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An analysis of the action of elementary charges on the vacuum leads to a resolution of divergence
issues in QFT without mass and charge renormalization. For an irreducible self-interaction ampli-
tude Ω, in�nite �eld actions split the vacuum into positive and negative self-energy components
such that its net mass-energy remains zero for free particles. For each particle mass in a loop, two
dressed mass states including vacuum energy, are constructed for fermion and boson self-energy
processes. For electroweak interactions, the stabilized amplitude Ω̂ = Ω − Ω includes a correction
for a vacuum energy de�cit within a point-like, near-�eld region, where Ω is given by an average of
Ω over dressed mass levels. For QCD, strong interactions redistribute vacuum energy so that there
is an energy surplus in the near-�eld with a corresponding de�cit in the con�nement region resulting
in a sign reversal of Ω̂ relative to QED and asymptotic freedom. Stabilized amplitudes agree with
renormalization for radiative corrections in Abelian and non-Abelian gauge theories. Renormal-
ization is only required in standard QFT because it neglects near-�eld vacuum energy changes in
violation of energy conservation.

I. INTRODUCTION

A long-standing enigma in particle physics is how an
elementary charged particle such as an electron can be
stable in the presence of its own electromagnetic �eld
[20, 26]. Critical accounting for system stability is essen-
tial since radiative corrections in quantum �eld theory
(QFT) involve self-interactions that appear to change the
mass and charge of a particle. This analysis identi�es the
underlying physics that stabilizes a particle such that its
mass and charge retain their physically observed values
in radiative processes.
The agreement between renormalization theory and

experiment con�rms the e�ect of vacuum �uctuations on
the dynamics of elementary particles to astounding accu-
racy. For example, electron anomalous magnetic moment
calculations currently agree with experiment to about 1
part in a trillion [1, 16]. This achievement is the re-
sult of seven decades of e�ort since the relativistically
invariant form of the theory took shape in the works of
Feynman, Schwinger, and Tomonaga; see Dyson's uni-
�ed account [9]. The agreement leaves little doubt that
QFT predictions are correct; however, the renormaliza-
tion technique [2, 28] used to overcome divergence issues
in radiative corrections o�ers little insight into the under-
lying physics behind charge stability in the high-energy
regime. Recall that divergent integrals occur in scat-
tering amplitudes for self-energy processes and arise in
sums over intermediate states of arbitrarily high-energy
virtual particles. This stymied progress until theoretical
improvements were melded with renormalization to iso-
late physically signi�cant parts of radiative corrections
by absorbing in�nities into the electron mass and charge.
Although the renormalization method used to elim-

inate ultraviolet divergences yields numerical predic-
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tions in remarkable agreement with experiments, in�-
nite renormalization of fundamental physical constants
remains a very undesirable feature of the current the-
ory. The forgoing objections are captured in concerns
of early investigators including developers of the theory
[11, 29]; for example, Feynman referred to renormaliza-
tion as an �awkward process�, and Schwinger stated QFT
was �incomplete�. Largely due to elegant and persuasive
renormalization group arguments [3, 12, 36], many work-
ers in the �eld no longer believe that the divergences in
QFT and the renormalization procedure used to over-
come them are issues requiring further consideration.
Nevertheless, we contend there is a �aw in the theory that
led to renormalization; in a nutshell, evaluation of radia-
tive corrections fails to account for important changes
in vacuum energy that oppose self-interaction energies:
this omission violates the law of conservation of energy,
and that is why the theory is �incomplete� and needs the
simple correction proposed in this paper.

Our main purpose is to develop a mathematically
and physically complete alternative to renormalization
in QFT. A minimal requirement for this proposal is that
it reproduce the successes of the accepted theory: These
include the successful higher-order multiloop calculations
of quantum electrodynamics (QED), the modern under-
standing of QED as a part of non-Abelian electroweak
theory [13, 27, 33], and asymptotic freedom predictions
[15, 24] in quantum chromodynamics (QCD). Starting
with the classical self-energy problem in Section II, we
de�ne an energetically stable system (charge plus vac-
uum) and develop a stabilized amplitude applicable to all
radiative processes and particles of the Standard Model.
Our primary results for electroweak and QCD scatter-
ing amplitudes are presented in Sections II C and IID:
Scattering matrix corrections for stability are simply con-
structed using unrenormalized (core) amplitudes from
the literature, involve two additional Feynman diagrams
associated with dressed mass states, and account for all
changes in vacuum energy. General arguments are given
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to demonstrate that net S-matrix corrections in QFT for
vacuum polarization, fermion self-energy, and vertex pro-
cesses are �nite and agree with renormalization theory.

