769					
147	UoF	$=$	1362.55222					
147.5	UoF	$=$	1367.18675					

148	UoF	$=$	1371.82128				
148.5	UoF	=	1376.45581				
149	UoF	$=$	1381.09034				
149.5	UoF	$=$	1385.72487				
149.75	UoF	$=$	1388.04214	1388	4	$\eta(1405)$. 04
150	UoF	=	1390.35941				
150.5	UoF	=	1394.99394				
151	UoF	$=$	1399.62847				
151.5	UoF	=	1404.26300	1404	6	$\boldsymbol{\eta}$ (1405)	. 3
152	UoF	=	1408.89753	1409.0	1.7	$\boldsymbol{\eta}$ (1405)	. 1
152.5	UoF	$=$	1413.53206				
153	UoF	=	1418.16659				
153.5	UoF	$=$	1422.80112	1423	2.1/7.3	h1 (1415)	. 2
154	UoF	$=$	1427.43566				
154.5	UoF	=	1432.07019				
155	UoF	$=$	1436.70472				
155.25	UoF	$=$	1439.02198	1439	5/6	f2 (1430)	. 02
155.5	UoF	$=$	1441.33925				
156	UoF	=	1445.97378	1446	5	fo (1500)	. 03
156.5	UoF	$=$	1450.60831				
157	UoF	$=$	1455.24284				
157.5	UoF	$=$	1459.87738	1460	10	$\eta(1475)$. 1
158	UoF	=	1464.51191	1464	10	η (1475)	5
158.5	UoF	=	1469.14644	1469	14/13	$\eta(1475)$	1
159	UoF	=	1473.78097				
159.5	UoF	=	1478.41550	1478	6	fo (1500)	. 4
160	UoF	=	1483.05003				
160.5	UoF	$=$	1487.68456				
161	UoF	=	1492.31910				
161.5	UoF	=	1496.95363	1497	10	fo (1500)	. 05
162	UoF	=	1501.58816	1502	10	fo (1500)	. 4
162.5	UoF	$=$	1506.22269				
163	UoF	=	1510.85722	1511	9	fo (1500)	. 1
163.5	UoF	=	1515.49175	1515	12	fo (1500)	. 5
164	UoF	$=$	1520.12628	1520	25	fo (1500)	. 1
164.5	UoF	=	1524.76081	1525	5	fo (1500)	. 2
165	UoF	$=$	1529.39535				
165.5	UoF	$=$	1534.02988				
166	UoF	$=$	1538.66441	1539	20	fo (1500)	. 3
166.5	UoF	=	1543.29894				
167	UoF	=	1547.93347				
167.5	UoF	=	1552.56800				
168	UoF	$=$	1557.20253				
168.5	UoF	$=$	1561.83707				
169	UoF	$=$	1566.47160				
169.5	UoF	=	1571.10613				
170	UoF	$=$	1575.74066				
170.5	UoF	=	1580.37519				
171	UoF	$=$	1585.00972				
171.5	UoF	$=$	1589.64425				
172	UoF	$=$	1594.27878	1594	15	h1 (1595)	. 3
172.5	UoF	=	1598.91332				
173	UoF	$=$	1603.54785				
173.5	UoF	$=$	1608.18238				
174	UoF	=	1612.81691	1613	8	$\eta 2$ (1645)	. 2
174.5	UoF	=	1617.45144	1617	8	$\eta 2$ (1645)	5
174.75	UoF	=	1619.76871	1620	20	$\eta 2$ (1645)	. 2
175	UoF	$=$	1622.08597				
175.5	UoF	$=$	1626.72050				
176	UoF	$=$	1631.35504				
176.5	UoF	$=$	1635.98957				
177	UoF	=	1640.62410	1640	5	f2 (1640)	. 6
177.25	UoF	=	1642.94136	1643	7	f2 (1640)	. 06
177.5	UoF	$=$	1645.25863				
178	UoF	$=$	1649.89316	1650	12	$\omega 3$ (1670)	. 1
178.5	UoF	$=$	1654.52769				
179	UoF	$=$	1659.16222	1659	6	f2 (1640)	. 2
179.5	UoF	=	1663.79676	1664	8/10	$\pi 1$ (1600)	. 2
180	UoF	=	1668.43129	1669	11	$\omega 3$ (1670)	. 6
180.5	UoF	=	1673.06582	1673	12	$\omega 3$ (1670)	. 07
181	UoF	$=$	1677.70035	1678	12	p3 (1690)	. 3
181.5	UoF		1682.33488				

