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Abstract 

Light speed experiments involving moving detectors/observers have been some of the controversial topics 

in the Special Relativity Theory. The relativistic arguments are inconsistent and are usually ad hoc 

mixtures of relativistic and classical views. Researchers trying to use such experiments to disprove 

relativity haven’t been particularly successful either because the arguments usually left room for (not 

always consistent) relativistic counter-arguments. In this paper, I present a decisive disproof of special 

relativity by applying the assumption of isotropy of the speed of light to a thought experiment. The result 

is in direct conflict with experience and well-known facts. 

Introduction 

Light speed experiments involving moving detectors/observers are rightly perceived as a 

promising way to disprove the Special Theory of Relativity (STR) among researchers looking for 

alternatives to the STR. One such experiment is the GPS and the GPS Sagnac correction. There 

have been numerous papers, articles and debates on this over the decades. The relativistic 

arguments are inconsistent and are ad hoc mixtures of relativistic and classical views as usual. 

But researchers seeking to disprove relativity by using moving source experiments haven’t been 

particularly successful either, as the arguments usually left room for (not usually consistent) 

relativistic counter-arguments. In this paper, I present a new evidence against the theory of 

relativity and isotropy of the speed of light by applying the relativistic procedure of clock 

synchronization to a thought experiment. The result is in direct conflict with experience and 

facts. Other theoretical evidences against special relativity are also presented in the APPENDIX. 

 

A Disproof of the Theory and Principle of Relativity 

 

Galileo’s ship thought experiment: 

 

Consider a light source emitting a light pulse from some point in the Earth's frame, at t = 0. The 

velocity of the source is irrelevant. At the instant of light emission, an observer is at distance D 

from the source and is moving away from the source with velocity v, in the Earth's frame.  

 

We know that the light will catch up with the observer at t = D/ ( c - v ) . This is a well-known 

and accepted fact even in the Special Relativity Theory (SRT) and has been confirmed by 

experiments. Now I will use this in my argument against the theory of relativity. 

 

Consider Galileo's ship thought experiment (Fig.1). An observer in a closed room of the ship is 

doing a physics experiment. There are two light sources S1 and S2, with the distance between 
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them equal to 2D. The line connecting the sources is parallel to the longitudinal axis of the ship, 

and hence to the velocity v of the ship. S2 is in front of S1.  There are clocks C1 and C2 at the 

same location as S1 and S2, respectively. A detector is placed at the midpoint between the 

sources, at distance D from each source. The light sources each emit a short light pulse 

simultaneously every second.  The detector detects the time difference between the pulses. If the 

time difference is zero, then we may conclude that the isotropy of the speed of light is proved. 

Otherwise, both the theory and principle of relativity are disproved. 

 

For this, the clocks C1 and C2 need to be synchronized first. A short light pulse is emitted from 

S1 towards S2. Suppose that S1 emits the light pulse at t = 0. The observer in the closed room (a 

relativist) synchronizes the clocks based on the principle of isotropy of the speed of light, 

because according to SRT the speed of light is isotropic in Galileo’s ship! However, unknown to 

him/her, we know that the clocks ‘synchronized’ by this procedure will be out of synch by an 

amount: 
  

   
  

  

 
   

 

      
 

 

Actually the clock C2 will be behind the clock C1 by this amount. 

 

It should be noted that, according to special relativity, the clocks synchronized by this procedure 

will be in synch. However, from experience we know that the clocks will be out of synch. I think 

even relativists implicitly accept this (i.e. the clocks being out of synch); they only claim that this 

does not contradict SRT, using inconsistent arguments as usual. Physicists usually describe SRT 

by using thought experiments in deep space, claiming that SRT is a correct theory of the 

universe. However, when it comes to terrestrial experiments, they usually switch their 

interpretation of SRT to a one that agrees with experimental outcomes. Note that in the above 

Galileo’s thought experiment we assumed a terrestrial experiment. However, if a relativist was 

given the same problem, except that the experiment is done in deep space, he/she would say that 

the clocks will be in synch. Therefore, we know that the relativistic procedure is wrong, based on 

experience and inconsistency in the analysis of SRT. Therefore we analyze the experiment 

classically as follows. 