II. FORMULATION

A. Physical model

Regarding an electron as a point particle [21], the clas-
sical electrostatic self-energy e2/2a ≡ αΛ◦ diverges lin-
early as the shell radius a→ 0, or energy cuto� Λ◦ →∞,
where −e is the charge and α = e2/4π is the �ne-
structure constant. However, Weisskopf [34, 35] showed
using Dirac's theory [7] that the charge is e�ectively dis-
persed over a region comparable in size to the Compton
wavelength of the electron, λc (m) = 1/m, due to pair
creation in the vacuum, and the self-energy only diverges
logarithmically. Feynman's calculation [10] in covariant
QED yields an electromagnetic mass

m+
em =

3αm

2π

(
ln

Λ◦
m

+
1

4

)
, (1)

where m = gev/
√

2 is the observed mechanical mass gen-
erated via interaction between the fermion and Higgs
�elds in electroweak theory, ge is a coupling constant,
and v is the ground state vacuum energy. In the absence
of a compensating negative energy, (1) signals an energet-
ically unstable electron. This is the fermion self-energy
(FSE) problem, whose general resolution will suggest a
solution for boson self-energy (BSE) processes as well re-
sulting in �nite amplitudes for all radiative corrections.
In this section we derive a vacuum stability condition and
a complete set of mass states for an electron.
To ensure that the total electron mass is its observed

value, renormalization theory posits that a negatively in-
�nite �bare� mass must exist to counterbalancem+

em. For
lack of physical evidence, negative matter is naturally
met with some skepticism; see Dirac's discussion [8] of
the classical problem, for example. Nevertheless, ener-
gies that stabilize a charge must be negative to conserve
energy, and we can understand their origin by �rst con-
sidering the source for the electrical energy required to
assemble a classical charge from in�nitesimal parts in the
rest frame. Since the agents that do the work must draw
energy E+em from an external energy source (well), the
well's energy is depleted and the total energy

E = m+ E+em + Ew (2)

of the system including matter, electromagnetic �eld E+em,
and energy well Ew is constant.
Assume that the depleted energy well is part of the

vacuum, elementary charges are inherently stable, and
consider an electron and its neighboring vacuum as two

distinct systems that can act on one another. In particu-
lar, suppose that an electron redistributes vacuum energy
into positive and negative energy parts such that (2) is
satis�ed with

Ew → E−em = −E+em (3)

for a free particle; therefore, we have a stability condition

m+
em +m−em = 0 , (4)

where E±em = m±em in natural units. Since the positive
energy E+em in the surrounding region corresponds to the
observed electric �eld, the de�cit (3) must reside in�nites-
imally close to the electron: within a near-�eld region of
radius r . λc (m+

em), as will become evident. Thus, an
electrically charged particle e�ectively acts as a sink for
negative energy, and the de�cit must be taken into ac-
count to uphold energy conservation.
In addition to the core mass m, (4) suggests that a

stable electron includes two electromagnetic masses m±em
that are assumed large in magnitude, but �nite, until
the �nal step of the development. We can think of m±em
as components of an electromagnetic vacuum (zero net
energy) which are tightly bound to the core mass and
inseparable from the core and each other, at least for
�nite �eld actions. From (2), either mass can be as-
sociated with m. Considering all non-vanishing masses
constructed from the set {m, m+

em, m
−
em}, we de�ne a

complete set of mass levels m+ λM , where λ = {0, ±1}
and M ≡ |m±em|. For λ = ±1, an electromagnetically
dressed core mass (DCM) refers to a composite particle
with mass levels

md = m+ λM . (5)

For a particle of four-momentum p, the dressed momen-
tum is pd = p+ λM .
Dressed mass states are important for radiative cor-

rections because they provide additional degrees of free-
dom needed to compute near-�eld corrections to scatter-
ing amplitudes which stabilize the system. Introduction
of a bare mass or charge in renormalization theory does
not account for all possible mass states in radiative pro-
cesses; consequently, the underlying physics is concealed,
and the theory is rendered more complicated: For ex-
ample, introducing a bare mass results in an asymmetry
which requires wave �eld renormalization in the electron
self-energy problem.
Consider a free particle state |p, m〉 satisfying p2 = m2.

