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Abstract

A variant of Semiclassical  Gravity is outlined that differs  in some interesting ways from the more familiar approach.  It extends
earlier work in which the renormalization of the stress-energy tensor is replaced by a different protocol. Creation and annihilation
operators  are  assigned  their  roles  based  on  the  behavior  of  the  normal  modes making up  the  solution within  an  asymptotically
simple region in  cases  where  such  exist.  The  question of Rindler  particles  and  Unruh-DeWitt  detectors  is  discussed.  Particular
attention is paid to the behavior of an Unruh-DeWitt detector that holds stationary outside an eternal black hole. A conjecture is

offered  to  the  effect  that  the  positive  frequency  Wightman  function,  D+(x,  x'),  is  always  to  be  given  by

-1

4 Π2
Hgeodesic distance between x and x 'L-2.  This  assumption allows us to solve the black hole problem numerically. Particles  are,

in fact, detected and their power spectrum is compared to those seen by rotating and linearly accelerating detectors. This matter is
discussed in the context of the Equivalence Principle.
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Introduction.

It  has  been  theorized  since  the  seminal  work  of  Fulling  (1),  DeWitt  (2),  Unruh  (3),  and  Davies  (4)  that  an
accelerating monopole detector will register a thermal bath of particles. In keeping with the Equivalence Princi-
ple we would expect a similar result for a detector feeling an acceleration due to gravity. 
     In an earlier paper this author has argued that the goal of quantizing gravity should be abandoned in favor of
Semiclassical Gravity (5). A prescription for doing this was offered that differs in significant ways from much

of the previous work in the field. Our world is pictured as a classical, globally hyperbolic, manifold — M
4. We

impose upon it  a  coordinate system and  a  quantum field  theory (QFT) of  our  choosing. The QFT dealt  with

here will be real scalar field theory. We try to solve the Klein-Gordon equation defined by M4 so as to arrive at
a set of complete orthonormal modes and their conjugates that we call uk(x, t) and uk

*(x, t). In a perfect world

we can find easy, analytic, expressions for these functions. Unfortunately, this is seldom the case. We write the
field as:

1)   j(x, t) = 1

V
 Úk (ukHx, tL ak  + uk

*Hx, tL ak
Ö) and we imagine the system contained in an enormous periodic

box of volume V. This defines a Fock space in which the QFT operates.

We construct the stress-energy tensor — TΜΝ  = 2 
∆Lfield

∆gΜΝ  - gΜΝ Lfield — and demand that GΜΝ = 8 Π (<Y|TΜΝ|Y>  -

<0M |TΜΝ|0M >) =  8 Π {Y|TΜΝ|Y} where {Y|O|Y}  is defined as <Y|O|Y> - <0M |O|0M > for any operator O and |0M >

represents  the  lowest  energy state  for  which  GΜΝ = 0.  We call  |0M > the  Minkowski  vacuum. |Y>  is  the  state

vector  of  our  reality.  We  work  in  the  Heisenberg  Picture  so  this  vector  never  changes.  If  it  were  |0M >  it  is
assumed that we automatically default into Minkowski space (MS).
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QFT in Curved Spacetime.

I should  expect to be asked what ak  and  ak
Ö  are and how they relate to our Fock space. In MS the answer is

obvious.  In  general,  we  want  to  associate  the  former  with  positive-frequency modes  and  the  latter  with  the
negative-frequency ones. But,  in  a curved spacetime, this  becomes very difficult  — negative or positive with
respect to what time and where? This has always proved a terrible stumbling block for approaches to quantum
and semiclassical gravity. We propose to address it in a rather unusual way.
     We will illustrate this by considering an eternal Schwarzschild black hole (BH). We cannot, as a practical
matter,  find  analytic  solutions  for  the  ukHx, tL  and  uk

*Hx, tL.  But  imagine  that  we  can  or  can  work  them out

numerically somehow. We know that, as r -> infinity, spacetime becomes Minkowskian (6). We know what ak

and ak
Ö do there. In particular, the ak  annihilate |0M >. If they do so at infinity it stands to reason that they do so

everywhere. Fock space is independent of spacetime and does not "live" in it. We want to identify the uk(x, t)

that goes to the Minkowski solution (denoted by k) at r = infinity. Depending on how we found our uk(x, t) and

uk
*(x, t) we might have to construct various linear combination of these things in order to achieve our goal. But

we ought to be able to achieve it  (in principle). It would help, of course, if  we had analytic solutions for our

uk(x, t) and uk
*(x, t). But let us just imagine we did or could find an easy workaround. At least we know what

ak  and ak
Ö  are and what they do. The aks always annihilate |0M > and we build |Y>  for our universe from  |0M >

using  the  ak
Ö

 s.  We  would  have  to  play  around  a  bit  to  find  what  |Y>  is  here.  It  certainly  is  not  any  kind  of

vacuum state since it describes a BH. Otherwise, things are very much like what we know from MS.

