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Abstract

A variant of Semiclassical Gravity is outlined that differs in some interesting ways from the more familiar approach. It extends
earlier work in which the renormalization of the stress-energy tensor is replaced by a different protocol. Creation and annihilation
operators are assigned their roles based on the behavior of the normal modes making up the solution within an asymptotically
simple region in cases where such exist. The question of Rindler particles and Unruh-DeWitt detectors is discussed. Particular
attention is paid to the behavior of an Unruh-DeWitt detector that holds stationary outside an eterna black hole. A conjecture is

offered to the effect that the positive frequency Wightman function, D*(x, X), is always to be given by

4‘—12(geod$icdistance between x and x') 2. This assumption allows us to solve the black hole problem numerically. Particles are,
V

in fact, detected and their power spectrum is compared to those seen by rotating and linearly accelerating detectors. This matter is
discussed in the context of the Equivalence Principle.
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Introduction.

It has been theorized since the semina work of Fulling (1), DeWitt (2), Unruh (3), and Davies (4) that an
accel erating monopol e detector will register athermal bath of particles. In keeping with the Equivalence Princi-
ple we would expect asimilar result for a detector feeling an accel eration due to gravity.

In an earlier paper this author has argued that the goal of quantizing gravity should be abandoned in favor of
Semiclassical Gravity (5). A prescription for doing this was offered that differs in significant ways from much
of the previous work in the field. Our world is pictured as a classical, globally hyperbolic, manifold — M*. We
impose upon it a coordinate system and a quantum field theory (QFT) of our choosing. The QFT dealt with
here will be real scalar field theory. We try to solve the Klein-Gordon equation defined by M?* so asto arrive at
a set of complete orthonormal modes and their conjugates that we call ui(x, t) and u*(x, t). In a perfect world
we can find easy, analytic, expressions for these functions. Unfortunately, this is seldom the case. We write the
field as:

1) e t)= % T (Ue(X, 1) @ + W(x, 1) al) and we imagine the system contained in an enormous periodic
\%
box of volume V. This defines a Fock space in which the QFT operates.
0 Lfield

We construct the stress-energy tensor — T, = 2 > 9w Liigg — and demand that G,, = 8 m (<Y|T,, |¥> -

<Ou[TwlOm>) = 87 {YT, ¥} where{¥O|¥} is defined as <¥|O|¥> - <Oy |O[0y> for any operator © and Oy >
represents the lowest energy state for which G, = 0. We call |Oy> the Minkowski vacuum. |¥> is the state

vector of our reality. We work in the Heisenberg Picture so this vector never changes. If it were |Oy> it is
assumed that we automatically default into Minkowski space (MS).
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QFT in Curved Spacetime.

| should expect to be asked what a, and az are and how they relate to our Fock space. In MS the answer is

obvious. In general, we want to associate the former with positive-frequency modes and the latter with the
negative-frequency ones. But, in a curved spacetime, this becomes very difficult — negative or positive with
respect to what time and where? This has always proved a terrible stumbling block for approaches to quantum
and semiclassical gravity. We proposeto addressit in arather unusual way.

We will illustrate this by considering an eternal Schwarzschild black hole (BH). We cannot, as a practical
matter, find analytic solutions for the uy(x, t) and uc*(x, t). But imagine that we can or can work them out

numerically somehow. We know that, asr -> infinity, spacetime becomes Minkowskian (6). We know what ay
and ai do there. In particular, the a, annihilate |0y >. If they do so at infinity it stands to reason that they do so
everywhere. Fock space is independent of spacetime and does not "live" in it. We want to identify the uk(x, t)
that goes to the Minkowski solution (denoted by k) at r = infinity. Depending on how we found our uy(X, t) and
u* (X, t) we might have to construct various linear combination of these things in order to achieve our goal. But
we ought to be able to achieve it (in principle). It would help, of course, if we had analytic solutions for our
ue(X, t) and u*(x, t). But let us just imagine we did or could find an easy workaround. At least we know what

a, and ai are and what they do. Theays always annihilate |0y,> and we build |¥> for our universe from |0y >

using the als. We would have to play around a bit to find what |[¥> is here. It certainly is not any kind of

vacuum state since it describes a BH. Otherwise, things are very much like what we know from M S,

