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Abstract :  
[In this paper explicit analytical expression for Riemann Xi function ξ(s) is 

worked out for complex values of s. From this expression Riemann Hypothesis is 

proved.  Analytic Expression for non-trivial Zeros of Riemann Zeta function ζ(s) 

is also found. A second proof of Riemann Hypothesis is also given.] 
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1.  Introduction : 
 One of the most difficult problems today to mathematicians and physicists is Riemann 

Hypothesis. It is a conjecture proposed by Bernhard Riemann which says that all the complex 

zeros of Riemann Zeta function ζ(s) has real part σ = ½ . Till now this conjecture is neither 

proved nor disproved. In this paper an explicit analytical expression of Riemann Xi function ξ(s) 

is found. From this expression of ξ(s) expression for zeros of ξ(s) is derived. As it is  known that 

all the zeros of ξ(s) are identical with nontrivial zeros of Riemann zeta function,  the zeros of ξ(s) 

are identified as nontrivial zeros of Riemann zeta function ζ(s). 

 The paper is organized as follows. In section 2, we summarize the definition of Riemann 

Xi and Riemann zeta function, mention the connection between ξ(s) and ζ(s) . We also mention 

some important results related to zeros of ζ(s). Next in section  3, the expression for ξ(s) in terms 

of an arbitrary function is derived. In section 4, the analytical expression for ξ(s) is worked out 

using a theorem of analysis. In section 5, Riemann Hypothesis is proved and equation for 

nontrivial zeros of ζ(s) is derived. In Section 6, a second proof of Riemann Hypothesis is given. 

Section 7 contains conclusion and comments. An appendix is added after section 7. 
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2. Riemann zeta and Xi function and Riemann Hypothesis 
 For real  s > 1, Riemann zeta function ζ(s) is defined as [1, 2, 3] 

                        ζ(s) = ∑ 𝜈−𝑠∞
𝜈=1                                                                         … (2.1) 

The definite integral equivalent of (2.1) is 

                       Г(s) ζ(s) = ∫
ts−1

et − 1

∞

0
 dt ;     real s > 1                        …(2.2) 

             and  Г(s) ≡ Gamma function 

ζ(s) can be analytically continued from (2.1) and can be defined for 0 < real s <1  

      Г(s) ζ(s) = ∫ (
1

et−1
−  

1

t
) ts−1∞

0
 dt ;    0 < real s <1                                    … (2.3) 

 

Riemann zeta function satisfies a well-known functional equation [3] : 

                       π− 
s

2Г(s/2)ζ(s)   =  π− (
1−s

2
)Г(

1−s

2
) ζ(1 − s)                                                 … (2.4) 

 This functional equation (2.4) is also a definition of ζ(s) over whole complex s-plane 

except a singularity at s = 1. 

 A consequence of symmetry of (2.4) suggests that if there is a complex zero of ζ(s) for 

Re  s = ½ + δ, then there must be another zero of ζ(s) for Re s = ½ − δ. 

 Riemann introduced another function known as Riemann Xi function ξ(s) which satisfies 

a functional equation :  

         ξ(s) = ξ(1 − s)                          … (2.5)  

The Riemann Xi and Riemann zeta function are connected through the equation [1] : 

    ξ(s) =  
1

2
 s(s – 1 ) π− 

s

2Г(s/2)ζ(s)                                   … (2.6)  

The Riemann zeta function has real and complex zeros [2]. The real zeros of ζ(s) are known as 

trivial zeros and are given by 

   ζ(– 2m) = 0  ;      m = 1, 2, 3, . . . . .                         … (2.7) 

The complex zeros of ζ(s) lie [1] within the strip  0 <Re s < 1. This strip is known as critical strip 

and zeros lying in critical strip are known as nontrivial zeros. And the straight line Re s = ½ is 

called critical line . 

 Now a consequence of (2.6) is that the nontrivial zeros of Riemann zeta function ζ(s) are 

identical with zeros of Riemann Xi function ξ(s) [3]. 