Spin is omitted in |p, m〉 since it is inessential to the sub-
sequent development, and the rest mass is included be-
cause it is the fundamental particle characteristic which
becomes dressed with vacuum energy in stability correc-
tions to the S-matrix. For radiative corrections, assume
that dressed states

|p+ λM , m+ λM〉 (6)
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Figure 1. Generic self-energy and vertex diagrams: (a) BSE,
(b) FSE, and (c) vertex.

may be created with equal probability in intermediate
states with in�nitesimally small lifetimes

∆t ' ~
(m+ λM) c2

in accordance with Heisenberg's uncertainty principle
[17]. Scattering amplitudes for low-energy processes are
una�ected because the energies are insu�cient to excite
dressed states (6). In fact, we shall see that �nite parts of
radiative corrections vanish in the limit η ≡M/m→∞.

B. General dressed mass states

This section generalizes DCM rules to all elementary
particles and radiative processes of the electroweak Stan-
dard Model; in particular, we derive a rule for dressing
particles in BSE processes with vacuum energy.
External lines for processes in Fig. 1 involve (a) gauge

bosons b ∈ {γ, W, Z ,H}, and (b,c) fermions f . Blobs
in Fig. 1 contain irreducible insertions, which in general,
may involve photons and other particles in the Standard
Model mass set

M = {mf , mW , mZ , mH} .

On the mass shell, scattering amplitudes Σf (p) and
Σb
(
k2
)
de�ne fermion and boson self-energy functions

[18, 30]

Mf = Σf (p)
∣∣
�p=mf

, and (7)

M2
b = Re

[
Σb(k2)

]
k2=m2

b

. (8)

In the proposed model,Mf andMb each represent energy
borrowed from the vacuum within a near-�eld region of
radius

r◦ ' λc (Mf |Mb)

to create a con�guration of high-energy virtual particles
in the far-�eld: r > r◦. In order to have well de�ned am-
plitudes for FSE and BSE processes, negative probability
(depletion) amplitudes that oppose (7) and (8) are re-
quired, thereby ensuring conservation of energy. Loosely,
one may think of (8) as a squared energy borrowed from
the vacuum and −M2

b as a de�cit.
In general, DCM levels for fermions in FSE processes

and massive bosons b ∈ {W, Z ,H} in BSE processes are
de�ned by requiring that averages of free �eld Lagrangian
densities over dressed mass levels for each particle class
give the undressed value. Since Yukawa and Higgs den-
sities, LYukawa

F (mf ) and LH

(
m2
b

)
, involve sums of terms

linear in mf and m2
b , we have

1

2

∑
λ=±1

LY ukawaF (mf + λMf ) = LY ukawaF (mf ) , and

1

2

∑
λ=±1

LH
(
m2
b + λM2

b

)
= LH

(
m2
b

)
.

De�ning a common scaling factor η such thatMf ≡ ηmf

and Mb ≡ ηmb, dressed masses are generated by

mf → mf (1 + λη) , and (9)

m2
b → m2

b

(
1 + λη2

)
. (10)

External momenta, p = mf + δpos and k
2 = m2

b + δk2os,
in Fig. 1 become dressed in the blobs using (9) and (10),
where δpos and δk2os are o�-shell terms. For the pur-
pose of de�ning general stability corrections for radiative
processes, we can focus on the mass dependence of core
amplitudes.
To ensure consistency when fermions and bosons mix

in FSE and BSE processes, DCM levels for all m ∈M in
the blobs of Fig. 1 are de�ned by the replacement

mn → mn (1 + ληn) , (11)

where

n =

{
1 FSE/vertex

2 BSE
(12)

for irreducible FSE, vertex, and BSE diagrams in elec-
troweak theory. The regulation of infrared singularities
for soft photon emissions [10] provides a simple exam-
ple: For FSE and vertex processes, a fermion mf and
a small photon mass µ mix in terms of form ln

mf

µ ; for
consistency, we require

µ→ µ (1 + λη) , (13)

then ln
mf

µ is invariant under (9) and (13).