 

The sources each emit a short light pulse 'simultaneously' (quoted because the clocks are not 

actually in synch), every second. The observer in the ship expects the pulses to arrive 

simultaneously, which they will not. 
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Let S1 emit the light pulse at t = t0. Then S2 will emit 'simultaneously' at the time, 

 

      
 

      
 

 

The light from S1 arrives at the detector at the time, 

 

        
 

   
 

 

The light from S2 arrives at the detector at time 

 

             
 

      
      

 

   
 

 

The difference in the time of arrival of the two pulses at the detector will be: 
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The relativist observer synchronized the clocks by assuming isotropy of the speed of light, 

placed the detector at the midpoint between the sources and made the sources emit light pulses 

'simultaneously'. He/she would expect the light pulses to arrive simultaneously at the detector, 

which they didn't. The light pulses always arrive with a time difference of Δ that depends on 

velocity v. The observer would have no way to explain this. To any one rejecting this argument, 

my response is this: let an actual experiment be done to test it. We know that the origin of the 

problem lies in the observer assuming isotropy of the speed of light while synchronizing the 

clocks. This disproves the theory and principle of relativity. 

 

Let me make the difference between the new synchronization procedure being proposed and the 

standard synchronization procedure more clear. 

 

In the standard clock synchronization procedure, synchronization light pulses would be sent from 

the mid-point to the clocks C1 and C2, which, on receiving the pulses,  are immediately set to        

t = 0 and start counting. 

 

In the new procedure, clock C1 is set to t = 0 and at the same time sends a synchronization pulse 

to the clock C2. The clock C2 , upon receiving the pulse, is set to t = 2D/c, assuming isotropy of 

the speed of light , and starts counting from there. 
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If absolute motion doesn't exist, then both procedures are equivalent in principle and both clocks 

will be in synch, and therefore Δ = t2 – t1 = 0. 

However, if absolute motion exists, both procedures will result in out of synch clocks. However, 

in the standard procedure, this effect will be exactly canceled out as the sources emit the 

‘simultaneous’ pulses to the detector, so that t2 – t1= 0 . 

In the newly proposed procedure, the clocks will be out of synch and this will manifest in non-

simultaneous arrival of 'simultaneously' emitted pulses from S1 and S2. That is, the 

unsynchronized clocks will manifest as: t2 – t1 ≠ 0 

GPS Sagnac correction as evidence for anisotropy of the speed of light 

How does the GPS Sagnac correction support my argument that the pulses from S1 and S2 will 

not arrive simultaneously at the detector ? 

 

Consider both the proposed thought experiment and the GPS in the ECI frame. In both cases, the 

source and the observer/detector are moving in the ECI frame. In both cases, the clocks are 

synchronized by assuming light speed isotropy. In the GPS , the point of signal emission is fixed 

in the ECI frame and the motion of the observer in the ECI frame is considered. ( so called GPS 

Sagnac correction). Therefore, in the thought experiment also the point of signal emission is 

fixed in the ECI frame and the motion of the observer needs to be considered, and therefore we 

conclude that the pulses will not arrive simultaneously at the detector. 

At this point one might invoke ‘relativity of simultaneity’ , ‘length contraction’ , ‘time dilation’ 

etc. as a counter-argument. However, we know that the special relativity theory is based on the 

two postulates: 

1. The principle of  relativity.                                                                                                          

2. The constancy and isotropy of the speed of light  

Everything else in SRT is a consequence of these two postulates: Lorentz transformations, 

relativity of simultaneity, length contraction, time dilation, etc. Therefore, these two postulates 

need to be tested and established experimentally before accepting their consequences, such as 

relativity of simultaneity, as facts. 

If one or both of the two postulates is shown to be wrong, then we can conclude that the 

consequences (relativity of simultaneity, etc.) cannot be correct. If somehow it can be shown 

experimentally that the speed of light is not constant, one cannot bring, for example, relativity of 

simultaneity into the argument because the latter is a consequence of the former, and not the 

other way round. 
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A terrestrial experiment to test light speed isotropy 

The time difference of the two signals (Δ= t2 – t1  ) is so extremely small that it may not be 

possible to measure as described in the thought experiment. The time difference to be measured 

is so small for terrestrial experiments in which distances 2D can only be tens of kilometers. For 

example, from equation (1) , for D =1km, v =390 km/s (Fig.1), we get Δ = 11 picoseconds, which 

is difficult or impossible to measure with current technology. 