 Riemann Hypothesis is a conjecture made by Riemann which says that the nontrivial 

zeros of Riemann zeta function ζ(s) has real part  σ = ½ . This implies that the zeros of Riemann 

Xi function ξ(s) has also real part of σ = ½ . This Hypothesis has not yet been proved or 

disproved. 
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 The literatures on ξ(s) and ζ(s) are extremely large. Only a few important results related 

to zeros of ζ(s) are mentioned. G. H. Hardy [4] has proved that an infinite number of zeros lie on 

the critical line σ = ½. J. B. Conrey [5] has shown that more than 40% zeros of ζ(s) lie on critical 

line. N. Levinson [6] has shown that more than one third zeros of ζ(s) lie on critical line. 

 

3. Expression of Riemann Xi function ξ(s) in terms of an arbitrary   

    function. 
 As the nontrivial zeros of ζ(s) are identical with zeros of ξ(s) , we will consider ξ(s) and 

find its analytical expression in terms of an arbitrary function. This is more convenient which 

will be clear later. 

 Firstly, we will consider solution of (2.5) which is satisfied by  ξ(s) . The solution of (2.5) 

in terms of an arbitrary function was given by Hymers [7]. Following Hymers [7]  the general 

solution of the equation (2.5) can be written as in terms of an arbitrary function. 

 Hymers considers the functional equation of more general form 

   φ (a + bs) = nφ(s) ;      n, a, b are constants              …(3.1) 

and gives the solution of (3.1) as 

  φ(s) = (Cos −  
Coa

1−b
)

log n

log b
 θo [Cos {

2π

log b
 .  log (Cos −  

Coa

1−b
)}]                           …(3.2) 

                                                                                             Co  ≡ arbitrary constant 

                    θo  ≡ arbitrary function 

Now for a = 1, b = – 1  and n = 1 equation (3.1) reduces to  

φ (1 – s) = φ(s)               …(3.3) 

Equation (2.5) and (3.3) are of same form. Hence solution of (2.5) and  (3.3) will have identical 

form. 

 The solution of (3.3) in terms of an arbitrary function  θ0 follows from (3.2) : 

   φ(s) = (s −  
1

2
)

log 1

log(−1)
 θo [Cos {

2π

log(−1)
 .  log (s −  

1

2
)}] 

                                                                                                   taking Co = 1  in (3.2) 

i.e.,  φ(s) = (s −  
1

2
)

2nπi

(2n+1)πi
 θo [Cos {

2π

log(−1)
 .  log (s −  

1

2
)}] 

              = (s −  
1

2
)

2n

(2n+1)
 θo [Cos {

2π

(2n+1)πi
 .  log (s −  

1

2
)}] 

              = (s −  
1

2
)

2n

(2n+1)
 θo [Cos {

−2i

(2n+1)
 .  log (s −  

1

2
)}] 

              = (s −  
1

2
)

2n

(2n+1)
 θo [Cosh {

2

(2n+1)
 .  log (s −  

1

2
)}]                  …(3.4) 
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A glance at (3.4) suggests that φ(s) can be written more conveniently in terms of another 

arbitrary function. 

 Therefore    φ(s) = ψ0(s − ½)        …(3.5) 

        ψ0(s − ½)  is another arbitrary function.  

 

Now comparing (2.5), (3.3) and (3.5) we can write the solution of (2.5) in terms of an arbitrary 

function : 

              ξ(s) =  ψ (s – ½)                 …(3.6) 

 

Equation (3.6) is the solution of (2.5) and represents the Riemann Xi function ξ(s) in terms of an 

arbitrary function. 

 

4. Explicit analytical expression of Riemann Xi function ξ(s). 
 To derive the exact analytical expression of ξ(s) we state a result of analysis in the form 

of a theorem. 

 The theorem is due to J. Brill [8] 

 Theorem  1. (Due to J. Brill) 

  The theorem states that if  α  is a root of 

   Aα2 + Bα + C = 0              A, B, C  are constants    …(4.1) 

Then φ (y + αx) can be expressed as    

  φ (y + αx) = η + αθ         …(4.2) 

where  α  is independent of  x, y and  η = η(x, y),  θ = θ(x, y) satisfy 

  
1

A
 
∂θ

∂y
  = 

1

B
 (

𝜕η

∂y
−  

∂θ

∂x
) = – 

1

C
 
𝜕η

∂x
       …(4.3) 

 We will use the results from (4.1) to (4.3) of above theorem to find analytic expression of 

Riemann Xi function ξ(s), where  s  is complex. Conventionally  s  is written as 

   s = σ + it  ;        i = √− 1       …(4.4) 

σ,  t being real and imaginary parts of  s respectively. 