182	UoF	$=$	1686.96941	1687	9/15	$\pi 2$ (1670)	. 03
182.5	UoF	=	1691.60394				
183	UoF	=	1696.23847	1696	5	fo(1710)	. 2
183.5	UoF	=	1700.87301	1701	5	fo (1710)	1
184	UoF	=	1705.50754	1706	4/5	fo (1710)	5
184.5	UoF	=	1710.14207	1710	20	$\pi 2$ (1670)	1
185	UoF	=	1714.77660				
185.5	UoF	=	1719.41113				
186	UoF	=	1724.04566				
186.5	UoF	$=$	1728.68019				
187	UoF	$=$	1733.31473	1733	10/10	$\Phi(1680)$	3
187.5	UoF	=	1737.94926	1738	30	fo (1710)	. 05
188	UoF	=	1742.58379				
188.5	UoF	=	1747.21832	1747	5	fo(1710)	2
189	UoF	=	1751.85285				
189.5	UoF	$=$	1756.48738				
190	UoF	=	1761.12191				
190.5	UoF	$=$	1765.75644				
191	UoF	=	1770.39098	1770	12	fo (1710)	. 4
191.5	UoF	=	1775.02551	1775	7/10	π (1800)	. 03
192	UoF	=	1779.66004				
192.5	UoF	=	1784.29457				
193	UoF	=	1788.92910				
193.5	UoF	=	1793.56363				
194	UoF	=	1798.19816	1799	15	f2 (1810)	. 9
194.5	UoF	=	1802.83270				
195	UoF	=	1807.46723				
195.5	UoF	=	1812.10176				
196	UoF	=	1816.73629				
196.5	UoF	=	1821.37082				
197	UoF	=	1826.00535				
197.5	UoF	$=$	1830.63988	1831	7	X (1835)	. 4
198	UoF	=	1835.27441	1835	12	$\eta 2$ (1870)	. 3
198.5	UoF	=	1839.90895	1840	25	$\eta 2$ (1870)	. 1
198.75	UoF	=	1842.22621	1842.2	4.2	X (1840)	. 03
199	UoF	=	1844.54348	1844	13	$\eta 2$ (1870)	5
199.5	UoF	=	1849.17801				
200	UoF	$=$	1853.81254	1854	7	Ф3 (1850)	2
200.5	UoF	=	1858.44707	1859	3/10	$\mathrm{X}(1835)$	6
201	UoF	=	1863.08160	1863	9/10	π (1800)	. 08
201.5	UoF	=	1867.71613				
202	UoF	=	1872.35067				
202.5	UoF	=	1876.98520	1877.3	6.3	X(1835)	3
203	UoF	=	1881.61973				
203.5	UoF	=	1886.25426				
204	UoF	=	1890.88879				
204.5	UoF	=	1895.52332				
205	UoF	=	1900.15785				
205.5	UoF	=	1904.79239				
206	UoF	=	1909.42692	1909.5	15.9	X(1835)	. 07
206.5	UoF	=	1914.06145				
207	UoF	=	1918.69598	1918	12	f2 (1950)	7
207.5	UoF	=	1923.33051				
208	UoF	=	1927.96504				
208.5	UoF	=	1932.59957				
209	UoF	=	1937.23410				
209.5	UoF	=	1941.86864				
210	UoF	=	1946.50317				
210.5	UoF	=	1951.13770				
211	UoF	=	1955.77223				
211.5	UoF	=	1960.40676				
212	UoF	=	1965.04129				
212.5	UoF	=	1969.67582				
213	UoF	=	1974.31036				
213.5	UoF	=	1978.94489				
214	UoF	=	1983.57942				
214.5	UoF	$=$	1988.21395	1988	7	f4 (2050)	. 2
215	UoF	=	1992.84848				
215.5	UoF	$=$	1997.48301				
216	UoF	$=$	2002.11754				
216.5	UoF	$=$	2006.75207				
217	UoF	=	2011.38661				
217.5	UoF	$=$	2016.02114				

218	UoF	=	2020.65567				
218.5	UoF	$=$	2025.29020				
219	UoF	$=$	2029.92473				
219.5	UoF	=	2034.55926				
220	UoF	=	2039.19379				
220.5	UoF	=	2043.82833				
221	UoF	=	2048.46286				
221.5	UoF	$=$	2053.09739				
222	UoF	=	2057.73192				
222.5	UoF	=	2062.36645				
223	UoF	$=$	2067.00098				
223.5	UoF	$=$	2071.63551				
224	UoF	=	2076.27005				
224.5	UoF	=	2080.90458	2081	13	fo (2100)	1
225	UoF	=	2085.53911	2086	20/24	fo (2100)	. 6
225.5	UoF	=	2090.17364	2090	30	fo (2100)	. 2
226	UoF	=	2094.80817				
226.5	UoF	=	2099.44270	2099	17	fo (2100)	. 4
227	UoF	=	2104.07723	2104	\sim	fo (2100)	. 08
227.5	UoF	=	2108.71176				
228	UoF	$=$	2113.34630				
228.5	UoF	=	2117.98083				
229	UoF	=	2122.61536	2122	\sim	fo (2100)	. 6
229.5	UoF	=	2127.24989				
230	UoF	=	2131.88442				
230.5	UoF	=	2136.51895				
231	UoF	$=$	2141.15348				
231.5	UoF	=	2145.78802				
232	UoF	=	2150.42255	2150	40/50	$\rho(2150)$	4
232.5	UoF	=	2155.05708				
233	UoF	=	2159.69161				
233.5	UoF	=	2164.32614				
234	UoF	=	2168.96067				
234.5	UoF	=	2173.59520				
235	UoF	=	2178.22973				
235.5	UoF	=	2182.86427				
236	UoF	=	2187.49880	2188	17/16	fo (2200)	. 5
236.5	UoF	=	2192.13333	2192	14	f (2170)	. 1
237	UoF	=	2196.76786	2197	17	fo (2200)	2
237.5	UoF	=	2201.40239				
238	UoF	=	2206.03692	2206	12/8	fo (2200)	. 04
238.5	UoF	=	2210.67145				
239	UoF	=	2215.30599				
239.5	UoF	=	2219.94052				
240	UoF	=	2224.57505				
240.5	UoF	=	2229.20958				
241	UoF	$=$	2233.84411				
241.5	UoF	=	2238.47864				
242	UoF	=	2243.11317				
242.5	UoF	=	2247.74771				
243	UoF	$=$	2252.38224				
243.5	UoF	=	2257.01677				
244	UoF	$=$	2261.65130				
244.5	UoF	=	2266.28583				
245	UoF	=	2270.92036				
245.5	UoF	=	2275.55489				
246	UoF	=	2280.18942				
246.5	UoF	$=$	2284.82396				
247	UoF	$=$	2289.45849				
247.5	UoF	=	2294.09302				
248	UoF	$=$	2298.72755				
248.5	UoF	=	2303.36208				
249	UoF	=	2307.99661	2308	17/32	D0* (2300) O	. 01
250	UoF	=	2317.26568	2317.3	0.4/0.8	Ds0* (2317)	. 03
250.25	UoF	=	2319.58294	2319.6	0.2/1.4	Ds0* (2317)	. 02
260	UoF	$=$	2409.95630				
270	UoF	$=$	2502.64693				
280	UoF	$=$	2595.33756				
284.5	UoF	=	2637.04833	2637	2/6	D* (2640) +	. 05
290	UoF	=	2688.02818	2688	4/3	Ds1*(2700)	. 03
300	UoF	$=$	2780.71881				
310	UoF	=	2873.40944				
320	UoF	$=$	2966.10006				
330	UoF	$=$	3058.79069				