     This works for our BH but would not seem to have any general usefulness — M4  may have no asymptotic
MS-like  regions.  Let  us  consider  a  different  example.  Suppose  we  live  in  a  universe  that  expands  forever.
Cosmology indicates that we do. We assume a Robertson-Walker metric with k = 0. If no new matter is being
created we will eventually end up with Ρ = 0 and the manifold becomes asymptotically Minkowskian. This is

most easily seen if we transform to a new coordinate system in which xi  is replaced by yi/ gii .  Now gΜΝ  ->

ΗΜΝ as t -> infinity. We may write:

     

2)   j(y, ¥)  = 1

V
 Úk ( ã- ä k×y

2 Ω k

 ak + ãä k×y

2 Ω k

 ak
Ö).

The aks always annihilate |0M > and [ak, ak'
Ö ] = ∆kk'. We can imagine integrating the above solution backwards in

time using the Klein-Gordon equation so as to arrive at expressions for uk and uk
* during our present epoch. As

a practical matter this is easier said than done. We could, in some cases, attack the problem numerically. 
     In the above we have assumed that there is no cosmological constant. It is illustrative to consider the situa-
tion if there is one. In the first place |0M > and MS disappear from consideration; in the vacuum state we now
default  into  an  empty  deSitter  universe.  It  is  into  this  spacetime  that  our  world  will  evolve.  Let  us  call  the
vacuum |0DS> (the 'deSitter vacuum'). This is what now figures in the curly brackets that define our Einstein's

equation.  On  the  left  hand  side  now  also  appears  -  L  gΜΝ. An  empty  deSitter  universe  possesses  a  timelike

Killing vector. We would try to find sensible positive and negative-frequency modes and integrate these back-

ward in time as above. In this way we know which modes to associate with the aks and ak
Ös at the present time.

     There is an outstanding question that must be addressed. If |Y>  is in a vacuum state why does M
4  default

into  MS or  an  empty deSitter  universe instead  of  one  with  k  = -1,  a  Taub-NUT space, or  any other  vacuum
solution? We must  assume a kind of 'prior geometry' (5).  That  our  universe is  characterized by a Robertson-
Walker metric (at least at distant future times) is one such assumption. If it is we must also decide whether k =
1, 0, or -1. We must figure out whether there is a cosmological constant and, if so, what it is. These things do
not appear to be mandated naturally. 
          The prescription outlined above allows us to unambiguously define our operators and construct our Fock

space. But it only makes sense if M4  possesses an asymptotic region in which positive and negative frequency

modes can be reasonably defined and a timelike Killing vector exists. Most M4s  do not, of course, have this

property. The real M4 we live in apparently does and we speculate that this may be more than a lucky accident.
QFT may simply not be possible otherwise.
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Particles and Detectors.

Say we are in the Minkowski vacuum state. (Actually, we could not be since we would not even exist. But let
us  ignore this  problem for  the  moment — we are so small  as to not  affect the  spacetime at  all.)  A family of
Rindler observers (7) defines a coordinate system in which the massless Klein-Gordon equation takes the same
form as for the  Minkowski observers. Accordingly, they will  have a solution of the  form 1)  but with the aks

and ak
Ös replaced by their operators which we can call bk  and bk

Ö. They can define "number operators" — bk
Öbk.