 Now from (4.3)  we find 

   
1

A
 
∂θ

∂y
 + 

1

C
 
𝜕η

∂x
 = 0       …(4.5) 

                        
1

A
 
∂θ

∂y
 −  

1

B
 
𝜕η

∂y
+

1

B
 
𝜕θ

∂x
 = 0      …(4.6) 

               
1

C
 
𝜕η

∂x
 + 

1

B

𝜕η

∂y
  −  

1

B
 
𝜕θ

∂x
  = 0      …(4.7) 
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From (4.7) one finds 

   
1

C
 

∂2η

∂y ∂x
 + 

1

B
 
∂2η

∂y2
 − 

1

B
 

∂2θ

∂y ∂x
 = 0     …(4.8) 

and from  (4.5)            
1

A
 

∂2θ

∂x ∂y
 + 

1

C
 
∂2η

∂x2
  = 0                                                                          …(4.9) 

Now from (4.8) and (4.9) eliminating  
∂2θ

∂x ∂y
  we get assuming partial derivatives are continuous 

   
∂2η

∂x2
 + 

B

A
 

∂2η

∂x ∂y
 + 

C

A
 
∂2η

∂y2
 = 0                                                             …(4.10) 

 

Likewise from (4.5) 

                                   
∂2θ

∂y2
 + 

A

C
 

∂2η

∂x ∂y
  = 0                                                                           …(4.11) 

And from (4.6) 

                                 
1

A
 

∂2θ

∂x ∂y
 − 

1

B
 

∂2η

∂x ∂y
 + 

1

B
 
∂2θ

∂x2
 = 0                                                        …(4.12) 

Again assuming partial derivatives are continuous, we eliminate 
𝜕2η

𝜕x ∂y
 from (4.11) and (4.12). 

The result is  : 

   
𝜕2θ

𝜕x2
 + 

B

A
 

∂2θ

∂x ∂y
 + 

C

A
 
𝜕2θ

𝜕y2
 = 0                …(4.13) 

 

A comparison of (4.10) and (4.13) shows that we can choose 

    η (x, y) = θ (x, y)               …(4.14) 

Now in (4.1) we take 

    α = 1                                                                                   … (4.15) 

And in (4.2) we take 

    y = (σ − 
1

2
) 

        x = i t                                                                                 … (4.16) 

Then in view of (4.15) we find from (4.1) 

                                             A + B + C = 0             … (4.17) 

and from (4.2), (4.14), (4.15) and (4.16) 

  φ(σ − 
1

2
 + i t) = η(σ − 

1

2
 , i t) + θ(σ − 

1

2
 , i t)                                … (4.18) 

Using (4.16), (4.10) can be rewritten as 

− 
∂2η

∂t2  − 
iB

A
 

∂2η

∂t.∂(σ − 
1

2
)
 + 

C

A
 

𝜕2η

𝜕(σ −  
1

2
)

2 = 0 
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                       i.e.,  
∂2η

∂t2
 + 

iB

A
 

∂2η

𝜕t.𝜕(σ −  
1

2
)
 − 

C

A
 

𝜕2η

𝜕(σ −  
1

2
)

2  = 0 

                   i.e.,  
∂2η

∂t2
 + 

iB

A
 

∂2η

𝜕t.𝜕(σ −  
1

2
)
 + 

A + B

A
 

𝜕2η

𝜕(σ −  
1

2
)
2  = 0,  using (4.17) 

Therefore,      
∂2η

∂t2
 + ik 

∂2η

𝜕t.𝜕(σ −  
1

2
)
 + (1 + k) 𝜕

2
η

𝜕(σ −  1
2

)
2 = 0 ;      k =  

B

A
 = constant         …(4.19) 