900	UoF	=	8342.15643				
910	UoF	=	8434.84706				
920	UoF	$=$	8527.53769				
930	UoF	$=$	8620.22831				
940	UoF	=	8712.91894				
950	UoF	$=$	8805.60957				
960	UoF	=	8898.30019				
970	UoF	$=$	8990.99082				
980	UoF	$=$	9083.68145				
990	UoF	$=$	9176.37207				
1000	UoF	$=$	9269.06270				
1010	UoF	$=$	9361.75333				
1013.25	UoF	=	9391.87778	9391.8	6.6/2.0	nb (1S)	. 08
1013.50	UoF	=	9394.19505	9394.2	4.8/4.9	nb (1S)	. 005
1020	UoF	$=$	9454.44396				
1030	UoF	=	9547.13458				
1040	UoF	$=$	9639.82521				
1050	UoF	$=$	9732.51584				
1060	UoF	=	9825.20646				
1068	UoF	=	9899.35896	9899.3	0.4/1.0	$\mathrm{hb}(1 \mathrm{P})$. 06
1068.25	UoF	=	9901.67623	9902	4/2	hb (1P)	. 3
1070	UoF	=	9917.89709				
1078.75	UoF	=	9999.00139	9999.0	3.5/2.8	nb (2S)	. 001
1080	UoF	=	10010.5877				
1090	UoF	$=$	10103.2783				
1096.25	UoF	=	10161.2100	10161.1	0.6/1.6	Y2 (1D)	. 1
1096.50	UoF	=	10163.5273	10163.7	1.4	Y2 (1D)	. 2
1100	UoF	=	10195.9690				
1110	UoF	$=$	10288.6596				
1120	UoF	$=$	10381.3502				
1130	UoF	=	10474.0409				
1134	UoF	=	10511.1171	10511.3	1.7/2.5	Xb1 (3P)	. 2
1134.25	UoF	=	10513.4344	10513.42	. $41 / .53$	Xb1 (3P)	. 01
1134.50	UoF	=	10515.7516	10515.7	2.2/3.9	Xb1 (3P)	. 05
1136	UoF	=	10529.6552	10530	5/9	Xb1 (3P)	
1140	UoF	=	10566.7315				
1143.50	UoF	=	10599.1732	10599	6/3	Zb (10610)	. 3
1144.50	UoF	=	10608.4423	10608.5	3.4/3.7	Zb (10610)	. 06
1144.75	UoF	=	10610.7595	10611	4/3	Zb (10610)	. 2
1150	UoF	$=$	10659.4221				
1160	UoF	$=$	10752.1127				
1170	UoF	=	10844.8034				
1172.50	UoF	=	10867.9760	10868	6/5	Y (10860)	. 02
1174	UoF	=	10881.8796	10881.8	1.0/1.1	Y (10860)	. 08
1175	UoF	$=$	10891.1487	10891.1	3.2/1.2	Y (10860)	. 05
1180	UoF	=	10937.4940				
1190	UoF	$=$	11030.1846				

If not cited explicitly, all experimental mass data is from the Particle Data Group:
P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083 C 01 (2020)

5. Some c Mesons Factored as Tetraquarks

6. Some cs Mesons Factored as Tetraquarks

Ds*+	$(S 5){ }^{4} \mathrm{~h} / 11^{1} 7^{3} 2^{1}$		${ }^{1}=421.3210319 \mathrm{MeV} / \mathrm{c}^{2}$		
Factoring		Thr Mass	Exp Mass	+/-	TM-EM
250. (S5) ${ }^{4} \mathrm{~h} / 11^{1} 7^{3} 100$		2106.6051	2106.6	2.1/2.7	. 005
5. $(\mathrm{S} 5)^{4} \mathrm{~h} / 11^{1} 7^{3} 2^{1}$		2106.6051	2106.6	2.1/2.7	. 005
Dso* (2317) +		$(\mathrm{S} 5)^{4} \mathrm{~h} / 7^{3} 1000=9.269062702 \mathrm{MeV} / \mathrm{C}^{2}$			
Initial Factoring		Thr Mass	Exp Mass	+/-	TM-EM
250. (S5) ${ }^{4} \mathrm{~h} / 7^{3} 1000$	=	2317.2656	2317.3	.4/.8	. 03
250.25 (S5) ${ }^{4} \mathrm{~h} / 7^{3} 1000$	=	2319.5829	2319.6	.2/1.4	. 02
Fully Reduced Factoring					
1. $(S 5)^{4} h / 7{ }^{3} 2^{2}$	=	2317.2656	2317.3	.4/.8	. 03
$1.001(S 5){ }^{4} \mathrm{~h} / 7^{3} 2^{2}$	=	2319.5829	2319.6	.2/1.4	. 02

The 2317.3 resonance factors to the base $(S 5){ }^{4} h / 7^{3} 2^{2}$ which suggests another possible base factoring twice as big: (S5) ${ }^{\mathbf{4}} \mathrm{h} / \mathbf{7}^{\mathbf{3}} \mathbf{2}^{\mathbf{1}} \mathbf{= 4 6 3 4 . 5 3 1 3 \text { . One of the resonances of } \mathbf { Y } (\mathbf { 4 6 0 0 }) \text { reported by }}$ PDG matches this mass, and it can be seen listed in the Tetraquark Mass Spectrum in another section at position 500 . There it is seen factored as $500(S 5)^{4} h / 7^{3} \mathbf{1 0 0 0}$.