Vertex factors, including the weak mixing angle,
charge, and neutral current coupling constants are all
stationary under (11). However, propagators involving
massive particles are not stationary under DCM trans-
forms, and dressed amplitudes constructed from them are



4

either driven to zero or a stabilizing correction for �nite
tree or divergent loop processes, respectively.
Since m ∝ v in Higgs mass formulae, dressed mass lev-

els correspond to vacuum displacements: ∆v = ληv and
∆v2 = λη2v2 for FSE and BSE processes, respectively.

C. Electroweak scattering amplitude

Generally, if an irreducible radiative process repre-
sented by Ω borrows energy from the vacuum creating a
de�cit, then an opposing amplitude is required to ensure
conservation of probability and energy. For the moment,
assume dimensional regularization is used to tame im-
proper integrals. To account for the de�cit and include
all possible intermediate mass states, the total amplitude
is de�ned by

Ω̂ = Ω (M)−Ω (M) , (14)

where Ω accounts for self-interaction e�ects involving
physical masses in M, and

Ω (M) =
1

2
lim
η→∞

∑
λ=±1

Ω (Md = ηλM) (15)

is a subtrahend for vacuum depletion; from (11), we have

ηλ ≡
{

1 + λη FSE/vertex√
1 + λη2 BSE

. (16)

For any m ∈M, the dressed mass is

md = ηλm . (17)

In addition to mb or mf , Ω depends on external mo-
menta {k, p} for Feynman diagrams in Fig. 1 which may
be on- or o�-shell. For notational simplicity, any depen-
dence on external momentum parameters has been sup-
pressed during construction of Ω because {k, p, q} are
implicitly dependent on associated core masses.
In dimensional regularization we have a singular func-

tion [19, 22]

D (∆, σ) =
1

σ
− ln ∆− γ . (18)

where σ = 2 − d/2 with spacetime dimension d . 4; ∆
depends on M, momentum parameters external to the
loop, and integration variables; and γ = 0.577... is the
Euler�Mascheroni constant. Divergent terms involving
1/σ cancel in (14), and the net amplitude is well de�ned
since it involves a factor − ln |∆/∆◦|, where

∆◦ = lim
η→∞

η−2λ ∆(ηλM) (19)

is derived in Appendix B of Ref. [5].

If an energy cuto� Λ◦ is assumed in lieu of dimensional
regularization, then we must include Λ◦ in the arguments
of Ω. The cuto� scales in the same way as (17); that is,

Λd = ηλΛ◦ . (20)

Cuto� scaling is required for consistent de�nition of in-
tegrals in Ω and Ω: it synchronizes the cuto� to Λ◦, and
yields a well de�ned limit as η → ∞ in (15). Divergent
integrals occurring in Ω and Ω are invariant under (17)
and (20); for electron self-energy, this is evident from the
argument of the logarithm in (1), and again, divergent
terms in (14) cancel.
In contrast to the regulator technique of Pauli and Vil-

lars [23], the above method employs physically meaning-
ful dressed mass levels, albeit virtual only, and it applies
to all radiative processes in QFT without introduction of
auxiliary constraints.
From the functional form in (15), Ω represents the

same basic physical process as Ω, but it is distinguished
by sticky collisions between core masses and vacuum en-
ergy components. Since −Ω opposes Ω, it represents
a negative probability correction, thus Feynman's suspi-
cions [11] that negative probabilities might be used � ...
to solve the original problem of in�nities in quantum �eld
theory� were well founded.