This works for our BH but would not seem to have any general usefulness — M?* may have no asymptotic
MS-like regions. Let us consider a different example. Suppose we live in a universe that expands forever.
Cosmology indicates that we do. We assume a Robertson-Walker metric with k = 0. If no new matter is being
created we will eventually end up with p = 0 and the manifold becomes asymptotically Minkowskian. This is
most easily seen if we transform to a new coordinate system in which X is replaced by y‘/\/a. Now g,, ->

Ny 8st->infinity. We may write:

xky

V2 2w ak)

2) ¢y, = f 2k (5

The as aways annihilate |0y > and [a, af(] = Oe. We can imagine integrating the above solution backwardsin
time using the Klein-Gordon equation so asto arrive at expressions for u, and u,* during our present epoch. As
apractical matter thisis easier said than done. We could, in some cases, attack the problem numerically.

In the above we have assumed that there is no cosmological constant. It isillustrative to consider the situa-
tion if there is one. In the first place |0y > and M S disappear from consideration; in the vacuum state we now
default into an empty deSitter universe. It is into this spacetime that our world will evolve. Let us cal the
vacuum [Ops> (the 'deSitter vacuum’). This is what now figures in the curly brackets that define our Einstein's

equation. On the left hand side now also appears - A g,,. An empty deSitter universe possesses a timelike
Killing vector. We would try to find sensible positive and negative-frequency modes and integrate these back-
ward in time as above. In this way we know which modes to associate with the a,s and ais at the present time.
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There is an outstanding question that must be addressed. If |¥> is in a vacuum state why does M* default
into MS or an empty deSitter universe instead of one with k = -1, a Taub-NUT space, or any other vacuum
solution? We must assume a kind of 'prior geometry' (5). That our universe is characterized by a Robertson-
Walker metric (at least at distant future times) is one such assumption. If it is we must also decide whether k =
1, 0, or -1. We must figure out whether there is a cosmological constant and, if so, what it is. These things do
not appear to be mandated naturally.

The prescription outlined above alows us to unambiguously define our operators and construct our Fock
space. But it only makes sense if M* possesses an asymptotic region in which positive and negative frequency
modes can be reasonably defined and a timelike Killing vector exists. Most M?s do not, of course, have this
property. The real M* we live in apparently does and we speculate that this may be more than a lucky accident.
QFT may ssimply not be possible otherwise.

Particles and Detectors.

Say we are in the Minkowski vacuum state. (Actually, we could not be since we would not even exist. But let
us ignore this problem for the moment — we are so small as to not affect the spacetime at all.) A family of
Rindler observers (7) defines a coordinate system in which the massless Klein-Gordon equation takes the same
form as for the Minkowski observers. Accordingly, they will have a solution of the form 1) but with the a.s
and ais replaced by their operators which we can call b, and bE. They can define "number operators' — bﬁbk.
Since their modes differ from those of the Minkowski observers (and mix the positive and negative-frequency

modes of the latter) bibk [Op> # 0. Indeed, they may well conclude that they are living in a thermal bath of
particles. But should they? The Minkowskian observers can write {P|H|¥} = <¥| > wik N¢ | ¥ > where Ny =

azak and a,|0y> = 0. Their number operators denominate specific packets of energy. The "number operators’

of the Rindler observers do no such thing (as discussed briefly in (5)). We know this since, were it otherwise,
there would be a net energy in the world and spacetime could not be Minkowskian. So what, if anything, are
the Rindler observers counting? One can imagine attaching a monopole particle detector to a particular Rindler
observer and show that it registers a similar thermal bath of particles. If this is not just a very strange coinci-
dence it seems to suggest that we are looking at something real. But real in what sense? Thisis hard to say. We
will return to this question presently. The Rindler observers can define their own "vacuum state,” sometimes
called a Fulling vacuum, |0g> such that by | O > = 0. But {Og[T,, [0} # O so we cannot be in MS. Moreover,

if we could be, this state would not even obey the Weak Energy Condition.
Eternal Black Holes.