Factoring			Thr Mass	Exp Mass	+/-	Meson
250.	$(S 5)^{4} h / 7^{3} 1000$	$=$	2317.2656	2317.3	. $4 / .8$	Dso* (2317) +
500.	$(S 5)^{4} \mathrm{~h} / 7^{3} 1000$	$=$	4634.5313	4634	15	Y(4600)
1.	$(\mathrm{S} 5)^{4} \mathrm{~h} / 7^{3} 2^{2}$	$=$	2317.2656			
2.	$(S 5)^{4} h / 7^{3} 2^{2}$	$=$	4634.5313			

Ds1 (2536) + UoF $=(S 5)^{4} \mathrm{~h} / 2^{1} 3^{1} 11^{1} 19^{1} 1000=2.535317789 \mathrm{MeV}$

Factoring			Thr Mass	Exp Mass	+/-	TM-EM
999.71875	UoF	$=$	2534.6047	2534.6	. $3 / .7$. 005
999.78125	UoF	=	2534.7631	2534.78	. $31 / .40$. 02
999.875	UoF	$=$	2535.0008	2535	. $6 / 1$. 0008
999.90625	UoF	=	2535.0801	2535.08	. $01 / .15$. 0001
1000.	UoF	=	2535.3177	2535.3	0.7	. 02
1000.10	UoF	=	2535.5713	2535.57	. $44 / .41$. 001
1000.15	UoF	=	2535.6980	2535.7	$0.6 / 0.5$. 002
1000.25	UoF	=	2535.9516	2535.9	$0.6 / 2.0$. 05
1000.50	UoF	=	2536.5854	2536.6	$0.7 / 0.4$. 02

[^0]Ds2* (2573)
$(\mathrm{S} 5)^{4} \mathrm{~h} / 7^{2} 3^{6} 10=8.900334556 \mathrm{MeV} / \mathrm{c}^{2}$

Factoring			Thr Mass	Exp Mass	+/-	TM-EM
288.6875	$(\mathrm{S} 5)^{4} \mathrm{~h} / 7^{2} 3^{6} 10$	=	2569.4153	2569.4	1.6/0.5	. 02
288.750	(S5) ${ }^{4} \mathrm{~h} / 7^{2} 3^{6} 10$	=	2569.9716	2570.0	4.3	. 03
289.	$(\mathrm{S} 5){ }^{4} \mathrm{~h} / 7^{2} 3^{6} 10$	=	2572.1966	2572.2	0.3/1.0	. 003
289.125	(S5) ${ }^{4} \mathrm{~h} / 7^{2} 3^{6} 10$	=	2573.3092	2573.2	1.7/1.6	. 1
289.250	(S5) ${ }^{4} \mathrm{~h} / 7^{2} 3^{6} 10$	=	2574.4217	2574.5	3.3/1.6	. 08
202.	$(\mathrm{S} 5)^{4} \mathrm{~h} / 7^{3} 3^{6} 10$	=	2568.3822	2568.39	.29/. 26	. 01

Dsi* (2700) +	$(\mathrm{S} 5)^{4} \mathrm{~h} / 7^{3} 1000=9.269062702 \mathrm{MeV} / \mathrm{c}^{2}$			
Factoring	Thr Mass	Exp Mass	+/-	TM-EM
290. (S5) ${ }^{4} \mathrm{~h} / 7^{3} 1000$	$=2688.0281$	2688	4/3	. 03

Ds1* (2860) +		$(S 5){ }^{4} \mathrm{~h} / 11^{1} 7^{5} 3^{1}$		${ }^{1}=5.732258938 \mathrm{MeV} / \mathrm{C}^{2}$		
Factorin			Thr Mass	Exp Mass	+/-	TM-EM
500.	$(\mathrm{S} 5)^{4} \mathrm{~h} / 11^{1} 7^{5} 3^{1}$	=	2866.1294	2866.1	1.0/6.3	. 03
499.25	(S5) ${ }^{4} \mathrm{~h} / 11^{1} 7^{5} 3^{1}$		2861.8302	2862	2/5	. 2
498.75	(S5) ${ }^{4} \mathrm{~h} / 11^{1} 7^{5} 3^{1}$	=	2858.9641	2859	12/24	. 03

7. Some ce Mesons Factored as Tetraquarks

$\Psi(4360)$		$(\mathrm{S} 5){ }^{4} \mathrm{~h} / 7^{3} 1000=9.269062702 \mathrm{MeV} / \mathrm{C}^{2}$			
Factoring		Thr Mass	Exp Mass	+/-	TM-EM
466.5	(S5) ${ }^{4} \mathrm{~h} / 7^{3} 1000$	$=4324.0177$	4324	24	. 02
469.	(S5) ${ }^{4} \mathrm{~h} / 7^{3} 1000$	$=4347.1904$	4347	6/3	. 2
470.5	(S5) ${ }^{4} \mathrm{~h} / 7^{3} 1000$	$=4361.0940$	4361	9/9	. 09

Many more cc mesons that factor as tetraquarks are listed in the main mass spectrum, Tetraquark mass spectrum, starting on page 5 .

8. Some bs Mesons Factored as Tetraquarks

If the factorings and theoretical masses below are correct, and specifically, if the theoretical mass 5366.9017 is correct, then that means the experimental measurement 5366.90 is accurate to 1 part in 3 million! The accuracy the experimentalists can achieve in some cases is truly amazing!

Some Higher Order Tetraquarks

Factoring	Thr Mass	Exp Mass		$+/-$	Meson	TM-EM
3. $(\mathrm{S} 5)^{4} \mathrm{~h} / 7^{4} 2^{2}$	$=$	993.1138	993.1	2.1	ao(980)	.01
37. $(\mathrm{S} 5)^{4} \mathrm{~h} / 7^{5} 5^{2} 2^{1}=$	1399.8176	1399.8	2.2	$\eta(1405)$.02	
370. $(\mathrm{S} 5)^{4} \mathrm{~h} / 7^{5} 3^{3}$	$=2592.2548$	2595.25	0.28	$\Lambda \mathrm{C}(2595)+$.005	
289. $(\mathrm{S} 5)^{4} \mathrm{~h} / 7^{7}$	$=1115.6847$	1115.683	.006	Λ	.002	
364. $(\mathrm{S} 5)^{4} \mathrm{~h} / 7^{7}$	$=1405.2223$	1405.1	$1.3 / 1.0$	$\Lambda(1405)$.1	

[^1]
9. Factorization of the $\mathbf{X}(6900)$ Tetraquark

The tetraquark $\mathbf{X (6 9 0 0)}$ can be factored to $\mathbf{5 2 . 0 0 (S 5)} \mathbf{~} \mathbf{h} / \mathbf{7}^{\mathbf{4}} \mathbf{1 0}$. As can be seen, from the mass spectrum table above, many tetraquarks have been found that factor with (S5) ${ }^{4} h$ divided by 7^{1}, 7^{2}, and 7^{3}, but few that factor with $(\mathbf{S 5})^{4} h$ divided by 7^{4} have been found.