Despite this difficulty, there is still hope for a feasible terrestrial experiment to test the isotropy 

of the speed of light. The solution is related to realizing the reason why the time difference of the 

two pulses at the detector is so small. The effect of absolute motion when C1 sends a synch pulse 

to C2 is almost (but not completely) cancelled by the effect of absolute motion when C1 and C2 

later send pulses to the detector ‘simultaneously’. It takes more time for the synch pulse to reach 

C2 because C2 is moving in the same direction as the synch pulse, resulting in clock C2 lagging 

behind clock C1. However, this (absolute motion) effect is almost completely (not completely) 

cancelled when C1 and C2 later send pulses to the detector. The pulse from C1 will take longer 

time to catch up with the detector (the pulse and the detector are travelling in the same direction) 

, suppressing the effect of clock C1 being ahead of clock C2 . The pulse from C2 will take shorter 

time to meet the detector (the pulse and the detector are travelling in opposite directions), 

suppressing the effect of clock C2 lagging behind clock C1 . That is, the absolute motion effect 

gained during clock synchronization is significantly lost when the clocks transmit pulses to the 

detector. 

The question is: is it possible to retain the absolute motion effect gained during clock 

synchronization in the thought experiment? The solution is to do the ‘synchronization’ of the 

clocks when the axis of the experiment (the line connecting the clocks) is aligned with the 

direction of Leo (Fig.2), but to make the clocks send pulses to the detector when the axis is 

perpendicular to the direction of Leo! (Fig.3) 

Therefore, at first the synchronization of the (atomic) clocks is done when the C1 C2 line is 

parallel with the direction of Leo (Fig.2).  

 

                                                                                                                                                     

 

 

                                                                                                                                                           

As already discussed, C1 sends a synch time signal to C2 , whose time is set by (wrongly) 

C1 C2 Leo v = 390 km/s 

2D 

Fig.2 
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assuming isotropy and constancy of the speed of light. This synchronization procedure will result 

in clock C2 being behind clock C1 by an amount: 

   
  

   
  

  

 
   

 

      
 

 

Next one of the two atomic clocks is transported to another place so that the line connecting the 

two clocks is orthogonal to the direction of Leo, as shown below ( Fig.3). The detector is placed 

at the mid-point between the two clocks. Note that the detector does not necessarily have to be at 

the mid-point between the clocks. It can be at any point that is equidistant from the two clocks, 

that is at any point along the dashed line passing through Leo as shown in Fig.3, for example to 

avoid any obstacles somewhere between the clocks and the detector.  

 

                                                                                                                                                     

 

 

 

 

 

 

 

 

 

            

 

 

Let the distance between the clocks  2D = 50 km (Fig.2). From the last equation , clock C2 will 

be behind clock C1 by an amount: 

C1 

Leo v = 390 km/s 

D 

C2 

D 

Fig.3 

Detector 
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Now when the line connecting the clocks is perpendicular to the direction of Leo, the effect of 

absolute motion is negligibly small and the speed of light can be approximated to be c. 

    √         √                                   

Moreover, any absolute motion will affect the time of arrival of the pulses equally.  

Therefore, when the two atomic clocks transmit pulses to the detector ‘simultaneously’ (Fig.3), 

the two pulses will arrive at the detector with a time difference of (theoretically) exactly               

δ ≈ 217 ns = 0.217 µs  , which is the clock synchronization error. This is a relatively large time 

duration that should be detected and measured without difficulty. 

Note that the distance (2D) between the two clocks at the time of synchronization (that is when 

the line C1C2 is parallel to the direction of Leo) need not be equal to the distance between the 

clocks when the clocks send pulses to the detector ‘simultaneously’ (that is when the line C1C2 is 

perpendicular to the direction of Leo). It is only required that the detector be at the mid-point 

between the clocks.  

This experiment can be done by using three drones or three helicopters , two for the clocks and 

associated transmitter and detector, and one for the detector at the mid-point, at higher altitudes 

to enable larger distances D for larger time differences. For example, if distance 2D = 200km , 

the time difference of the two clocks will be 867.8 ns ≈  0.87 µs . The requirement is that there 

should be minimum drift of the clocks between ‘synchronization’ ( clock C1 sending a synch 

pulse to clock C2 ) and clocks C1 and C2 sending pulses to the detector. This could take, for 

example, one hour (the time taken for the helicopters or drones to change position) , during 

which the drifts of the clocks must be minimum. The experiment is to be done during one or two 

hours when Leo is on the horizon. 