We would like to know about the particles that would be observed outside a BH by an Unruh-DeWitt mono-
pole detector (a UD) were it sitting stationary outside the event horizon. Assuming the particles are massless
we would need to compute the power spectrum given by:

3) P(E)= [ Exp[-iEAT]D*(X(1), X(t) dAr.

We need to find D*(X(1), X(1")) = <¥gn| ¢(X) ¢(X") [¥gn> Where ¢(X) is the real scalar field around the BH and
|Pgy> is the state in our Fock space that corresponds to the existence of the BH. We know it is not a vacuum
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state of any kind since it describes a BH. We are not altogether certain what it is, however. Nor do we have a
useful, analytic, expression for ¢(x). The problem seems quite hopel ess.
1

We might find a path towards its solution by noting that, in MS, D*(x, X) = — =]

472

1
t-t—ie)?—(x—x
1 =
(Straight LineDistancebetween x and x')2

where G(x, x") denotes the 'geodesic distance' between the two points (i.e. the distance travelled by the

.)2] for a

massless scalar field which is proportiona to (ignoring the tiny - i e term)
1

G (X, x')2

UD if it move from x to x' along a geodesic path). This has every appearance of being a rather fundamental

geometrodynamical relationship and, indeed, we will speculate that it is.

Conjecture:

1 1

where we
472 G (x, X)>

D*(X(1), X( ") = <¥| ¢(X) ¢(X) |¥> for a massess field is always to be given by —

understand t' to be adjusted with small - i e term. We suggest that thisistruein any M 4.

This nomenclature may cause a bit of confusion since we are used to seeing |[¥> as some sort of vacuum state
for D*. But, in our scheme of things, this cannot be the caseif aBH is present.
1

> will be
G (X X)

This conjecture has some happy consequences. For one thing, if the UD is freely falling

L where r designates the UD's proper time. P(E) therefore vanishes and no particles are detected.

(t-1'-1ie€)
This is very good news for the Equivalence Principle. Of course the UD we are interested in does not move
along ageodesic. But our conjecture allows usto calculate P(E) numerically.

To do this we suppose the UD is sitting still at Ry. We set up a large table of interpolating functions that

solve for the geodesic path followed by a test particle that starts at Ry with an outward radial velocity. After a
while it will fall back to Ry. Call T the proper time along the test particle's geodesic path. Given our choice of
radial velocity we can figure out the T when it returns to Ry;. We aso know t(r) — the time at infinity — when
it does this. We ask the computer to find numerically the r and radial velocity that satisfy r(t) = Ry and t(r) =

g4/ 1-2M /Ry, wheresisthe UD's proper time. We invert these solutions to obtain an interpolating function

that givesus r asafunction of s. We then calculate (see Supplementary Material):

0o Exp[—iES]

— (r(9)—ief

The simulation was performed for Ry = 3 and M = 1. The result is shown below (fig. 1). The Rindler result for
aUD experiencing the same proper acceleration is shown for comparison (solid line).
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In keeping with the Equivalence Principle the two curves are rather similar. That they are not identical is
doubtless due to geometrical factors. A detector that rotatesin MS at aradius of 3 and the same proper accelera-
tion gives us a curve that matches the BH result even more closely. (Fig. 2. The solid line is that of the rotating
detector (8).)
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We also note that the existence of an event horizon is of no consequence here. The UD could just as well be
sitting on a large planet. A similar exercise could be carried out for a UD in rotation around a BH. (Here we
should better work in a coordinate system that rotated with it.) We already know the result we would obtain if
it were in a stable (geodesic) orbit — no particles would be detected.

Conclusion.