Since their modes differ from those of the Minkowski observers (and mix the positive and negative-frequency

modes of the  latter) bk
Öbk  |0M > ¹  0.  Indeed, they may well  conclude that  they are living in  a thermal bath of

particles. But  should  they? The Minkowskian observers can write {Y|H|Y}  = <Y|  Úk Ωk Nk È Y > where  Nk  =

ak
Öak  and ak|0M > = 0. Their number operators denominate specific packets of energy. The "number operators"

of the Rindler observers do no such thing (as discussed briefly in (5)). We know this since, were it otherwise,
there would be a net energy in the world and spacetime could not be Minkowskian. So what, if anything, are
the Rindler observers counting? One can imagine attaching a monopole particle detector to a particular Rindler
observer and show that it  registers a similar thermal bath of particles. If this is not just  a very strange coinci-
dence it seems to suggest that we are looking at something real. But real in what sense? This is hard to say. We
will  return  to this  question presently. The Rindler  observers can define their  own "vacuum state," sometimes
called a Fulling vacuum, |0F> such that bk È 0F > = 0. But {0F |TΜΝ|0F} ¹ 0 so we cannot be in MS. Moreover,

if we could be, this state would not even obey the Weak Energy Condition. 

Eternal Black Holes.

We would like to know about the particles that would be observed outside a BH by an Unruh-DeWitt mono-
pole detector (a UD) were it  sitting stationary outside the event horizon. Assuming the particles are massless
we would need to compute the power spectrum given by:

3)   P(E) =  Ù-¥

¥
Exp@- ä E DΤ D D+HxHΤL, xHΤ 'LL â DΤ.

We need to find D+HxHΤL, xHΤ 'LL = <YBH| j(x) j(x') |YBH> where j(x) is the real scalar field around the BH and
|YBH> is the state in our Fock space that corresponds to the existence of the BH. We know it is not a vacuum
state of any kind since it describes a BH. We are not altogether certain what it is, however. Nor do we have a
useful, analytic, expression for j(x). The problem seems quite hopeless.

     We might find a path towards its solution by noting that, in MS, D+Hx, x 'L = -
1

4 Π2 [ 1

Ht - t' - ä ΕL 2
- Hx - x'L2 ] for a

massless  scalar  field  which  is  proportional  to  (ignoring  the  tiny  -  ä  Ε  term)  1

HStraightLineDistancebetween x and x'L2  =

1

G Hx, x'L2  where G(x, x') denotes the 'geodesic distance' between the two points (i.e. the distance travelled by the

UD if  it  move from x  to x'  along a geodesic path).  This  has every appearance of being a rather fundamental
geometrodynamical relationship and, indeed, we will speculate that it is.
     
Conjecture:

D+HxHΤ L, xHΤ 'LL  =  <Y |  j(x)  j(x')  |Y > for  a  massless  field  is  always  to  be  given  by  -
1

4 Π 2

1

G  Hx, x'L2  where we

understand t' to be adjusted with small - ä Ε term. We suggest that this is true in any M 4.

This nomenclature may cause a bit of confusion since we are used to seeing |Y>  as some sort of vacuum state
for D+. But, in our scheme of things, this cannot be the case if a BH is present.

     This  conjecture  has  some happy consequences. For  one thing,  if  the  UD is  freely falling 1

G  Hx, x'L2  will  be

1

HΤ - Τ ' - ä Ε L2  where  Τ  designates  the  UD's  proper  time.  P(E)  therefore  vanishes  and  no  particles  are  detected.

This  is  very good news for  the  Equivalence Principle.  Of course the  UD we are interested in  does not  move
along a geodesic. But our conjecture allows us to calculate P(E) numerically.
     To do this we suppose the UD is sitting still at R0.  We set up a large table of interpolating functions that

solve for the geodesic path followed by a test particle that starts at R0  with an outward radial velocity. After a

while it will fall back to R0. Call Τ the proper time along the test particle's geodesic path. Given our choice of

radial velocity we can figure out the Τ when it returns to R0. We also know t(Τ) — the time at infinity — when

it does this. We ask the computer to find numerically the Τ and radial velocity that satisfy r(Τ) = R0  and t(Τ) =

s/ 1 - 2 M � R0  where s is the UD's proper time. We invert these solutions to obtain an interpolating function

that gives us Τ as a function of s. We then calculate (see Supplementary Material):

Ù-¥

¥ Exp@- ä E sD
HΤ HsL - ä ΕL2 â s.