This experiment can also be done without placing a detector at the mid-point between the clocks. 

The clock C1 sends a synch signal to clock C2 when the C1 C2 line is aligned with the direction of 

Leo. Then the positions of the clocks are changed so that the C1 C2 line is orthogonal to the 

direction of Leo. Then clock C2 sends time signal back to clock C1 , which compares its own 

time and the time calculated based on the time signal from C2 . For a distance 2D = 200 km, the 

discrepancy should be about 0.87 µs as discussed above. However, the experiment with a 

detector at the mid-point between the clocks may be better than that without the detector because 

the latter may be prone to error when calculating the time based on the time signal from C2 , for 

example, due to an error in the value of the speed of light used in calculating time. 

It is possible to improve the above experiment even more. The clock synchronization procedure 

is the same as above, that is clock C1 sends a synch pulse to clock C2 when the C1C2 line is 
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parallel to the direction of Leo. However, clocks C1 and C2 send pulses to the detector when the 

C1 C2 line is anti-parallel (not orthogonal) to the direction of Leo. That is, once the clocks are 

‘synchronized’ , they exchange positions and then send pulses to the detector ‘simultaneously’     

( Fig.4) . 

The time difference of the pulses from the clocks at the detector will be twice for the same 

distance 2D.  

    (   
 

      
 )        

 

      
 

 

 

                                                                                                                                                     

 

 

 

 

 

                                                                                                                                                     

 

 

 

 

  

 

Therefore, for a distance 2D = 200 km , the time difference of the pulses will be,                                

δ = 2*867.8 ns = 1.7356 µs . 

C1 C2 Leo v = 390 km/s 

2D 

(a )   ‘Synchronization’ of clock C2 with clock C1 

C2 C1 Leo v = 390 km/s 

2D 

(b)   Clock C2 and clock C1 transmit pulses to the 

detector ‘simultaneously’ 

Detector 

Fig. 4 
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To get a larger effect, the time difference obtained for one synchronization procedure can be 

multiplied by repeated re-synchronizations, accumulating the effect of absolute motion, as 

follows. Suppose that there is a third clock C3 co-located and co-moving with clock C1.  

At first clocks C1 and C3 are set to t = 0 and at the same time a synch pulse is sent to clock C2 .    

(see Fig. 4(a) , clock C3 is not shown ). On receiving the synch pulse, clock C2 is set to t = 2D/c . 

Then the clocks exchange positions ( Fig. 4(b)) and clock C2 sends time signal to clock C1 , 

which calculates and re-synchronizes its time based on the time signal sent from C2 and 

assuming isotropy of the speed of light. Again the clocks exchange positions again ( Fig.4(a)) 

and clock C1 sends time signal to clock C2 , which calculates the time and re-synchronizes based 

on the time signal from C1 , by assuming light speed isotropy, and so on. Note that clock C3 , 

unlike clocks C1  and C2 , runs freely and is not re-synchronized once started. This re-

synchronization procedure can be repeated as many times as possible, say ten times. After ten re-

synchronizations, the time of clock C1 is compared to that clock C3 . The time difference should 

be ten times that of a single synchronization procedure. For example, for a distance 2D = 100 km 

, this time difference will be 8.678 µs. This experiment can be done by using two helicopters, 

one for clocks C1 and C3  and associated transmitters and detectors, another for clock C2 and its 

associated transmitters and receivers/detectors. 

These experiments need to be carefully designed. For example, precisely what value of the speed 

of light ( cx ) is to be used to calculate time? Also, in a real experiment there is propagation delay 

(τx) in the electronic circuitry and this also needs to be taken into account. One way to determine 

these would be to do calibration with the C1C2 line orthogonal to the direction of Leo (Fig.3). As 

we have already discussed, the effect of absolute motion can be ignored in this orientation,  that 

is the speed of light can be taken to be cx which is the estimated value of the speed of light in air 

under the prevailing conditions (ambient temperature, pressure, humidity etc.), which is close to 

the vacuum speed of light. The procedure is as follows. We have three clocks C1 , C2 and C3 . 

Clock C3 is co-located and co-moving with clock C1. The distance between C1 and C2 is 2D.   At 

first clocks C1 and C3 are set to t = 0 and at the same time a synch signal is sent from C1 to C2 . 