Likewise (4.13) reduces to  

                            
∂2θ

∂t2
 + ik 

∂2θ

∂t.𝜕(σ − 
1

2
)
 + (1 + k) 𝜕

2
θ

𝜕(σ −  1
2

)
2  = 0                             …(4.20) 

 

 

Equation (4.2), (4.14), (4.18), (4.19) and (4.20) imply that (3.6) can be written as  

    

 ξ(s) = ψ(s ‒  
1

2
) 

                                           = ψ(σ ‒  
1

2
 + i t) 

                                           = η0 (σ ‒  
1

2
 , i t) + θ0 (σ ‒  

1

2
 , i t)                     …(4.21) 

Where  η0  and  θ0  satisfy (4.19) and (4.20) and 

                                                  η0  =  θ0             …(4.22) 

Hence from (4.21) and (4.22) the expression for ξ(s) can be written as  

                                        ξ(s) = 2η0 (σ ‒  
1

2
 , i t)           …(4.23) 

where  η0 satisfies  

   
∂2η0 

∂t2
 + ik 

∂2η0 

𝜕t.𝜕(σ −  
1

2
)
 + (1 + k) 

𝜕
2

η0 

𝜕(σ −  1
2

)
2  = 0       …(4.24) 

There exist methods for solution of (4.24). However we will use the method due to Forsyth [9]. 

We use a trial solution for (4.24) : 

                   η0  = A0 e
il1t+ il2  (σ −  

1

2
)
                                                             … (4.25) 

                                                                            A0 = constant (real) ;  and  l1 real and positive 

Then from (4.24) , using (4.25) one finds  

           l1
2 + ikl1l2 +  (1 + k)l2

2 = 0         …(4.26) 

Treating (4.26) as a quadratic in l1  

We get                        l1 = i l2 

                            i.e.,  l2 = ‒ i l1           …(4.27) 

   and                      l1 =  ‒ i (k + 1) l2 
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                                 i, e.,   l2 =  
il1

(k + 1)
                 … (4.28) 

 

Thus we have two solutions of (4.25) 

                           η0,1 = A0 e
il1t+ l1(σ − 

1

2
)     [Using (4.27)]    …(4.29) 

                             = A0 e
l1(σ − 

1

2
) [Cosl1 t + i Sinl1t ]              …(4.29A) 

                          η0,2  = A0 e
il1t − 

  l1
k+1

(σ − 
1

2
)
    [Using (4.28)]    …(4.30) 

                                  = A0 e
− 

  l1

k+1
(σ − 

1

2
) 

 [Cosl1 t +  i Sin l1t ]                    …(4.30A) 

Now it is known that ξ(s) is an entire function i.e., analytic in the whole complex plane. 

Here  η0,1  is an analytic function because  η0,1  satisfies Cauchy-Riemann equations. 

But   η0,2  is not analytic for arbitrary values of  k.  For  k = − 2,   η0,2  is only  analytic. 

So we choose  k = − 2 in (4.30) and (4.30A). 

But though the choice  k = − 2 makes η0,2  analytic, η0,2  becomes identical with η0,1  for k = − 2 

So we choose k = − 2, but the ansatz for  η0  in (4.25) leads to one solution of (4.24) which is 

given by (4.29) or (4.29A). 

 

Now we take another ansatz for η0  = A0 e
− il1t − il2  (σ − 1

2
)

                                                     …(4.31) 

 

This ansatz when plugged into (4.24) gives once again 

                                           l1
2 + ikl1l2 +  (1 + k)l2

2 = 0          …(4.32) 

 

Here also we get like previous case  

                                            l2 = ‒ i l1           …(4.33) 

                              and        l2 = 
il1

(k + 1)
                     …(4.34) 

with these values we find from (4.31)  

                                     η0,3  = A0 e
− il1t − l1(σ − 1

2
)

                                                                           …(4.35) 

            =  A0 e
− l1(σ − 1

2
) 

 [Cos l1  t − i Sin l1  t ]                     …(4.35A) 

                            and    η0,4  = A0 e
− il1t +  

 l1
k+1

(σ − 
1

2
)
 

                                             = A0 e 
 l1

k+1
(σ − 

1

2
) [Cos l1  t − i Sin l1  t ]                           …(4.36) 

 



8 

 

 

η0,3  turns out to be analytic whereas η0,4  is analytic only for k = − 2 and for  k = − 2 ,  

η0,4  becomes identical with η0,3 . 