The simulation was performed for R0 = 3 and M = 1. The result is shown below (fig. 1). The Rindler result for

a UD experiencing the same proper acceleration is shown for comparison (solid line). 
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                                            fig. 1
                                       
In  keeping  with  the  Equivalence  Principle  the  two  curves  are  rather  similar.  That  they  are  not  identical  is
doubtless due to geometrical factors. A detector that rotates in MS at a radius of 3 and the same proper accelera-
tion gives us a curve that matches the BH result even more closely. (Fig. 2. The solid line is that of the rotating
detector (8).) 
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                                             fig. 2

We also note that the existence of an event horizon is of no consequence here. The UD could just  as well be
sitting on a large planet. A similar exercise could be carried out for a UD in rotation around a BH. (Here we
should better work in a coordinate system that rotated with it.) We already know the result we would obtain if
it were in a stable (geodesic) orbit — no particles would be detected.
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that gives us Τ as a function of s. We then calculate (see Supplementary Material):

Ù-¥

¥ Exp@- ä E sD
HΤ HsL - ä ΕL2 â s.

The simulation was performed for R0 = 3 and M = 1. The result is shown below (fig. 1). The Rindler result for

a UD experiencing the same proper acceleration is shown for comparison (solid line). 
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                                            fig. 1
                                       
In  keeping  with  the  Equivalence  Principle  the  two  curves  are  rather  similar.  That  they  are  not  identical  is
doubtless due to geometrical factors. A detector that rotates in MS at a radius of 3 and the same proper accelera-
tion gives us a curve that matches the BH result even more closely. (Fig. 2. The solid line is that of the rotating
detector (8).) 
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                                             fig. 2

We also note that the existence of an event horizon is of no consequence here. The UD could just  as well be
sitting on a large planet. A similar exercise could be carried out for a UD in rotation around a BH. (Here we
should better work in a coordinate system that rotated with it.) We already know the result we would obtain if
it were in a stable (geodesic) orbit — no particles would be detected.

Conclusion.

We have tried to lay out a practical form of Semiclassical Gravity. It differs in some salient respects from what
is usually encountered in the literature. For one thing, we dismiss the problem of stress-energy tensor renomal-
ization opting instead for GΜΝ  = 8 Π  {Y|TΜΝ|Y}.  We work in  the Heisenberg Picture so |Y>  never changes. To

address the question of defining the creation and annihilation operators we require the spacetime manifold we

live in  — M4  — to  be consistent,  at  least  asymptotically, with  well-defined positive and  negative-frequency
modes.  It  must,  in  this  limit,  possess  a  timelike  Killing  vector  field.  For  example,  a  spacetime that  expands

away into a Minkowkian 'heat death'  would satisfy the requirement. Indeed, we may speculate that only M4s
that  conform  to  this  requirement  can  be  inhabited  by  workable  QFTs.  The  problem  of  UDs  has  also  to  be
addressed  in  this  scheme of  things.  With  no  analytic  solutions  available  for  our  BH problem for  we  offer  a
conjecture we know works in MS. A numerical simulation is performed that provides results that are in general
agreement with the Equivalence Principle. 
     Behind all  of this  lies the  question of the ontological status of these 'Rindler  particles.' The question has
been examined somewhat by Unruh and Wald (9). We can say that these particles do not represent actual mass-
energy since they can be detected in MS which, by definition, is devoid of such. They may be detected but we
know  they  cannot  be  being  continuously  created  —  our  universe  would  be  full  of  them.  They  represent  an
enigma,  or  perhaps  even  unphysical  nonsense.  We  are  dissuaded  from  the  latter  opinion  by  the  remarkable
appearance of the Plank factor. In one of Feynman's Red Books (10) it says 'Same equations, same solutions.'
But it occurs to us that very little looks the same between the mathematics that Plank uses to derive his black
body spectrum and the mathematics that allows for Rindler particles. Something seems to be eluding us here.
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SUPPLEMENTARY MATERIAL

Below we solve for a detector sitting still outide a BH.

S@V_, T_D := S@V, TD = NDSolveB:
x@1D¢@ΤD2

2 x@1D@ΤD - x@1D@ΤD2
+ x@1D¢¢@ΤD �

H2 - x@1D@ΤDL x@4D¢@ΤD2

x@1D@ΤD3
,

x@4D¢¢@ΤD �
2 x@1D¢@ΤD x@4D¢@ΤD
2 x@1D@ΤD - x@1D@ΤD2

, x@1D@0D � 3, x@1D¢@0D � V, x@4D@0D � 0,

x@4D¢@0D � Sqrt@3 H1 + V^2 3LD>, 8x@1D, x@4D<, 8Τ, 0, T<F@@1DD
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S solves the geodesic equation at r =

3 outside a BH of M = 1. Below we define functions that we will need.