D. QCD scattering amplitude

The foregoing DCM rules apply to QCD as well since
its Lagrangian is invariant under an average over dressed
mass states. As with electroweak, all vertex factors are
independent of mass and are therefore DCM invariant.
However, two modi�cations are required:
First, the sign of Ω̂ must be reversed. Since the Callan-

Symanzik [4, 31] beta function depends on coe�cients of
divergent terms only [14], the sign reversal is expected
from opposing signs in the �rst two terms of (18). How-
ever, the sign reversal admits a much more enlightening
physical interpretation if one assumes, in contrast to an
electrical charge, that a color charge redistributes vac-
uum energy so there is a de�cit in the region of con�ne-
ment which is balanced by a surplus in the near-�eld as
suggested in Fig. 2: For an electric or color charge, we
have a generalized stability condition

E+ + E− = 0 . (21)

Resulting colored quarks and gluons are enveloped in a
negative energy color �eld, and the quasi-probability of
observing them is likewise negative, at least for low en-
ergy probes. Since positive and negative energy regions
in Fig. 2 for color charges are interchanged relative to
electrical charges, the stabilized amplitude in QCD is

Ω̂QCD = λsΩ̂ , (22)

where Ω̂ from (14) employs the usual Feynman rules, and
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Figure 2. Intrinsically stable electrical and color charges
{e, gs} e�ectively draw {negative, positive} energy from the
vacuum φ leaving an energy {surplus, de�cit} in surrounding
(far-�eld) regions {A, B}.

λs = −1 (23)

is a switching factor. For physically meaningful interpre-
tation of the amplitudes, unobservable quark and gluon
states must have negative norm and spacelike momenta.
Second, for gluon self-energy diagrams in the pure

gauge sector, we lack a mass reference; the solution is
to introduce a small gluon mass µg via k2 → k2 − µ2

g in
gluon propagators when constructing amplitudes. De�ne

m2
d = µ2

g + λM2
g

∣∣
µg=0

(Mg ≡ ηµ◦) , (24)

where Mg is a near-�eld energy surplus, and µ◦ is an
arbitrary unit of mass measure: µ◦ can be related to
a standard reference mass Ms, usually chosen as mZ ,
such that the polarization function vanishes on the mass
shell. Introduction of mass terms of the form (24) does
not break gauge invariance since the sum over mass levels
in the Yang-Mills Lagrangian is zero. See Appendix D of
Ref. [5] for details.

III. VERIFICATION

This section brie�y justi�es rules (14) and (22) for com-
puting stabilized amplitudes. See case study [5] for de-
tailed veri�cation.

A. Electroweak Interactions

For three classes of diagrams in Fig. 1, (14) is veri�ed
for electroweak processes focusing on mass and momen-
tum external to the loop. The complete set of Feynman
diagrams and expressions for unrenormalized amplitudes
are given in Hollik [18] and cited references. Results be-
low agree with [6, 18].
Depletion amplitudes −Ω for diagrams in Fig. 1 meet

basic requirements for a vacuum energy de�cit: they have

negative energy localized at a point (in the limit η →∞),
and account for additional mass states (11).
For BSE processes in Fig. 1 (a), (14) gives

Σ̂b (s) = Σb (s)−Σb
(s) , (25)

where the dependence on s = k2 in included, and M is
omitted to simply notation. Since Σb (s) is linear in s
and m2 with m ∈ M, and factors involving mass ratios
are invariant under (11), the dressed amplitude

Σ
b

(s) = Σb
(
m2
b

)
+
∂Σb

∂s

∣∣∣∣
s=m2

b

(
s−m2

b

)
(26)

includes only the �rst two terms of a Taylor series ex-
pansion of Σb (s). In the expansion of Σb (s), s −m2

b is
invariant under (10), and dressed higher order derivatives
vanish in the limit η → ∞. Since (25) satis�es expected
mass shell conditions

Σ̂b
(
m2
b

)
= 0 (27)

and

∂Σ̂b (s)

∂s

∣∣∣∣∣
s=m2

b

= 0 , (28)

it is �nite and agrees with renormalization.
For FSE processes in Fig. 1 (b), we have

Σ̂f (p) = Σf (p)− Σ
f

(p) . (29)

Since Σf (p) is linear in p and mf , its series expansion
yields a dressed amplitude

Σ
f

(p) = Σf (p)
∣∣
�p=mf

+
∂Σf

∂�p

∣∣∣∣
�p=mf

(�p−mf ) (30)

similarly to (26). In the expansion of Σf (p), �p −mf is
invariant under (9), and dressed higher order derivatives
again vanish in the limit η →∞. For a free particle