$\mathbf{X}(6900)$	$(\mathrm{S} 5){ }^{4} \mathrm{~h} / 7^{4} 10=132.4151815 \mathrm{MeV} / \mathrm{c}^{2}$					
Factoring		Thr Mass	Exp Mass	+/-	TM-EM	Source
52.00 (S5) ${ }^{4} \mathrm{~h} / 7^{4} 10$	$=$	6885.5894	6886	11/11	. 4	[5]
26.00 (S5) ${ }^{4} \mathrm{~h} / 7^{4} 5^{1}$	=	6885.5894	6886	11/11	. 4	[5]

Another $\mathbf{7}^{\mathbf{4}}$ type tetraquark may be the Dj* (2600). Two of its experimental masses, as reported by PDG, are shown factored in the table below. The first resonance does look like it is a 7^{4} type tetraquark. The second resonance may not be, because of the large difference between experimental and theoretical masses (TM-EM $=.52$), relative to error size (3.7/4.2).

Dj*(2600)

Factoring		Thr Mass	Exp Mass	+/-	Meson	TM-EM	Source
197. (S5) ${ }^{4} \mathrm{~h} / 7^{4} 100$	$=$	2608.5790	2608.7	2.4/2.5	Dj*(2600)	. 12	[1]
198. (S5) ${ }^{4} \mathrm{~h} / 7^{4} 100$		2621.8205	2621.3	3.7/4.2	Dj*(2600)	. 52	[1]

10. Factorizations of the $\mathbf{X}(6200), \mathbf{X}(6500)$, and $X(7200)$ Tetraquarks

The $\mathbf{X (6 2 0 0)}, \mathbf{X (6 5 0 0)}$, and $\mathbf{X (7 2 0 0)}$ tetraquarks can all be factored with ($\mathbf{(5 5)} \mathbf{~}^{\mathbf{4}} \mathbf{h} / \mathbf{7}^{\mathbf{2}} \mathbf{3}^{\mathbf{2}} \mathbf{1 0 0}$. The $\mathrm{X}(6500)$ and $X(7200)$ can each be further reduced to a base state, that is, to a $\mathbf{1 . 0 0 0}$ constant of multiplication and a small integer divisor of (S5) ${ }^{\mathbf{4}} \mathrm{h}$. The three are shown together below factored with the same divisors of $(S 5)^{4} h$ to more easily see their exact relative masses.
$\mathbf{X}(6200), \mathbf{X}(6500), \mathbf{X}(7200)$
$(\mathrm{S} 5)^{4} \mathrm{~h} / 7^{2} 3^{2} 100=72.09270991 \mathrm{MeV} / \mathrm{C}^{2}$

Factoring		Thr Mass	Exp Mass	+/-	Meson	Source
86. $(\mathrm{S} 5)^{4} \mathrm{~h} / 7^{2} 3^{2} 100$	$=$	6199.9730	~6200		X (6200)	[6]
90. (S5) ${ }^{4} h / 7^{2} 3^{2} 100$	$=$	6488.3438	~6500	----	X (6500)	[6]
100. (S5) ${ }^{4} \mathrm{~h} / 7^{2} 3^{2} 100$	=	7209.2709	~7200	---	X (7200)	[6]

The factorings of $\mathbf{X (6 5 0 0)}$ and $\mathbf{X (7 2 0 0)}$ can be reduced to base state factorings, meaning, put in the form $1.00(\mathrm{~S} 5)^{4} \mathrm{~h} / \mathrm{n}$, where n is an integer. Not all factorings of tetraquarks can be put in this form. What it means, in simple terms, is that an integer can be found that when divided into (S5) ${ }^{4} \mathrm{~h}$ gives the mass of the tetraquark. Such integers do exist for the factorings of the $\mathbf{x}(6500)$ and $\mathbf{x}(7200)$. They are $\mathbf{4 9 0}$ and 441 respectively, or $7^{2} 10$ and $7^{2} 3^{2}$. Those base factorings for the $\mathbf{X}(6500)$ and $\mathbf{x}(7200)$ are shown in the table below.

$\mathbf{X}(6500), \mathbf{X}(7200)$	$(\mathrm{S} 5)^{4} \mathrm{~h}=3179288.507 \mathrm{MeV} / \mathrm{C}^{2}$				
Factoring		Thr Mass	Exp Mass	+/-	Meson
$1.000(\mathrm{~S} 5)^{4} \mathrm{~h} / 7^{2} 10$	$=$	6488.3438	~6500	----	$\mathrm{X}(6500)$
$1.000(\mathrm{~S} 5)^{4} \mathrm{~h} / 7^{2} 3^{2}$	=	7209.2709	~7200	----	X (7200)

An interesting thing about the $\mathrm{X}(7200)$ tetraquark is that it's mass can be divided by three to give the mass of another theoretical base state tetraquark, which has possibly been observed as a resonance of the c meson Do*(2300)+.