Upon receiving the synch pulse, clock C2 sets its time to t = τx1  + 2D/cx1 , where cx1 is a tentative 

value near the nominal value of the speed of light in air and τx1 is also a tentative value ( based 

on a good estimate) of propagation delay in the specific electronic circuitry used. The precise 

values cx  and τx are yet to be determined. Then, after some time (or immediately), clock C2 

sends back time signal to C1, which calculates the time by using the value cx1 , τx1 and distance 

2D and re-synchronizes. (Note that exchange of clock positions is not necessary in this case 

because the C1C2 line is orthogonal to the direction of Leo. ) . Then C1 sends a time signal to C2, 

which re-synchronizes by using cx1 , τx1 and the distance 2D, and so on. Note that we have 

assumed that the clocks C1 and C2  and their associated (laser) transmitters and detectors and 

electronic circuitry are identical, so the propagation delays are assumed to be equal. These 

repeated exchanges of time signals and re-synchronizations can be done many times, say one 

hundred times. (Note that, unlike clocks C1 and C2 , clock C3 runs freely and is not re-
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synchronized once synchronized initially at t = 0.)  Then the time of clock C1 is compared to the 

time of clock C3 . Theoretically, since the effect of absolute motion is negligible in this 

orientation, the time of the two clocks ( C1 and C3 ) should be the same at the end of the 

experiment. However, in reality this will not be the case on the first trial because the values of 

the speed of light (cx1 ) and propagation delay (τx1 ) used in the time calculations are tentative and 

will not be precise enough.  

The values cx1 and τx1 are determined as follows. Let the distance between the two clocks in the 

last experiment be 2D1 .  From the above experiment, 

    (       
   

   
 )         

where Tc1 is the time of clock C1 at the end of the experiment. 

If the values cx1 and τx1 used in the calculations were exactly equal to the correct values, that is, if 

cx1 = cx  and τx1 = τx , then the time of clock C1 would be equal to the time of clock C3 . That is, 

    (      
   

  
 )         

  Subtracting the last two equations: 

    (       
   

   
 )        (      

   

  
 )             

Then the above experiment is repeated for distance 2D2 between the clocks. 

    (       
   

   
 )        (      

   

  
 )               

where Tc12 and Tc32 are the times for clocks C1 and C2 at the end of the second experiment with 

distance 2D2 between the clocks, respectively. 

From the last two equations cx and τx can be determined. Note that these values are valid only if 

the conditions under which they have been determined, such as ambient temperature, air 

pressure, humidity, etc. ,  have not changed significantly. The above calibration procedure is 

repeated once again by using the values cx and τx as the tentative values, in order to confirm these 

results or slightly readjust them as necessary. Once cx and τx have been determined, they are used 

to calculate time based on a time signal sent from another clock.  

Now that we have done the calibration, that is the determination of cx and τx , we will return to 

the main experiment (Fig.4 ). Suppose that the exchange of time signals between C1 and C2 and 

re-synchronizations are done n times.  
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Then the time difference ( δ )  between clocks C3 and C1  at the end of the experiment will be:  

        (         
 

        
 ) 

We know cx and τx from the calibration, convenient and optimal values of n and distance 2D are 

chosen and δ is determined at the end of the experiment. Therefore, the only unknown is the 

absolute velocity v and can be determined from this equation.   

Testing the relativistic clock synchronization procedure by transmitting time signals 

between an Earth clock and a satellite clock 

Yet another opportunity to test the prediction is by exchange of time signals between an Earth 

clock and a satellite clock[1]. The big distance involved is a great advantage to test and detect the 

predicted effect. The experiment is described as follows. 

Consider an atomic clock (C1) on Earth and another atomic clock (C2) on a satellite (a GPS 

satellite, for example). (Fig.5) 

 

 

 

 

   

                                                                       

  

 

 

The experiment is done when the Earth, the GPS satellite and Leo are aligned, as shown (Fig.5). 

However, alignment would be preferable but not a necessity, so a GPS satellite out of alignment 

but close enough to the Earth-Leo line can be used, with a component of the absolute velocity 

along this line calculated and used. 