We have tried to lay out a practical form of Semiclassical Gravity. It differsin some salient respects from what
is usually encountered in the literature. For one thing, we dismiss the problem of stress-energy tensor renomal -
ization opting instead for G, = 8 = {¥|T,,|¥}. We work in the Heisenberg Picture so |¥> never changes. To
address the question of defining the creation and annihilation operators we require the spacetime manifold we
live in — M* — to be consistent, at least asymptotically, with well-defined positive and negative-frequency
modes. It must, in this limit, possess a timelike Killing vector field. For example, a spacetime that expands
away into a Minkowkian 'heat death’ would satisfy the requirement. Indeed, we may speculate that only M?*s
that conform to this requirement can be inhabited by workable QFTs. The problem of UDs has also to be
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addressed in this scheme of things. With no analytic solutions available for our BH problem for we offer a
conjecture we know worksin MS. A numerical simulation is performed that provides results that are in general
agreement with the Equivalence Principle.

Behind al of this lies the question of the ontological status of these 'Rindler particles.’ The question has
been examined somewhat by Unruh and Wald (9). We can say that these particles do not represent actual mass-
energy since they can be detected in MS which, by definition, is devoid of such. They may be detected but we
know they cannot be being continuously created — our universe would be full of them. They represent an
enigma, or perhaps even unphysical nonsense. We are dissuaded from the latter opinion by the remarkable
appearance of the Plank factor. In one of Feynman's Red Books (10) it says 'Same eguations, same solutions.'
But it occurs to us that very little looks the same between the mathematics that Plank uses to derive his black
body spectrum and the mathematicsthat allowsfor Rindler particles. Something seemsto be eluding us here.
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SUPPLEMENTARY MATERI AL

Bel owwe sol ve for adetector sittingstill outideaBH.
2 2
17’ 2-x[1 41’
SIV_, T_1:=S[V, T] = NDSol ve { X[ e ex[1]7 2] = 2 XEITED) xT4) Ted
2x[110e] -x[1][z]? x[111e1°
" 2Xx[117[T] X[4]1[z] ,
x[4]7[z] = » X[11[0] =3, x[1]17[0] =V, x[4][0] =0,

2x[1][t] -x[1][z]?
X[41°[07 =Sqrt [3 (1 + V'\23)]}, (X[11, X[41}, {t, O, T}][[l]]
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Ssol ves t he geodesi c equationat r =
3 outsideaBHof M= 1. Bel owwe defi ne functi ons that wewi || need.

Rad[V_, L_, Inc_]:=Table[{{i, V}, x[21[i] /. S[V, LI}, (i, O, L, Inc}]
F[{{a_, b_}, C_}] L= {{_a1 b}, C}

H[{{a_, b_}, C_}]: {{_a1 b}, _C}

RR[V_, L_, Inc_]:=Union[Rad[V, L, Inc], Map[F, Rad[V, L, Incl]]
Time[V_, L_, Inc_]:=Table[{{i, V}, x[4]1[i]/. SIV, L1}, {i, O, L, Inc}]
TTIV_, L_, Inc_]:=Union[Tinme[V, L, Inc], Map[H, Tine[V, L, Inc]]]

Int ROO = I nterpol ati on[Union[RR[O, 1, .01], RR[.01, 1, .01],

RR[.02, 1, .01], RR[.03, 1, .01], RR[.04, 1, .01], RR[.05, 1, .01]1]
Interpol ati ngFunction[{{-1., 1.}, {0., 0.05}}, <>]
IntTOO = Interpolation[Union[TT[O, 1, .01], TT[.01, 1, .01],

TT[.02, 1, .01], TT[.03, 1, .01], TT[.04, 1, .01], TT[.05, 1, .011]]
InterpolatingFunction[{{-1., 1.}, {0., 0.05}}, <>]
I nt RO5 = I nterpol ati on[Uni on[RR[. 05, 2, .02], RR[.06, 2, .02],

RR[.07, 2, .02], RR[.08, 2, .02], RR[.09, 2, .02], RR[.1, 2, .02]1]1]
Interpol ati ngFunction[{{-2., 2.}, {0.05, 0.1}}, <>]
Int TO5 = I nterpol ation[Union[TT[. 05, 2, .02], TT[.06, 2, .02],