So the ansatz (4.31) leads to one more solution like previous analysis. And this solution is η0,3  

given by (4.35) and (4.35A). 

 It can be checked that η0,1  and  η0,3  are linearly independent solutions of (4.24) as 

Wronskian of  η0,1  and  η0,3  is nonzero. 

           The Wronskian of  η0,1  and  η0,3  is [from (4.29) and (4.35)]  

      W =     A0 e
il1t+ l1(σ −  

1

2
)
                            A0 e

− il1t − l1(σ −  1
2
)

 

                  {
𝜕

𝜕t
+  

𝜕

𝜕(σ −  1
2

)
} A0 e

il1t+ l1(σ −  
1

2
)
      {

𝜕

∂t
+ 

𝜕

𝜕(σ −  1
2

)
}   A0 e

− il1t − l1(σ −  1
2
)
     

                

           =     A0 e
il1t+ l1(σ −  

1

2
)
                            A0 e

− il1t − l1(σ −  1
2
)
 

                   (il1 + l1)A0 e
il1t+ l1(σ −  

1

2
)
              − (il1 + l1) A0 e

− il1t − l1(σ −  1
2
)
                

 

           = –  A0
2   (l1 + i l1)  – A0

2  (l1 + i l1)  

           = – 2 A0
2   (l1 + i l1)    ≠  0 

The sum of two independent solutions is also a solution of (4.24) [9]. 

Hence we write the solution of (4.24) as [from (4.29A) and (4.35A)] 

         η0   =  η0,1 +  η0,3     

               = A0 e
l1(σ −  

1

2
) [Cos  l1  t +  i Sin l1  t ] + A0 𝑒

− l1(σ −  1
2

) 
 [Cos l1  t − i Sin l1  t ]   

                                                                                   

               =  2A0 Cos  l1t {
el1(σ − ½) + e−l1(σ −  1

2) 
2

} + i2A0  Sin l1t {
el1(σ −  

1
2

) − e−l1(σ −  
1
2

) 

2
} 

               = A1 Cos l1t Cos h l1(σ −  1

2
) + i A1 Sin l1t Sin hl1(σ −   

1

2
) ;     2 A0 = A1 

               = A1 [Cos l1t Cos h l1(σ −  1

2
) + i Sin l1 t Sin hl1(σ −   

1

2
)]                     …(4.37) 

The constant A1 can be looked upon [9] as a function of the parameter  l1  

So we write from (4.37)  

           η0   =  A1(l1) [Cos l1t Cos h l1(σ − 1

2
) + i Sin l1t Sin hl1(σ −  

1

2
)]                  …(4.38) 
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Now, the solution of (4.24) should contain [9] two constants of the form A1(l1) ; so the final 

expression of  η0  is of the form  

      η0   =  A2(l1) + A1(l1) [Cos l1 t Cos h l1(σ − 1

2
) + i Sin l1 t Sin hl1(σ − 

1

2
)]             ..(4.39)     

Using (4.23) and (4.39) we can now write the analytic expression of Riemann Xi function ξ(s) as 

          ξ(s) = ξ(σ + it). 

                 = 2η0  

                 =  2 A2(l1) + 2 A1(l1) [Cos l1t Cos h l1(σ − 1

2
) + i Sin l1t Sin hl1(σ −  

1

2
)]     

  i.e.,  ξ(s) = F2(l1) + F1(l1) [Cos l1t Cos h l1(σ − 1

2
) + i Sin l1t Sin hl1(σ −  

1

2
)]       …(4.40)  

                                          where    F2(l1)  =  2 A2(l1)    and      F1(l1)  =  2 A1(l1) 

                                                 F2(l1) and F1(l1) both being real 

Equation (4.40) is the final analytic expression for Riemann Xi function ξ(s). This solution is 

analytic and satisfies the equation (2.5) i.e., ξ(s) = ξ(1 − s). The two constants F2(l1)  and  F1(l1)  

in (4.40) are functions of the parameter l1. 
The solution (4.40) has certain advantage. It contains no arbitrary functions of the independent 

variables ; instead it contains two constants ; the constants being arbitrary functions of the 

parameter l1. 