Rad@V_, L_, Inc_D := Table@88 i, V<, x@1D@ iD �. S@V, LD<, 8i, 0, L, Inc<D

F@88a_, b_<, c_<D := 88-a, b<, c<

H@88a_, b_<, c_<D := 88-a, b<, -c<

RR@V_, L_, Inc_D := Union@Rad@V, L, IncD, Map@F, Rad@V, L, IncDDD

Time@V_, L_, Inc_D := Table@88 i, V<, x@4D@ iD �. S@V, LD<, 8i, 0, L, Inc<D

TT@V_, L_, Inc_D := Union@Time@V, L, IncD, Map@H, Time@V, L, IncDDD

IntR00 = Interpolation@Union@RR@0, 1, .01D, RR@.01, 1, .01D,
RR@.02, 1, .01D, RR@.03, 1, .01D, RR@.04, 1, .01D, RR@.05, 1, .01DDD

InterpolatingFunction@88-1., 1.<, 80., 0.05<<, <>D

IntT00 = Interpolation@Union@TT@0, 1, .01D, TT@.01, 1, .01D,
TT@.02, 1, .01D, TT@.03, 1, .01D, TT@.04, 1, .01D, TT@.05, 1, .01DDD

InterpolatingFunction@88-1., 1.<, 80., 0.05<<, <>D

IntR05 = Interpolation@Union@RR@.05, 2, .02D, RR@.06, 2, .02D,
RR@.07, 2, .02D, RR@.08, 2, .02D, RR@.09, 2, .02D, RR@.1, 2, .02DDD

InterpolatingFunction@88-2., 2.<, 80.05, 0.1<<, <>D

IntT05 = Interpolation@Union@TT@.05, 2, .02D, TT@.06, 2, .02D,
TT@.07, 2, .02D, TT@.08, 2, .02D, TT@.09, 2, .02D, TT@.1, 2, .02DDD

InterpolatingFunction@88-2., 2.<, 80.05, 0.1<<, <>D

IntR10 = Interpolation@Union@RR@.1, 4, .04D, RR@.11, 4, .04D,
RR@.12, 4, .04D, RR@.13, 4, .04D, RR@.14, 4, .04D, RR@.15, 4, .04DDD

InterpolatingFunction@88-4., 4.<, 80.1, 0.15<<, <>D

IntT10 = Interpolation@Union@TT@.1, 4, .04D, TT@.11, 4, .04D,
TT@.12, 4, .04D, TT@.13, 4, .04D, TT@.14, 4, .04D, TT@.15, 4, .04DDD

InterpolatingFunction@88-4., 4.<, 80.1, 0.15<<, <>D

IntR15 = Interpolation@Union@RR@.15, 5, .05D, RR@.16, 5, .05D,
RR@.17, 5, .05D, RR@.18, 5, .05D, RR@.19, 5, .05D, RR@.2, 5, .05DDD

InterpolatingFunction@88-5., 5.<, 80.15, 0.2<<, <>D

IntT15 = Interpolation@Union@TT@.15, 5, .05D, TT@.16, 5, .05D,
TT@.17, 5, .05D, TT@.18, 5, .05D, TT@.19, 5, .05D, TT@.2, 5, .05DDD

InterpolatingFunction@88-5., 5.<, 80.15, 0.2<<, <>D

IntR20 = Interpolation@Union@RR@.2, 6, .06D, RR@.21, 6, .06D,
RR@.22, 6, .06D, RR@.23, 6, .06D, RR@.24, 6, .06D, RR@.25, 6, .06DDD

InterpolatingFunction@88-6., 6.<, 80.2, 0.25<<, <>D
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IntT20 = Interpolation@Union@TT@.2, 6, .06D, TT@.21, 6, .06D,
TT@.22, 6, .06D, TT@.23, 6, .06D, TT@.24, 6, .06D, TT@.25, 6, .06DDD

InterpolatingFunction@88-6., 6.<, 80.2, 0.25<<, <>D

IntR25 = Interpolation@Union@RR@.25, 7, .07D, RR@.26, 7, .07D,
RR@.27, 7, .07D, RR@.28, 7, .07D, RR@.29, 7, .07D, RR@.3, 7, .07DDD

InterpolatingFunction@88-7., 7.<, 80.25, 0.3<<, <>D

IntT25 = Interpolation@Union@TT@.25, 7, .07D, TT@.26, 7, .07D,
TT@.27, 7, .07D, TT@.28, 7, .07D, TT@.29, 7, .07D, TT@.3, 7, .07DDD