TT[. 07, 2, .02], TT[.08, 2, .02], TT[.09, 2, .02], TT[.1, 2, .02]1]]
Interpol ati ngFunction[{{-2., 2.}, {0.05, 0.1}}, <>]
IntR1O = Interpol ati on[Uni on[RR[. 1, 4, .04], RR[.11, 4, .04],

RR[.12, 4, .04], RR[.13, 4, .04], RR[.14, 4, .04], RR[.15, 4, .04]1]1]
Interpol ati ngFunction[{{-4., 4.}, {0.1, 0.15}}, <>]
IntT10 = Interpolation[Union[TT[.1, 4, .04], TT[.11, 4, .04],

TT[.12, 4, .04], TT[.13, 4, .04], TT[.14, 4, .04]1, TT[.15, 4, .04]111]
Interpol ati ngFunction[{{-4., 4.}, {0.1, 0.15}}, <>]
IntR15 = I nterpol ati on[Uni on[RR[. 15, 5, .05], RR[. 16, 5, .05],

RR[.17, 5, .05], RR[.18, 5, .05], RR[.19, 5, .05], RR[.2, 5, .05]1]1]
I nterpolatingFunction[{{-5., 5.}, {0.15, 0.2}}, <>]
IntT15 = Interpolation[Union[TT[. 15, 5, .05], TT[.16, 5, .05],

TT[.17, 5, .05], TT[.18, 5, .05], TT[.19, 5, .05], TT[.2, 5, .05]1]1]
I nterpol ati ngFunction[{{-5., 5.}, {0.15, 0.2}}, <>]
IntR20 = I nterpol ati on[Uni on[RR[.2, 6, .06], RR[.21, 6, .06],

RR[.22, 6, .06], RR[.23, 6, .06], RR[.24, 6, .06], RR[.25, 6, .06]]]
I nterpol ati ngFunction[{{-6., 6.}, {0.2, 0.25}}, <>]
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Int T20 = I nterpol ation[Union[TT[.2, 6, .06], TT[.21, 6, .061,
TT[.22, 6, .06], TT[.23, 6, .06], TT[.24, 6, .06], TT[.25, 6, .06]]]

I nterpol ati ngFunction[{{-6., 6.}, {0.2, 0.25}}, <>]
I nt R25 = I nterpol ati on[Uni on[RR[. 25, 7, .07], RR[.26, 7, .07],

RR[.27, 7, .07], RR[.28, 7, .07], RR[.29, 7, .07], RR[.3, 7, .0711]
Interpol ati ngFunction[{{-7., 7.}, {0.25, 0.3}}, <>]
IntT25 = Interpolati on[Union[TT[.25, 7, .07], TT[.26, 7, .07],

TT[.27, 7, .07], TT[.28, 7, .07], TT[.29, 7, .07]1, TT[.3, 7, .07111]
Interpol ati ngFunction[{{-7., 7.}, {0.25, 0.3}}, <>]
IntR30 = I nterpol ati on[Union[RR[.3, 8, .08], RR[.31, 8, .08],

RR[.32, 8, .08], RR[.33, 8, .08], RR[.34, 8, .08], RR[.35, 8, .08]11]
I nterpolatingFunction[{{-8., 8.}, {0.3, 0.35}}, <>]
IntT30 = Interpolation[Union[TT[.3, 8, .08], TT[.31, 8, .08],

TT[. 32, 8, .08], TT[.33, 8, .08], TT[.34, 8, .08], TT[.35, 8, .08]111
I nterpol ati ngFunction[{{-8., 8.}, {0.3, 0.35}}, <>]
IntR35 = I nterpol ati on[Uni on[RR[. 35, 10, .1], RR[.36, 10, .11,

RR[.37, 10, .1], RR[.38, 10, .1], RR[.39, 10, .1], RR[. 4, 10, .11]]
I nterpol ati ngFunction[{{-10., 10.}, {0.35, 0.4}}, <>]
IntT35 =Interpolation[Union[TT[.35, 10, .1], TT[.36, 10, .1],