Σ̂f (p)
∣∣∣
�p=mf

= 0 , (31)

and

dΣ̂ (p)

d�p

∣∣∣∣∣
�p=mf

= 0 (32)

ensures that i =
√
−1 is the residue of the propagator

pole. The second term in (30) eliminates any need for
wave �eld renormalization, and (29) is indeed the desired
�nite amplitude.
Equation (14) is easily veri�ed for vertex diagrams in

Fig. 1 (c): From Ward's identity [32], the vertex func-
tion Λµ (q) is dimensionless; consequently, the dressed

amplitude Λ
µ

(q) involves only the �rst (divergent) term
in an expansion of Λµ (q) about the origin since qd = q,
and dressed derivatives vanish as η → ∞. Therefore,
Λ
µ

(q) = Λµ (0), and

Λ̂µ (q)
∣∣∣
q=0

= 0 (33)

in agreement with renormalization.
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Figure 3. Feynman diagrams for strong interaction processes
in QCD: (A) BSE, FSE, and vertex; (B) BSE for gluons in
pure gauge sector; and (C) quark/3-gluon vertex. For accre-
tion amplitude Ω, particle lines between dots become dressed
with vacuum energy.

B. Strong Interactions

For non-Abelian QCD, Ref. [5] applies (22) to one-
loop diagrams in Fig. 3. The arguments in Sec. III A
are general: stabilized QCD amplitudes are �nite and
agree with asymptotic freedom predictions [14, 25] only
if λs = −1. Equations (27)-(28) for bosons and (31)-
(32) for fermions represent free particle vacuum stability
conditions for all primitively divergent diagrams.

Physically, we expect that color charges will tend to
cluster to maximize overlap of negative energy regions;
however, as one probes a charged gluon cloud, the ef-
fective color coupling decreases as expected from QCD
anti-screening e�ects. From Eq. (D23) in Ref. [5],

αs (ρs) =
αs

1− λs αs

4π

(
11− 2

3nf
)

ln ρs
, (34)

where αs =
g2s
4π is the strong coupling constant, nf is

the number of quarks, and ρs = − k2

M2
s

with spacelike

momentum k. From (34) the corresponding beta function
is given by

βQCD = 2
∂ αs
∂ ln ρs

∣∣∣∣
ρs=1

= λs
α2
s

2π

(
11− 2

3
nf

)
. (35)

For Abelian and non-Abelian theories, the stability
method is expected to yield �nite results to all orders in
perturbation theory since it is applied repeatedly in any
complex Feynman diagram to each irreducible radiative
correction, working from the innermost loop outward; a
detailed proof for Abelian QED is given in Ref. [5].

IV. CONCLUDING REMARKS

In this paper, we developed a model for stable charges,
where the vacuum is split into negative and positive en-
ergy components. For an electrical or color charge, re-
spectively, we have a vacuum energy de�cit or surplus in
a point-like, near-�eld region with opposing energies in
the far-�eld. The net electromagnetic or color self-energy
of a free charged particle is zero. The model was gen-
eralized to apply to all Standard Model interactions by
de�ning mass states dressed with both positive and neg-
ative vacuum energy for fermion and boson self-energy
processes: These new intermediate mass states have in-
�nitesimally short duration and are the key to computing
near-�eld vacuum energy corrections which stabilize the
theory. Concise rules for constructing stabilized S-matrix
corrections were developed and applied to resolve diver-
gence issues in Abelian QED and non-Abelian QCD and
electroweak theories without renormalization.
Particle observability is a consequence of how a charge

redistributes vacuum energy; compared to an electrical
charge, a color charge acts on the vacuum to create a
negative energy density in the far-�eld region of con�ne-
ment. Thus, in strong interactions, the dressed ampli-
tude Ω corresponds to an accretion of vacuum energy in
the near-�eld, and the physical masses are cloaked in the
depletion part −Ω of the stabilized amplitude.
In summary, in�nite mass, charge, and wave-�eld

renormalizations are required in the standard (unstabi-
lized) theory because core amplitudes do not account
for near-�eld vacuum energy corrections in violation of
the law of conservation of energy. Stabilized ampli-
tudes are �nite, agree with renormalized QFT, and are
uniquely determined in contrast to multiple renormaliza-
tion schemes.
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