 Now for t = 0, we have from (4.40) 

                             ξ(σ) =  F2(l1) + F1(l1) Cos hl1  (σ −  
1

2
)    …(4.41) 

Now it is known that  

                             ξ(0) = ξ(1) = 
1

2
   

                             ξ(2) = 
π

6
 ≈ 0.52       …(4.42) 

                             ξ(3) ≈ 0.57 

       ξ(4) = 
𝜋2

15
 ≈ 0.65 

Using (4.42) we find from (4.41)  

   F2(l1) + F1(l1) Cosh  
l1

2
 = 0.50    …(4.43) 

   F2(l1) + F1(l1) Cosh  
3l1
2

 = 0.52                …(4.44) 

                                   F2(l1) + F1(l1) Cosh  
5l1
2

 = 0.57                                              … (4.45) 

   F2(l1) + F1(l1) Cosh  
7l1
2

 =  0.65    …(4.46) 

As zeros of ξ(s) are only complex, ξ(σ) has no real zeros. And cosine hyperbolic function being 

always positive, F2(l1) and F1(l1) are assumed to be positive as suggested by equations (4.43) to 

(4.46). 
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Now it is an easy task [Appendix] to check that the parameter l1 and the arbitrary function  F1(l1) 

, F2(l1) cannot be determined uniquely from the equations (4.43) to (4.46) or other equations 

formed from equation (4.41) with known values of  ξ(σ). 

Thus l1, F1(l1) , F2(l1) in (4.40), (4.41) and in (4.43) to (4.46) are undetermined. However the 

non- existence of unique solution of the system (4.43) to (4.46) cannot prevent proving Riemann 

Hypothesis. 

 

5. Proof of Riemann Hypothesis and analytical expression for zeros of  

ξ(s) (i.e., nontrivial zeros of ζ(s) ) 

  
The proof of Riemann Hypothesis is concerned with the form of nontrivial zeros of 

Riemann Zeta function ζ(s) i.e., the zeros of Riemann Xi function ξ(s).  

The zeros of ξ(s) imply that both real and imaginary parts of equation (4.40) are zero. 

Therefore zero of ξ(s) imply  

Real ξ(s) = RE =  F2(l1) + F1(l1) Cos l1t Cos hl1 (σ −  
1

2
) = 0                         …(5.1) 

and   Imaginary ξ(s) = IM  = F1(l1)  Sin l1t Sin hl1(σ −  ½) = 0                                      … (5.2) 

 

Firstly we ignore considering  RE = 0. Because  RE = 0  implies  F2(l1) = 0 along with either  

F1(l1) or Cos l1t equal to zero as  Cos hl1 (σ − 
1

2
) is always defined to be positive. But F2(l1) and 

F1(l1) are both non zero. Hence this conclusion. 

Now as   F2(l1) ≠ 0  and    F1(l1)  ≠ 0, as a second possibility, IM = 0 requires to find a value of     

σ (0 < σ < 1)  for which Sinh l1 (σ − 
1

2
) = 0. And for   Sin h l1  (σ − 

1

2
) = 0, we can find the 

condition for  RE = 0 from equation (5.1).  

 As a third possibility when Sinh l1 (σ − 
1

2
) ≠ 0,  IM = 0 implies Sin l1t = 0 and  RE = 0 

would imply Cos hl1 (σ −  
1

2
) =  

F2(l1) 

F1(l1)
 , as  Cos l1t =   1 when Sin l1t = 0. This possibility is 

ruled out because   
F2(l1) 

F1(l1)
 is independent of σ. 
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Now considering the second possibility  a look into equation (5.1) and (5.2) assert that only for  

σ =  
1

2
,    Sinh l1  (σ −  

1

2
)  = 0 and  so   IM = 0.  And condition for RE = 0  follows from  (5.1) 

with σ =  
1

2
 :  

                                                       Cos l1t = − 
F2 (l1) 

F1 (l1)
       …(5.3) 

Therefore the nontrivial zeros of ζ(s) turn out to be of the form  (
1

2
+  it) where t is given by 

(5.3) or more explicitly  

                                 t =  
1

l1
 Cos− 1  [− 

F2 (l1) 

F1 (l1)

]       …(5.4) 

As  l1 , F2(l1), F1(l1) are unknown, we cannot compute the value of  t  from (5.4). 