TT[.37, 10, .1], TT[.38, 10, .1], TT[.39, 10, . 1], TT[.4, 10, .1]1]
I nterpol ati ngFunction[{{-10., 10.}, {0.35, 0.4}}, <>]
IntR40 = Interpol ati on[Uni on[RR[. 4, 12, .12], RR[.41, 12, .12],

RR[.42, 12, .12], RR[.43, 12, .12], RR[. 44, 12, .12], RR[.45, 12, .12]]1]
I nterpol ati ngFunction[{{-12., 12.}, {0.4, 0.45}}, <>]
IntT40 = Interpolation[Union[TT[. 4, 12, .12], TT[.41, 12, .12],

TT[.42, 12, .127, TT[.43, 12, .12], TT[. 44, 12, .12], TT[.45, 12, .12]]]
I nterpol ati ngFunction[{{-12., 12.}, {0.4, 0.45}}, <>]
IntR45 = I nterpol ati on[Uni on[RR[. 45, 14, .14], RR[. 46, 14, .14],

RR[. 47, 14, .14], RR[.48, 14, .14], RR[.49, 14, .14], RR[.5, 14, .14]]1]
I nterpol ati ngFunction[{{-14., 14.}, {0.45, 0.5}}, <>]
IntT45 = I nterpol ation[Union[TT[. 45, 14, .14], TT[. 46, 14, .14],

TT[.47, 14, .14], TT[.48, 14, .14], TT[.49, 14, .14], TT[.5, 14, .14]]]
I nterpol ati ngFunction[{{-14., 14.}, {0.45, 0.5}}, <>]
IntR50 = I nterpol ati on[Union[RR[.5, 18, .18], RR[.51, 18, . 18],

RR[.52, 18, .18], RR[.53, 18, .18], RR[.54, 18, . 18], RR[.55, 18, .18]1]]
I nterpol ati ngFunction[{{-18., 18.}, {0.5, 0.55}}, <>]
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Int T50 = I nterpol ation[Union[TT[.5, 18, . 18], TT[.51, 18, . 18],
TT[.52, 18, .18], TT[.53, 18, . 18], TT[.54, 18, .18], TT[.55, 18, .18]1]]