The distance D needs to be measured as precisely as possible, by radar ranging, that is by 

reflecting radar signal from the satellite (not by interrogation!). For this, the radial velocity of the 

GPS satellite relative to the Earth needs to be near zero to accurately compute the distance D 

from the radar round trip time (τ ). In this case: 

S1 
D S2 

C1 C2 

Earth GPS satellite 

Leo 

v = 390 km/s 

Fig. 5 
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If there is relative radial velocity between the Earth and the GPS satellite, using the above 

equation leads to erroneous distance D. (the Brian G. Wallace effect) 

At time t = 0, the Earth clock (C1) transmits a synch pulse to the GPS satellite clock (C2). The 

satellite clock actually receives the synch signal at t = D/(c-v), that is when the time of the Earth 

clock is t = D/(c-v). However, due to the assumption of isotropy of the speed of light, the satellite 

clock is (wrongly) set to t = D/c. Therefore, the GPS satellite clock will be behind the Earth 

clock by an amount: 

     
 

   
   

 

 
 

The (c - v ) is because the satellite clock (C2) is moving away from the synch signal (Fig.5). 

Now, let the GPS satellite clock (C2) transmit time signal to Earth at some later time t = t0 . 

At this instant, the clock on Earth (C1) will be ahead of the satellite clock (C2)  by the amount δ. 

That is, the time of the Earth clock when the satellite transmits the time signal will be: 

         

Therefore, the GPS satellite time signal arrives on Earth when the time of the Earth clock is: 

           
 

   
          

 

   
   

 

 
   

 

   
 

The  c + v is because the Earth clock is moving towards the GPS time signal. 

However, due to the assumption of isotropy of the speed of light, the GPS receiver on Earth 

calculates the 'correct' time to be: 

      
 

 
 

Therefore, the difference between the actual time of the Earth clock and the calculated time 

(using GPS signal) will be:  

      
 

   
   

 

 
   

 

   
         

 

 
      

 

   
  

 

   
  

  

 
  

  

 

  

  

  
  

  

 

Substituting D = 22000 km, v = 390 km/s , we get about 0.248 micro seconds. This discrepancy 

can be easily detected and measured. 
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Conclusion 

In this paper, we have applied the relativistic procedure of clock synchronization,  that is by 

assuming isotropy of the speed of light, to a thought experiment. In the thought experiment, a 

detector is placed at the mid-point between two sources S1 and S2 in an inertial lab, a Galileo’s 

ship moving with velocity v relative to the sea. Therefore, the lab is moving (at least) relative to 

the sea. Clocks C1 and C2 are co-located with S1 and S2, respectively. The two clocks are 

synchronized by sending a synch pulse from S1 to S2 and by assuming isotropy of the speed of 

light. I argued that, in reality, the two clocks will not be actually synchronized by this procedure 

because the clock C2 is moving away from the synch pulse, which will take more time to reach 

C2 than if C2 was not moving. Despite this, let the clock C2 , upon receiving the synch pulse, 

(wrongly) set its time to D/c, instead of D/(c-v) . Next we will see how this out-of-synch 

condition of the clocks will manifest. After some time, each clock ‘simultaneously’ emits a light 

pulse towards the detector. If the clocks are really in synch and if the speed of light is really 

isotropic, then the pulses will arrive simultaneously at the detector. The question is: will the 

pulses arrive at the detector simultaneously or not? One way to test this is to do an 

actual/physical experiment. Two experiments, one by sending time signals between two 

terrestrial clocks and another by sending time signals between a clock on Earth and a clock on a 

satellite , have been proposed. However, we can also use past experience to determine whether 

the time difference of the two pulses will be zero or not. One such experience is the GPS Sagnac 

correction. Consider the thought experiment described and the GPS system in the ECI frame. In 

both cases, both the source and the detector are moving. In both cases, the point where signal is 

emitted is fixed in the ECI frame. In both cases, isotropy of the speed of light is assumed to 

synchronize the clocks. We know that motion of the detector/receiver is considered in the GPS 

(so called GPS Sagnac correction) to account for the change in position of the receiver during the 

GPS time signal transit time. We conclude that motion of the detector needs to be considered in 

the thought experiment also and, therefore, the ‘simultaneously’ transmitted pulses will not 

arrive at the detector simultaneously, despite the fact that the sources are at equal distances from 

the detector. This disproves the isotropy of the speed of light and thereby the theory and 

principle of relativity. 

 

Glory be to God and His Mother, Our Lady Saint Virgin Mary 
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Notes and references 

1. I have discussed this experiment on internet forum: 

https://www.scienceforums.net/topic/132749-a-disproof-of-the-principle-and-theory-of-

relativity/page/4/#comments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