Thus the proof of Riemann Hypothesis is established. 

 

6. A second proof of Riemann Hypothesis : 
The second of proof of Riemann Hypothesis is proof of a result which is equivalent to 

proof of Riemann Hypothesis. This Riemann Hypothesis equivalent is due to Brian  

Conrey [10]. Conrey has shown that the truth of Riemann Hypothesis is equivalent to proving 

that zeros of derivatives of all orders of Riemann Xi functions ξ(s) has real part σ = ½. We will 

prove this in the following . 

From equation (4.40) we write once again the expression for  Riemann Xi functions ξ(s) : 

            ξ(s) = ξ(σ + it)  

                   = [F2(l1) + F1(l1) Cos l1t Cos h l1(σ − 1

2
)] + i[F1(l1)  Sin l1t Sin hl1(σ −  

1

2
)] …(6.1)  

Therefore 
d

ds
 ξ(s)  

                     = ξ(1)(s)  

          = 
∂

∂σ
 [F2(l1) + F1(l1) Cos l1t Cos h l1(σ − 1

2
)] + i 

∂

∂σ
 [F1(l1)  Sin l1t Sin hl1(σ − 

1

2
)]  

                     = l1 F1(l1) Cos l1t Sin h l1(σ − 1

2
) + i l1 F1(l1) Sin l1t  Cos h l1(σ −  

1

2
)       …(6.2) 

Likewise 
d2

ds2
 ξ(s) 

                    = ξ(2)(s) 

                    =l1
2
 F1(l1) Cos l1t Cos h l1(σ − 1

2
) + il1

2
 F1(l1)  Sin l1t Sin hl1(σ − 

1

2
)         …(6.3) 
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d2m

ds2m
 ξ(s) 

                    = ξ(2m)(s) 

           = l1
2m

 F1(l1) Cos l1t Cos h l1(σ − 1

2
) + il1

2m
 F1(l1)  Sin l1t Sin hl1(σ −  

1

2
)    …(6.4) 

And    
d2m+1

ds2m+1
 ξ(s) 

            = ξ(2m+1)(s) 

            = l1
2m+1

 F1(l1) Cos l1t Sin h l1(σ − 1

2
) + il1

2m+1
 F1(l1)  Sin l1t Cos hl1(σ −  

1

2
)    …(6.5) 

Now we first consider the zeros of   
d2m

ds2m
 ξ(s).  

From (6.4) zeros of 
d2m

ds2m
 ξ(s) imply  

               l1
2m

 F1(l1) Cos l1t Cos h l1(σ − 
1

2
) = 0      …(6.6) 

  And       l1
2m

 F1(l1)  Sin l1t Sin hl1(σ −  
1

2
)  = 0      …(6.7) 

Now suppose σ ≠ ½ then Cos h l1(σ − 
1

2
) ≠ 0 and   Sin hl1(σ −  

1

2
) ≠ 0 then (6.6) and (6.7) 

imply both  Cos l1t = 0 as well as  Sin l1t = 0 which is impossible. 

On the other hand if  σ = ½ equation (6.7)  is satisfied because  Sin h0 = 0 and  (6.6) 

implies  Cos l1t = 0     (as  Cos h0 ≠ 0) 

 i.e., l1t = (2n + 1) 
π

2
  

 i.e.,   t = 
1

l1
 (2n + 1) 

π

2
                                               …(6.8) 

Thus it turns out that zeros of ξ(2m)(s) are of the form  
1

2
 + i 

1

l1
 (2n + 1) 

π

2
 where l1 is an 

undetermined parameter. 