InterpolatingFunction@88-7., 7.<, 80.25, 0.3<<, <>D

IntR30 = Interpolation@Union@RR@.3, 8, .08D, RR@.31, 8, .08D,
RR@.32, 8, .08D, RR@.33, 8, .08D, RR@.34, 8, .08D, RR@.35, 8, .08DDD

InterpolatingFunction@88-8., 8.<, 80.3, 0.35<<, <>D

IntT30 = Interpolation@Union@TT@.3, 8, .08D, TT@.31, 8, .08D,
TT@.32, 8, .08D, TT@.33, 8, .08D, TT@.34, 8, .08D, TT@.35, 8, .08DDD

InterpolatingFunction@88-8., 8.<, 80.3, 0.35<<, <>D

IntR35 = Interpolation@Union@RR@.35, 10, .1D, RR@.36, 10, .1D,
RR@.37, 10, .1D, RR@.38, 10, .1D, RR@.39, 10, .1D, RR@.4, 10, .1DDD

InterpolatingFunction@88-10., 10.<, 80.35, 0.4<<, <>D

IntT35 = Interpolation@Union@TT@.35, 10, .1D, TT@.36, 10, .1D,
TT@.37, 10, .1D, TT@.38, 10, .1D, TT@.39, 10, .1D, TT@.4, 10, .1DDD

InterpolatingFunction@88-10., 10.<, 80.35, 0.4<<, <>D

IntR40 = Interpolation@Union@RR@.4, 12, .12D, RR@.41, 12, .12D,
RR@.42, 12, .12D, RR@.43, 12, .12D, RR@.44, 12, .12D, RR@.45, 12, .12DDD

InterpolatingFunction@88-12., 12.<, 80.4, 0.45<<, <>D

IntT40 = Interpolation@Union@TT@.4, 12, .12D, TT@.41, 12, .12D,
TT@.42, 12, .12D, TT@.43, 12, .12D, TT@.44, 12, .12D, TT@.45, 12, .12DDD

InterpolatingFunction@88-12., 12.<, 80.4, 0.45<<, <>D

IntR45 = Interpolation@Union@RR@.45, 14, .14D, RR@.46, 14, .14D,
RR@.47, 14, .14D, RR@.48, 14, .14D, RR@.49, 14, .14D, RR@.5, 14, .14DDD

InterpolatingFunction@88-14., 14.<, 80.45, 0.5<<, <>D

IntT45 = Interpolation@Union@TT@.45, 14, .14D, TT@.46, 14, .14D,
TT@.47, 14, .14D, TT@.48, 14, .14D, TT@.49, 14, .14D, TT@.5, 14, .14DDD

InterpolatingFunction@88-14., 14.<, 80.45, 0.5<<, <>D

IntR50 = Interpolation@Union@RR@.5, 18, .18D, RR@.51, 18, .18D,
RR@.52, 18, .18D, RR@.53, 18, .18D, RR@.54, 18, .18D, RR@.55, 18, .18DDD

InterpolatingFunction@88-18., 18.<, 80.5, 0.55<<, <>D
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IntT50 = Interpolation@Union@TT@.5, 18, .18D, TT@.51, 18, .18D,
TT@.52, 18, .18D, TT@.53, 18, .18D, TT@.54, 18, .18D, TT@.55, 18, .18DDD

InterpolatingFunction@88-18., 18.<, 80.5, 0.55<<, <>D

IntR55 = Interpolation@Union@RR@.55, 24, .24D, RR@.56, 24, .24D,
RR@.57, 24, .24D, RR@.58, 24, .24D, RR@.59, 24, .24D, RR@.6, 24, .24DDD

InterpolatingFunction@88-24., 24.<, 80.55, 0.6<<, <>D

IntT55 = Interpolation@Union@TT@.55, 24, .24D, TT@.56, 24, .24D,
TT@.57, 24, .24D, TT@.58, 24, .24D, TT@.59, 24, .24D, TT@.6, 24, .24DDD

InterpolatingFunction@88-24., 24.<, 80.55, 0.6<<, <>D

IntR60 = Interpolation@Union@RR@.6, 32, .32D, RR@.61, 32, .32D,
RR@.62, 32, .32D, RR@.63, 32, .32D, RR@.64, 32, .32D, RR@.65, 32, .32DDD