I nterpol ati ngFunction[{{-18., 18.}, {0.5, 0.55}}, <>]
I nt R55 = I nterpol ati on[Uni on[RR[. 55, 24, .24], RR[.56, 24, .24],
RR[.57, 24, .24], RR[.58, 24, .24], RR[.59, 24, .24], RR[.6, 24, .24]1]1]
I nterpol ati ngFunction[{{-24., 24.}, {0.55, 0.6}}, <>]
IntT55 =Interpolation[Union[TT[.55, 24, .24], TT[.56, 24, .24],
TT[.57, 24, .24], TT[.58, 24, .24], TT[.59, 24, .24], TT[.6, 24, .24]1]]
I nterpol ati ngFunction[{{-24., 24.}, {0.55, 0.6}}, <>]
IntR60 = I nterpol ati on[Uni on[RR[. 6, 32, .32], RR[.61, 32, .32],
RR[. 62, 32, .32], RR[.63, 32, .32], RR[.64, 32, .32], RR[.65, 32, .32]1]]
I nterpol ati ngFunction[{{-32., 32.}, {0.6, 0.65}}, <>]
IntT60 = I nterpol ation[Union[TT[.6, 32, .32], TT[.61, 32, .32],
TT[. 62, 32, .32], TT[.63, 32, .32], TT[.64, 32, .32], TT[.65, 32, .32]1]
I nterpol ati ngFunction[{{-32., 32.}, {0.6, 0.65}}, <>]
Int R65 = I nterpol ati on[Uni on[RR[. 65, 47, .47], RR[.66, 47, .47],
RR[. 67, 47, .47], RR[.68, 47, .47], RR[.69, 47, .47]1, RR[. 7, 47, .47]11]
I nterpol ati ngFunction[{{-47., 47.}, {0.65, 0.7}}, <>]
IntT65 = I nterpolation[Union[TT[. 65, 47, .47], TT[.66, 47, .47],
TT[.67, 47, .47], TT[.68, 47, .471, TT[.69, 47, .47], TT[.7, 47, .4711]
I nterpol ati ngFunction[{{-47., 47.}, {0.65, 0.7}}, <>]
IntR70 = I nterpol ati on[Union[RR[.7, 80, .8], RR[.71, 80, .8],
RR[. 72, 80, .8], RR[.73, 80, .8], RR[.74, 80, .8], RR[.75, 80, .8]111]
I nt erpol ati ngFunction[{{-80., 80.1}, {0.7, 0.75}}, <>]
IntT70 = InterpolationfUnion[TT[.7, 80, .8], TT[.71, 80, .8],
TT[.72, 80, .8], TT[.73, 80, .8], TT[.74, 80, .8], TT[.75, 80, .8]]]
I nterpol ati ngFunction[{{-80., 80.1}, {0.7, 0.75}}, <>]
IntR75 = Interpol ati on[Union[RR[. 75, 182, 1.82], RR[.76, 182, 1.82],
RR[.77, 182, 1.82], RR[.78, 182, 1.82], RR[.79, 182, 1.82], RR[.8, 182, 1.82]11]
I nterpol ati ngFunction[{{-182., 182.}, {0.75, 0.8}}, <>]
IntT75 = I nterpolation[Union[TT[.75, 182, 1.82], TT[.76, 182, 1.82],
TT[.77, 182, 1.82], TT[.78, 182, 1.82], TT[.79, 182, 1.82], TT[.8, 182, 1.82]]]
I nterpol ati ngFunction[{{-182., 182.}, {0.75, 0.8}}, <>]
Int R8O = I nterpol ati on[Uni on[RR[. 8, 1430, 14.3], RR[.81, 1430, 14. 3],
RR[. 82, 1430, 14.3], RR[.83, 1430, 14. 3], RR[. 84, 1430, 14. 3], RR[.85, 1430, 14.3]1]1]
I nt erpol ati ngFunction[{{-1430., 1430.}, {0.8, 0.85}}, <>]
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Int T80 = I nterpolation[Union[TT[.8, 1430, 14.3], TT[.81, 1430, 14. 3],
TT[. 82, 1430, 14.3], TT[.83, 1430, 14.3], TT[.84, 1430, 14.3], TT[. 85, 1430, 14.3]]]

I nt erpol ati ngFunction[{{-1430., 1430.}, {0.8, 0.85}}, <>]

Bel owaretheradial distanceandtineat infinity asfunctionsof t
(the UDs proper tineif it had noved onthe geodesic) andv (theinitial radial velocity.

Radius[t_, v_]1:=Wich[0<v<.05 IntROO[t, v], .05<v<.1, IntRO5[t, v], .1<vVv <.15,
IntR1IO[t, v], .15<v<.2, IntR15[t, v], .2<v<.25, IntR2O[t, v], .25<Vv <.3,
IntR25[t, v], .3<v<.35 IntR30[t, v], .35<v<.4, IntR35[t, v], .4 <V <.45,
IntR4O[t, v], .45<v<.5, IntR45[t, v], .5=<v<.55 IntR50[t, v], .55<Vv <.6,
IntR55[t, v], .6<v<.65 IntR6O[t, v], .65<v<.7, IntR65[t, v], .7=<Vv <.75
IntR70[t, v], .75<v<.8, IntR75[t, v], .8<v<.85, IntR80[t, v], True, 1075]

FarTime[t_, v_]:=Wich[0<v<.05 IntTOO[t, v], .05<v<.1, IntTO5[t, v], .1=<vVv<.15
IntT10[t, v], .15<v<.2, IntT15[t, v], .2<v<.25, IntT20[t, v], .25<Vv<.3,
IntT25[t, v], .3=<v<.35, IntT30[t, v], .35<v<.4, IntT35[t, v], .4 =V <.45,
IntT40[t, v], .45=<v <.5, IntT45[t, v], .5<v<.55 IntT50[t, v], .55 <V <.6,
IntT55[t, v], .6 <v<.65 IntT60[t, v], .65<v<.7, IntT65[t, v], .7=<Vv<.75,
IntT70[t, v], .75<v<.8, IntT75[t, v], .8<v<.85 IntT80[t, v], True, 1075]

Bel owwe findthe ' geodesictine' asafunction
of s (thereal proper tineregisteredbythedetector).