We next consider the zeros of ξ(2m+1)(s) 

From (6.5) zeros of ξ(2m+1)(s) imply   

     l1
2m+1

 F1(l1) Cos l1t Sin h l1(σ − 1

2
) = 0                 …(6.9) 

    l1
2m+1

 F1(l1)  Sin l1t Cos hl1(σ −  
1

2
) = 0                                                            …(6.10) 

A similar argument as above reveals that zeros of ξ(2m+1)(s) has real part σ = ½ and 

imaginary part is given by  

  Sin l1t  = 0  

i.e.,  l1t  = nπ 

i.e.,  t  =  
1

l1
 nπ 

Therefore zeros of  ξ(2m+1)(s) are of the form   
1

2
 + i 

1

l1
 nπ 

Thus the second proof of Riemann Hypothesis is established. 

 



 

 

7. Conclusion : 
 In this paper two proofs of Riemann Hypothesis are given. The first proof may be called 

a direct proof. It is not a proof of any Riemann Hypothesis equivalent [11, 12]. It fails  to identify 

the position of nontrivial zeros of ζ(s) on critical axis. However it confirms that all the nontrivial 

zeros of ζ(s) lie on critical axis. The second proof is a proof of Riemann Hypothesis equivalent. 

We can now safely conclude that Riemann Hypothesis is not at all trifling or baffling. It is 

perfectly true.  

Appendix 
 

 We write equations (4.43) to (4.46) once again 

   F2(l1) + F1(l1) Cosh
l1

2
 = 0.50     …(A1) 

   F2(l1) + F1(l1) Cosh
3l1
2

 = 0.52             …(A2) 

                                   F2(l1) + F1(l1) Cosh
5l1
2

 = 0.57                                                 … (A3) 

   F2(l1) + F1(l1) Cosh
7l1
2

 =  0.65    …(A4) 

Now (A2) – (A1) gives 

   F1(l1) [ Cosh 
3l1
2

−  Cosh
l1
2

] = 0.02  

Therefore                     F1(l1). 2. Sinhl1. Sinh 
l1

2
  = 0.02    …(A5) 

(A3) – (A2) gives  

   F1(l1) [ Cosh 
5l1
2

−  Cosh
3l1
2

] = 0.05 

Therefore    F1(l1). 2. Sinh2l1. Sinh 
l1

2
  = 0.05    …(A6) 

(A4) – (A3) gives 

   F1(l1) [ Cosh 
7l1
2

−  Cosh
5l1
2

] = 0.08 
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Therefore  F1(l1). 2. Sinh3l1. Sinh 
l1

2
  = 0.08    …(A7) 

(A4) – (A2) gives 



   F1(l1) [ Cosh 
7l1
2

−  Cosh
3l1
2

] = 0.13 

Therefore  F1(l1). 2. Sinh5l1. Sinh l1  = 0.13    …(A8) 

 

Next (A6)  (A5) gives 

   
Sinh2l1

Sinhl1
 = 

0.05

0.02
 = 

5

2
  

Therefore                     Cos h l1 = 
5

4
  = 1.25      …(A9) 

 

Again  (A7)  (A6) gives 

   
Sinh3l1

Sinhl1
 = 

0.08

0.05
 = 

8

5
 

i.e.,           
4Sinh3l1+ 3Sinh l1

2Sinhl1  .Coshl1
  =  

8

5
 

i,e,               
4Sinh2l1+ 3

Coshl1
  =  

16

5
 

i.e.,   4(Cosh2 l1 – 1) + 3 =  
16

5
 Cosh l1   

i.e.,   4Cosh2 l1 –  
16

5
 Cosh l1 – 1 =  0 

Therefore         Cosh l1 = 

16
5

 ± √(
16
5

)
2

+ 16

8
 

                                  = 
3.2 ± √(3.2)

2
+ 16

8
 

                                  = 
3.2 ± √26.24

8
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As   Cosh l1   is defined always to be positive, hence we get from above  

  Cosh l1   = 
3.2+ √26.24

8
  = 

3.2+ 5.12
8

 = 
8.32

8
  = 1.04                            …(A10) 



A comparison of  (A9) and (A10) shows that l1 cannot be uniquely determined and consequently 

F1(l1) and F2(l1) remain undetermined uniquely. 
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