Do*(2300)+	$(\mathrm{S} 5){ }^{4} \mathrm{~h} / 7^{2} 3^{3}=2403.09033 \mathrm{MeV} / \mathrm{C}^{2}$			
Factoring	Thr Mass	Exp Mass	+/-	Meson
$1.000(S 5){ }^{4} \mathrm{~h} / 7^{2} 3^{3}$	$=2403.0903$	2403	14/35	Do*(2300) +

11. Mass Spectrum of $\boldsymbol{\Phi}(\mathbf{1 0 2 0})$'s Experimental Masses

(The spectrum is on the next page.)
Surprisingly, $\boldsymbol{\Phi}(\mathbf{1 0 2 0})$ factors with $\mathbf{S 1 7 h}$, meaning it is most likely a tetraquark. Some of the experimental mass determinations made for this meson are amazingly accurate, assuming the theoretical masses calculated from the factorings are correct. Several experimental masses are accurate to better than one part per 10 million! For instance, 1019.483 vs 1019.48306, experimental vs theoretical. That's equivalent to measuring a 10 km distance to an accuracy of plus or minus one millimeter! S17h was used in this factoring spectrum rather than $(\mathbf{S 5})^{4} \mathbf{h}$, because the difference between the largest and smallest of $\boldsymbol{\Phi}$ (1020)'s plotted experimental masses is less than $1 \mathrm{MeV} / \mathrm{c}^{2}$, and in order to factor masses that are that close together, it is better to use $\mathbf{S 1 7 h}$ (initially anyway, for easier discovery), because $\mathbf{S 1 7 h}$ is 200200 times smaller than $(\mathbf{S 5})^{4} \mathbf{h}$. Once the correct factoring has been discovered with $\mathbf{S 1 7 h}$, it can be easily converted to (S5) ${ }^{4} \mathbf{h}$ factoring if desired.

12. Mass Spectrum of $\Psi(\mathbf{2 S})$'s Experimental Masses

(The spectrum is two pages ahead.)
This mass spectrum plots all seven experimental masses reported by Particle Data Group [1] for the $\Psi(2 \mathbf{S})$ meson. As can be seen in the heading, $\Psi(\mathbf{2 S})$ has been factored with $\mathbf{S 1 7 h}$, so it is most likely a tetraquark. Six of the seven experimental masses agree with their correlated theoretical masses to six digits of accuracy, which, depending on the exact numbers, could be better than 1 part per million accuracy. (One part per million accuracy is equivalent to measuring a kilometer to plus or minus 1 mm .) One experimental mass agrees with its theoretical counterpart to seven digits. You could even say it agrees to nine digits, because the next two digits in its correlated theoretical mass is '00'. (3686.099 vs 3686.09900) $\mathbf{S 1 7 h}$ was used to produce this factoring spectrum rather than $(\mathbf{S 5})^{4} \mathbf{h}$, because the difference between the largest and smallest of the seven experimental masses of $\Psi(2 S)$ is only $0.17 \mathrm{MeV} / \mathrm{c}^{2}$, and in order to factor masses that are that close together it is better to use S17h (for easier discovery initially), because $\mathbf{S 1 7 h}$ is 200200 times smaller than (S5) $\mathbf{~} \mathbf{h}$.

| $\Psi(\mathbf{2 S})$ | $\mathrm{S} 17 \mathrm{~h} / 1800=.0088225344$ | $\mathrm{MeV} / \mathrm{c}^{2}$ | |
| :--- | :--- | :--- | :--- | :--- |
| Factoring | $\underline{\text { Thr Mass }}$ | $\underline{\text { Exp Mass }}$ | $\underline{+/-}$ |
| 51(8192) S17h/1800 | $=3685.9843$ | 3685.98 | $.09 / .04$ |

$\Phi(1020)$

S17h/1620 Factoring

Factoring	Ther Mass	Expr Mass	+/-	$\begin{aligned} & \text { Block } \\ & \text { Factoring } \end{aligned}$
103976	S17h/1620 $=1019.25760$			
103977	S17h/1620 $=1019.26740$			
103978	$\mathrm{S} 17 \mathrm{~h} / 1620=1019.27721$			
103979	S17h/1620 $=1019.28701$			
103980	S17h/1620 $=1019.29681$			
103981	S17h/1620 $=1019.30661$	1019.30	.02/.10	
103982	S17h/1620 $=1019.31642$			
103983	S17h/1620 $=1019.32622$			
103984	S17h/1620 $=1019.33602$			
103985	S17h/1620 $=1019.34582$			
103986	S17h/1620 $=1019.35563$			
103987	S17h/1620 $=1019.36543$	1019.36	. 12	
103988	S17h/1620 $=1019.37523$			
103989	S17h/1620 $=1019.38504$	1019.38	.07/.08	
103990	S17h/1620 $=1019.39484$			
103991	S17h/1620 $=1019.40464$	1019.40	. $04 / .05$	
103992	S17h/1620 $=1019.41444$	1019.411	. 008	
103993	S17h/1620 $=1019.42425$	1019.42	. 05	
103994	S17h/1620 $=1019.43405$			
103995	S17h/1620 $=1019.44385$	1019.441	.008/.080	
103996	S17h/1620 $=1019.45366$			
103997	$\mathrm{S} 17 \mathrm{~h} / 1620=1019.46346$	1019.463	. 061	
103998	S17h/1620 $=1019.47326$			
103999	S17h/1620 $=1019.48306$	1019.483	.011/.025	
104000	$\mathrm{S} 17 \mathrm{~h} / 1620=1019.49287$			
104001	S17h/1620 $=1019.50267$	1019.5	. 4	
104002	S17h/1620 $=1019.51247$	1019.51	.02/.05	
104003	S17h/1620 $=1019.52228$	1019.52	.05/.05	
104004	S17h/1620 $=1019.53208$			
104005	S17h/1620 $=1019.54188$			
104006	S17h/1620 $=1019.55168$			
104007	S17h/1620 $=1019.56149$			
104008	S17h/1620 $=1019.57129$			
104009	S17h/1620 $=1019.58109$			
104010	S17h/1620 $=1019.59090$			
104011	$\mathrm{S} 17 \mathrm{~h} / 1620=1019.60070$	1019.6	. 5	
104012	S17h/1620 $=1019.61050$			
104013	S17h/1620 $=1019.62030$			
104014	S17h/1620 $=1019.63011$	1019.63	. 07	
104015	S17h/1620 $=1019.63991$			
104016	S17h/1620 $=1019.64971$			
104017	S17h/1620 $=1019.65952$			
104018	$\mathrm{S} 17 \mathrm{~h} / 1620=1019.66932$	1019.67	. 17	
104019	S17h/1620 $=1019.67912$			
104020	S17h/1620 $=1019.68892$			
104021	S17h/1620 $=1019.69873$			
104022	S17h/1620 $=1019.70853$	1019.7	. 3	
104023	S17h/1620 $=1019.71833$			
104024	$\mathrm{S} 17 \mathrm{~h} / 1620=1019.72813$			