B[s_]:=FindRoot [{Radius[t, v] ==3, FarTine[t, v] ==Sqgrt [3]s}, {{t, 11}, {v, .4}}]
ProperTime[s_]:=t /. B[S]

Bel owwe pl ot t he geodesi c ti ne agai nst s. Weseethat it has maj or i naccuraci es around s =
40 and s = 65. Thisis because Fi ndRoot failstofindtheroot dueto poor sel ectionof thestarting
val ues for t andv. W can change the startingval ues but thi s only noves t he probl ens f romone
stoanother. Aneasier way istoconstruct asolutionout of piecesthat work. Essentially,
we exci sethe partsthat donot work andjoi ntheworkingparts by interpolation.
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Li st Pl ot [Tabl e [ProperTi ne[s], {s, 1, 80, 1}1]

120 R
100 — .
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Tl =Table[{{s, ProperTime[s]}, Radius[t, v] /. B[s]}, {s, O, 20, .1}1;
Bel owwe t hr owaway sol uti ons t hat do not wor k and dr op t he Radi us part whi ch no | onger car e about .
crit[{{a_, b_}, c_}]1:=I1f [c=3, True, Fal se]

M[{{a_, b_}, c_}]:={a, b}

Map[M Sel ect [T1, crit]] // Chop;

11 =Interpolation[%]

I nterpolati ngFunction[{{0., 20.}}, <>]

Bel owwe do t he sane t hings for 18 <s <55and 80 < s < 100.

T2 = Tabl e[{{s, ProperTinme[s]}, Radius[t, v] /. B[s1}, {s, 18, 55, 1}1;
T3 =Tabl e[{{s, ProperTinme[s]}, Radius[t, v] /. B[s]}, {s, 80, 100, 1}7;
U=Union[T2, T3];

crit2[{{a_, b_}, c_}1:=1f [2.9999 <Cc < 3.0001, True, Fal se]

Sel ect [U, crit2];

Map [M Ul;

12 =1nterpol ation[%]

I nterpol ati ngFunction[{{18., 100. }}, <>]

PP[s_1:=1f[s<18, I1[s], 12[s]]

Theresult i s nownuch better.
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Pl ot [PP[s], {s, 0, 100}]
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80 —
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20F
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Bel owde definethe ' geodesic di stance' (PD).

PD[s_]:=1f[s =20, PP[s], -PP[-s]]

Bel owwe fi ndthe power spectrumwe want .

Int[En_, e_, L_]:=Nntegrate[Exp[-] Ent]/ ((PD[t] - | e)*2), {t, -L, L}1/ (-4 Pi ~2)
We adjust Landeuntil theresult isstable (mnimal artifacts).

Table[{i, Int[i, .001, 1001}, (i, O, .3, .01}] // Chop;

Bel owi s our result. Hereacc =.19245

Li st Pl ot [%]
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Bel owisthe Rindler result.

Tabl e[{En, (En/ (2Pi)) / (Exp[2Pi En/.19245] -1)}, {En, O, .3, .01}1;
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Bel owwe doarotatingdetector inFlat spacetinme. R=3andits proper accel erationis.19245.

Int2[En_, R, w_, e_, L_]1:=Nintegratef[

Exp[-1 Ent]/ ((z/Sqrt[l - RA2wr2] - | €)~2 - 2RM2 (1- Cos[we/Sqrt [1 - R*2w 211)),

{z, -L, L}1/ (-4Pi ~2)
Hereistheresult.

Tabl e[{En, Int2[En, 3,

Li st Pl ot [%, Joi ned -» True]

0.0025
0.0020
0.0015
0.0010

0.0005}

.2, .01, 10001},

(En, 0,

.3, .013}]1 7/ Chop;
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Li st Pl ot [%]
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BHresult | ooks sim | ar.