InterpolatingFunction@88-32., 32.<, 80.6, 0.65<<, <>D

IntT60 = Interpolation@Union@TT@.6, 32, .32D, TT@.61, 32, .32D,
TT@.62, 32, .32D, TT@.63, 32, .32D, TT@.64, 32, .32D, TT@.65, 32, .32DDD

InterpolatingFunction@88-32., 32.<, 80.6, 0.65<<, <>D

IntR65 = Interpolation@Union@RR@.65, 47, .47D, RR@.66, 47, .47D,
RR@.67, 47, .47D, RR@.68, 47, .47D, RR@.69, 47, .47D, RR@.7, 47, .47DDD

InterpolatingFunction@88-47., 47.<, 80.65, 0.7<<, <>D

IntT65 = Interpolation@Union@TT@.65, 47, .47D, TT@.66, 47, .47D,
TT@.67, 47, .47D, TT@.68, 47, .47D, TT@.69, 47, .47D, TT@.7, 47, .47DDD

InterpolatingFunction@88-47., 47.<, 80.65, 0.7<<, <>D

IntR70 = Interpolation@Union@RR@.7, 80, .8D, RR@.71, 80, .8D,
RR@.72, 80, .8D, RR@.73, 80, .8D, RR@.74, 80, .8D, RR@.75, 80, .8DDD

InterpolatingFunction@88-80., 80.<, 80.7, 0.75<<, <>D

IntT70 = Interpolation@Union@TT@.7, 80, .8D, TT@.71, 80, .8D,
TT@.72, 80, .8D, TT@.73, 80, .8D, TT@.74, 80, .8D, TT@.75, 80, .8DDD

InterpolatingFunction@88-80., 80.<, 80.7, 0.75<<, <>D

IntR75 = Interpolation@Union@RR@.75, 182, 1.82D, RR@.76, 182, 1.82D,
RR@.77, 182, 1.82D, RR@.78, 182, 1.82D, RR@.79, 182, 1.82D, RR@.8, 182, 1.82DDD

InterpolatingFunction@88-182., 182.<, 80.75, 0.8<<, <>D

IntT75 = Interpolation@Union@TT@.75, 182, 1.82D, TT@.76, 182, 1.82D,
TT@.77, 182, 1.82D, TT@.78, 182, 1.82D, TT@.79, 182, 1.82D, TT@.8, 182, 1.82DDD

InterpolatingFunction@88-182., 182.<, 80.75, 0.8<<, <>D

IntR80 = Interpolation@Union@RR@.8, 1430, 14.3D, RR@.81, 1430, 14.3D,
RR@.82, 1430, 14.3D, RR@.83, 1430, 14.3D, RR@.84, 1430, 14.3D, RR@.85, 1430, 14.3DDD

InterpolatingFunction@88-1430., 1430.<, 80.8, 0.85<<, <>D
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IntT80 = Interpolation@Union@TT@.8, 1430, 14.3D, TT@.81, 1430, 14.3D,
TT@.82, 1430, 14.3D, TT@.83, 1430, 14.3D, TT@.84, 1430, 14.3D, TT@.85, 1430, 14.3DDD

InterpolatingFunction@88-1430., 1430.<, 80.8, 0.85<<, <>D

Below are the radial distance and time at infinity as functions of t

Hthe UDs proper time if it had moved on the geodesicL and v Hthe initial radial velocity.

Radius@t_, v_D := Which@0 £ v < .05, IntR00@t, vD, .05 £ v < .1, IntR05@t, vD, .1 £ v < .15,

IntR10@t, vD, .15 £ v < .2, IntR15@t, vD, .2 £ v < .25, IntR20@t, vD, .25 £ v < .3,

IntR25@t, vD, .3 £ v < .35, IntR30@t, vD, .35 £ v < .4, IntR35@t, vD, .4 £ v < .45,

IntR40@t, vD, .45 £ v < .5, IntR45@t, vD, .5 £ v < .55, IntR50@t, vD, .55 £ v < .6,

IntR55@t, vD, .6 £ v < .65, IntR60@t, vD, .65 £ v < .7, IntR65@t, vD, .7 £ v < .75,

IntR70@t, vD, .75 £ v < .8, IntR75@t, vD, .8 £ v < .85, IntR80@t, vD, True, 10^5D

FarTime@t_, v_D := Which@0 £ v < .05, IntT00@t, vD, .05 £ v < .1, IntT05@t, vD, .1 £ v < .15,