$\Psi(2 S)$

S17h/1800 Factoring

	Block (1)				Block (8192)	
	Factoring	- Ther Mass	Expr Mass	+/-	Factoring	
	417777	$S 17 \mathrm{~h} / 1800=3685.85197$				
	417778	$\mathrm{S} 17 \mathrm{~h} / 1800=3685.86079$				
	417779	S17h/1800 $=3685.86961$				
	417780	$\mathrm{S} 17 \mathrm{~h} / 1800=3685.87843$				
	417781	S17h/1800 $=3685.88726$				
	417782	$\mathrm{S} 17 \mathrm{~h} / 1800=3685.89608$				
	417783	S17h/1800 $=3685.90490$				
	417784	S17h/1800 $=3685.91372$				
	417785	S17h/1800 $=3685.92255$				
	417786	S17h/1800 $=3685.93137$				
	417787	$\mathrm{S} 17 \mathrm{~h} / 1800=3685.94019$				
	417788	S17h/1800 $=3685.94901$	3685.95	0.10		
	417789	S17h/1800 $=3685.95784$				
	417790	$S 17 \mathrm{~h} / 1800=3685.96666$				
	417791	S17h/1800 $=3685.97548$				
	-417792	$\mathrm{S} 17 \mathrm{~h} / 1800=3685.98430$	3685.98	.09/.04	51 (8192)	S17h/1800
	417793	S17h/1800 $=3685.99313$				
	417794	S17h/1800 $=3686.00195$	3686.00	0.10		
	417795	S17h/1800 $=3686.01077$				
	417796	$\mathrm{S} 17 \mathrm{~h} / 1800=3686.01959$				
	417797	S17h/1800 $=3686.02842$				
	417798	S17h/1800 $=3686.03724$				
	417799	$S 17 \mathrm{~h} / 1800=3686.04606$				
+16	417800	$\mathrm{S} 17 \mathrm{~h} / 1800=3686.05488$				
	417801	S17h/1800 $=3686.06371$				
	417802	S17h/1800 $=3686.07253$				
	417803	$\mathrm{S} 17 \mathrm{~h} / 1800=3686.08135$				
	417804	S17h/1800 $=3686.09017$				
	417805	S17h/1800 $=3686.09900$	3686.099	. $004 / .009$		
	417806	$\mathrm{S} 17 \mathrm{~h} / 1800=3686.10782$				
	417806.5	S17h/1800 $=3686.11223$	3686.111	. $025 / .009$		
	417807	S17h/1800 $=3686.11664$	3686.114	. $007 / .011$		
	-417808	$\mathrm{S} 17 \mathrm{~h} / 1800=3686.12546$	3686.12	.06/.10	$(51(8192)+16)$	S17h/1800
	417809	$\mathrm{S} 17 \mathrm{~h} / 1800=3686.13429$				
	417810	S17h/1800 $=3686.14311$				
	417811	S17h/1800 $=3686.15193$				
	417812	$S 17 \mathrm{~h} / 1800=3686.16075$				
	417813	$\mathrm{S} 17 \mathrm{~h} / 1800=3686.16958$				
	417814	S17h/1800 $=3686.17840$				
	417815	$S 17 \mathrm{~h} / 1800=3686.18722$				
	417816	S17h/1800 $=3686.19604$				
	417817	S17h/1800 $=3686.20487$				
	417818	S17h/1800 $=3686.21369$				
	417819	S17h/1800 $=3686.22251$				
	417820	S17h/1800 $=3686.23133$				
	417821	$S 17 \mathrm{~h} / 1800=3686.24016$				
	417822	$\mathrm{S} 17 \mathrm{~h} / 1800=3686.24898$				

13. Conclusion

The excellent agreement between experimental tetraquark masses and the theoretical masses calculated from hypersphere surface volume factoring suggests tetraquarks have a higher dimensional structure. The exact structure of tetraquarks probably cannot be determined exactly from factoring alone, but it may aide in formulating or checking new more geometrically descriptive theories about their structure. To that end, a computerized correlation analysis of how a tetraquark factors versus its other properties may provide insights into, if not their structure per se, then, how to proceede with the search for their structure. What is needed for a definitive explanation of their structure, of course, is a single equation that will describe a tetraquark's total geometry and physics, the way the Schrodinger equation describes the geometry and physics of the hydrogen atom. Whether that needs new physics assumptions or just familiar 3d equations modified to work in higher dimensions is unknown. But, it is really not the structure of the tetraquarks that is the most interesting thing about them. It's the material of which they are made. Tetraquark structure is only interesting in as much as it can shed light on the nature of the material - the quark material - of which tetraquarks and other mesons are made.

14. Appendix

Hypersphere Surface Volume Formulae
\qquad next page Hypersphere Surface Volume Formulae Times h...............two pages ahead

Hypersphere Surface Volume

Equations

```
Sn = the Surface Volume of an n-sphere
```

S2 =	$2 \pi r^{1}$	S20 =	nnn	π^{10}	r^{19}
S3 =	$4 \pi r^{2}$	S21 =	nnn	π^{10}	r^{20}
S4 =	$2 \pi^{2} r^{3}$	S22 =	nnn	π^{11}	r^{21}
S5 =	$8 / 3 \quad \pi^{2} \quad r^{4}$	S23 =	nnn	π^{11}	r^{22}
S6 =	$\pi^{3} r^{5}$	S24 =	nnn	π^{12}	r^{23}
S7 =	$16 / 15 \quad \pi^{3} r^{6}$	S25 =		π^{12}	r^{24}
S8 =	$1 / 3 \quad \pi^{4} \quad r^{7}$	S26 =	nnn	π^{13}	r^{25}
S9 =	$32 / 105 \quad \pi^{4} r^{8}$	S27 =	nnn	π^{13}	r^{26}
S10 =	$1 / 12 \quad \pi^{5} r^{9}$	S28 =	nnn	π^{14}	r^{27}
S11 =	$64 / 945 \quad \pi^{5} \quad r^{10}$	S29 =	nnn	π^{14}	r^{28}
S12 =	1/60 $\pi^{6} r^{11}$	S30 =	nnn	π^{15}	r^{29}
S13 =	128/10395 $\pi^{6} r^{12}$	S31 =		π^{15}	r^{30}
S14 =	1/360 $\pi^{7} r^{13}$				
S15 =	$256 / 135135 \quad \pi^{7} r^{14}$				
S16 =	1/2520 $\pi^{8} r^{15}$				
S17 =	512/2027025 $\pi^{\mathbf{8}} r^{16}$				
S18 =	1/20160 $\pi^{9} \quad r^{17}$				
S19 =	1024/34459425 $\pi^{9} r^{18}$				

$\begin{array}{lrll}\mathbf{S 1 8}= & 1 / 20160 & \pi^{9} & r^{17} \\ \mathbf{S 1 9}= & 1024 / 34459425 & \pi^{9} & r^{18}\end{array}$

Hypersphere Surface Volumes
 Times 'h'

```
Snh = the Surface Volume of a unit radius n-sphere times h
    h = 6.62607015 MeV/c
```

S2h $=$	2	$\pi \mathrm{h}=41.63282661 \mathrm{MeV}$
S3h =	4	$\pi \mathrm{h}=83.26565322 \mathrm{MeV}$
S4h =	2	$\pi^{2} \mathrm{~h}=130.7933822 \mathrm{MeV}$
S5h	8/3	$\pi^{2} \mathrm{~h}=174.3911763 \mathrm{MeV}$
S6h =		$\pi^{3} \mathrm{~h}=205.4497644 \mathrm{MeV}$
S7h =	16/15	$\pi^{3} \mathrm{~h}=219.1464153 \mathrm{MeV}$
S8h	1/3	$\pi^{4} \mathrm{~h}=215.1464901 \mathrm{MeV}$
S9h $=$	32/105	$\pi^{4} \mathrm{~h}=196.7053624 \mathrm{MeV}$

```
S10h =
    1/12 }\mp@subsup{\pi}{}{5}\textrm{h}=168.97565582 MeV
S11h =
    64/945 片 h = 137.3262492 MeV
```

$\mathrm{S} 12 \mathrm{~h}=\quad 1 / 60 \quad \pi^{6} \mathrm{~h}=106.1705373 \mathrm{MeV}$
$\mathrm{S} 13 \mathrm{~h}=128 / 10395 \pi^{6} \mathrm{~h}=\mathbf{7 8 . 4 4 0 5 7 0 1 3} \mathrm{MeV}$
$\mathbf{S 1 4 h}=\quad 1 / 360 \quad \boldsymbol{\pi}^{7} \mathbf{h}=55.59076334 \mathrm{MeV}$
$\mathbf{S 1 5 h}=256 / 135135 \boldsymbol{\pi}^{7} \mathbf{h}=\mathbf{3 7 . 9 1 2 0 4 9 0 5} \mathrm{MeV}$
S16h $=1 / 2520 \quad \pi^{8} \mathrm{~h}=\mathbf{2 4 . 9 4 9 0 7 6 2 4 \mathrm { MeV }}$
S17h $=512 / 2027025 \pi^{8} \mathbf{h}=\mathbf{1 5 . 8 8 0 5 6 1 9 7} \mathrm{MeV}$
$\mathbf{S 1 8 h}=\quad 1 / 20160 \quad \boldsymbol{\pi}^{9} \mathbf{h}=9.79747933 \mathrm{MeV}$
$\mathbf{S 1 9 h}=1024 / 34459425 \boldsymbol{\pi}^{9} \mathbf{h}=\mathbf{5 . 8 6 9 4 4 1 9 8} \mathrm{MeV}$
S20h $=\quad 1 / 181440 \quad \boldsymbol{\pi}^{10} \mathbf{h}=3.419965454 \mathrm{MeV}$
S21h $=2048 / 654729075 \pi^{10} \mathbf{h}=1.940989032 \mathrm{MeV}$
ccce Tetraquark's Unit of Factorization
$(S 5)^{4} \mathbf{h}=(4096 / 81) \boldsymbol{\pi}^{10} \mathbf{h}=3179288.507 \mathrm{MeV} / \mathrm{c}^{2}$

15. References

[1] P.A. Zyla et al (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
[2] S. Piemonte, S. Collins, M.Padmanath, D. Mohler, and S. Prelovsek Charmonium resonances with JPC=1-- and 3-- from DD scattering on the lattice [arXiv:1905.03506v2 [hep-lat] 15 Oct 2019]
[3] J.Z. Wang, R.Q. Qian, X. Liu, and T. Matsuki Are the Y states around 4.6 GeV from ete- annihilation higher charmonia? [arXiv:2001.00175v2 [hep-ph] 22 Jan 2020]
[4] M. Ablikim et al. (BESIII Collaboration), Study of the process e+e- --> $\pi^{0} \pi^{0}$ J/ Ψ and neutral charmonium-like state $\mathrm{Zc}(3900)^{0}$ [arXiv:2004.13788v2 [hep-ex] 17 Jul 2020]
[5] LHCb Collaboration, R. Aaij et al., Observation of structure in the J/ Ψ-pair mass spectrum, [arXiv:2006.16957v2 [hep-ex] 10 Nov 2020]
[6] Qin-Fang Cao, Hao Chen, Hong-Rong Qi, and Han-Qing Zheng, Some remarks on $X(6900)$ [arXiv:2011.04347v2 [hep-ph] 11 Dec 2020]

[^0]: Source of all experimental mass data on this page is from the Particle Data Group: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083 C 01 (2020)

[^1]: Source of all experimental mass data on this page is from the Particle Data Group:
 P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