IntT10@t, vD, .15 £ v < .2, IntT15@t, vD, .2 £ v < .25, IntT20@t, vD, .25 £ v < .3,

IntT25@t, vD, .3 £ v < .35, IntT30@t, vD, .35 £ v < .4, IntT35@t, vD, .4 £ v < .45,

IntT40@t, vD, .45 £ v < .5, IntT45@t, vD, .5 £ v < .55, IntT50@t, vD, .55 £ v < .6,

IntT55@t, vD, .6 £ v < .65, IntT60@t, vD, .65 £ v < .7, IntT65@t, vD, .7 £ v < .75,

IntT70@t, vD, .75 £ v < .8, IntT75@t, vD, .8 £ v < .85, IntT80@t, vD, True, 10^5D

Below we find the ' geodesic time' as a function

of s Hthe real proper time registered by the detectorL.

B@s_D := FindRoot@8Radius@t, vD � 3, FarTime@t, vD � Sqrt@3D s<, 88t, 11<, 8v, .4<<D

ProperTime@s_D := t �. B@sD

Below we plot the geodesic time against s. We see that it has major inaccuracies around s =

40 and s = 65. This is because FindRoot fails to find the root due to poor selection of the starting

values for t and v. We can change the starting values but this only moves the problems from one

s to another. An easier way is to construct a solution out of pieces that work. Essentially,

we excise the parts that do not work and join the working parts by interpolation.
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ListPlot@Table@ProperTime@sD, 8s, 1, 80, 1<DD
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T1 = Table@88s, ProperTime@sD<, Radius@t, vD �. B@sD<, 8s, 0, 20, .1<D;

Below we throw away solutions that do not work and drop the Radius part which no longer care about.

crit@88a_, b_<, c_<D := If @c � 3, True, FalseD

M@88a_, b_<, c_<D := 8a, b<

Map@M, Select@T1, critDD �� Chop;

I1 = Interpolation@%D

InterpolatingFunction@880., 20.<<, <>D

Below we do the same things for 18 < s < 55 and 80 < s < 100.

T2 = Table@88s, ProperTime@sD<, Radius@t, vD �. B@sD<, 8s, 18, 55, 1<D;

T3 = Table@88s, ProperTime@sD<, Radius@t, vD �. B@sD<, 8s, 80, 100, 1<D;

U = Union@T2, T3D;

crit2@88a_, b_<, c_<D := If @2.9999 < c < 3.0001, True, FalseD

Select@U, crit2D;

Map@M, UD;

I2 = Interpolation@%D

InterpolatingFunction@8818., 100.<<, <>D

PP@s_D := If@s £ 18, I1@sD, I2@sDD

The result is now much better.
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Plot@PP@sD, 8s, 0, 100<D
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Below de define the ' geodesic distance' HPDL.

PD@s_D := If@s ³ 0, PP@sD, -PP@-sDD

Below we find the power spectrum we want.

Int@En_, Ε_, L_D := NIntegrate@Exp@-I En ΤD � HHPD@ΤD - I ΕL^2 L, 8Τ, -L, L<D � H-4 Pi^2L

We adjust L and Ε until the result is stable Hminimal artifactsL.

Table@8i, Int@i, .001, 100D<, 8i, 0, .3, .01<D �� Chop;

Below is our result. Here acc = .19245

ListPlot@%D
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Below is the Rindler result.

Table@8En, HEn � H2 PiLL � HExp@2 Pi En �.19245D - 1L<, 8En, 0, .3, .01<D;
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ListPlot@%, Joined ® TrueD
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Show@%, %70D
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Below we do a rotating detector in Flat spacetime. R = 3 and its proper acceleration is .19245.

Int2@En_, R_, w_, Ε_, L_D := NIntegrate@
Exp@-I En ΤD � HHΤ �Sqrt@1 - R^2 w^2D - I ΕL^2 - 2 R^2 H1 - Cos@w Τ �Sqrt@1 - R^2 w^2DDLL,
8Τ, -L, L<D � H-4 Pi^2L

Here is the result.

Table@8En, Int2@En, 3, .2, .01, 1000D<, 8En, 0, .3, .01<D �� Chop;

ListPlot@%, Joined ® TrueD
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ListPlot@%D
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Show@%, %70D

0.05 0.10 0.15 0.20 0.25 0.30

0.0005

0.0010

0.0015

0.0020

0.0025

BH result looks similar.
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