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Relativistic solutions of the bound state problem for the hydrogen atom and one electron
ions using the uncorrected Coulomb potential and comparing those results with ones
using the correct physical potential reveals that relativity’s γ in the quantum bound
state takes on values less than one. This also explains the physical origin of the Bose-
Einstein and Fermi-Dirac statistics for bound state particles.
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I. HYDROGEN ATOM

With the new quantum mechanics of 1926 the picture
of the orbiting electron was replaced by a density func-
tion. The solutions for the electron orbitals generated
by the Schrödinger equation were a major advance on
understanding the hydrogen atom. The Pauli’s modified
version of the relativistic Dirac equation took the solu-
tion further explaining the spectra in more detail from
an expression for the electron’s magnetic moment. Con-
sidering the matter for five years Dirac was dissatisfied
and felt he might have gone wrong in generating a first
order equation instead of a second order equation (Dirac,
1932). Pauli did not want to trash the hard won effort on
modifying the Dirac equation and won the debate by de-
fault. It was a damaged prize because the equation was
specific to only a structure-less electron, with both the
electron and the nucleons treated as point masses and
charges.

To patch things up following WWII with the energy
levels of the hydrogen atom and the magnetic moment of
the electron, perturbation corrections were attempted.
These corrections were rightly challenged at the time for
being non-physical (Schweber, 1994). Whether a correc-
tion is large or small should not enter the argument if
a physical understanding is missing. The problems were
the infinities, the main defect in the model that could
not be overcome with the electron being a point mass
and point charge. The perturbation corrections to so-
lutions of Schrödinger/Dirac equations were a political
winner because one could generate almost any desired
solution, right or wrong (Consa, 2020).

By 2013 it was found that if relativistic energy con-
servation was strictly adhered to, particles like the elec-
tron gained a structure defined in their own self-reference
frame as opposed to the laboratory frame where their
dynamics were on display (Wallace and Wallace, 2014a).
More importantly, the particle description in their own
frame and a general dynamical equation in the laboratory
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frame were not specific just to the electron (Wallace and
Wallace, 2020). The free particle quantum solution now
incorporated both time dilation and the Lorentz contrac-
tion as part of their normal solution, because the particles
now had a physical structure. The Lorentz contraction
of point is not a problem that can be dealt with.

The bound state problem is one of physic’s oldest prob-
lem and as a classical problem it was never simply solved
even for planetary motion as planets and moons are not
points and tidal forces come into play. There should be
no expectation that the quantum variant the hydrogen
atom should be free of such complications. The planetary
question was simple as long as it was assumed it could
be treated with point masses located at the bodies center
of mass as a first order approximation. With the parti-
cle structure defining its static fields opens up the ques-
tion about the plasticity of these structures. Giving par-
ticle structure automatically generated the static fields
for the electrostatic, weak, and the strong force (Wallace
and Wallace, 2014b)(Wallace and Wallace, 2020). With
structure this turns a very rigid model into one where
the plasticity of the structure can be investigated.

The quantum particle’s equivalent response to a tidal
force has been ignored as the object that bind are as-
sumed to be inert points of matter. Once the source of
the electrostatic potential is tied to a particles structure
and is no longer a mathematical point, the question of
the affect of a tidal force can be computed. The severe
restrictions on a quantum particle’s structure found in
their individual self-reference frame does not allow a tidal
like shape change as these quantum particles have only
one free variable that can be affected, their radial scale
(Wallace and Wallace, 2014a). Any response would have
to change the particle’s density profile while preserving
spherical symmetry and altering their energy. To expose
this quantum problem of tides there is a solution to the
ground state of a single bound electron where a dynamic
equation is available, which does not assume the electron
or the nucleons as being mathematical points that treats
relativity properly (Wallace and Wallace, 2014a).
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Relativity can now operate on the particle’s scale in the
bound state. The description in the particle’s own self-
reference frame that is statistically independent from the
lab frame is derived from the free field equation E = pc.
The solutions produce density structures in 1,2, and 3 di-
mension dependent on two parameter, κ an inverse scale
parameter, and γ of relativity that is more broadly de-
fined than it is dynamically defined in the laboratory
frame. It is the behavior of both these parameters in the
bound state that is of interest. The elementary fermion
in three dimension, electron, that has long been treated

as a point now has been shown to have structure defining
its static electric field(Wallace and Wallace, 2015) from
which its charge density distribution and magnetic mo-
ment can be computed(Wallace and Wallace, 2020). How
the electron’s scale varies under the influence of an exter-
nal potential in a bound state is equivalent to planetary
tides that now can be explored.

II. HISTORY OF THE QUANTUM BOUND STATE

There is a detailed history of the Schrödinger and mod-
ified Dirac equation and how these equations were con-
structed along with their solutions found in Bethe and
Salpeter Quantum Mechanics of One and Two Electron
Atoms (Bethe and Salpeter, 1957). The Schrödinger
equation is not derived and the modified Dirac equation
also is only constructed by adding two terms to the base
equation that are not derived.

Table I The Z dependence of the Schrödinger Equa-
tion and modified Dirac equation ground state energy
for one electron ions. (Bethe and Salpeter, 1957)

Schrödinger equation Comment

potential singular at origin

solution regular at origin

electron point mass and charge

relativity not considered

ground state ESchro. = − Z2moe
4

2(4πεo)2~2
mN

mo+mN

mod. Dirac Equation Comment

potential singular at origin

solution singular at origin

electron point mass and charge

relativity application limited

ground state EDirac = −moc
2
√
1−Z2α2mN

mo+mN

III. PARTICLES WITH STRUCTURE

The expression for the electron that generates its static
electric field, u∗(r)u(r)r̂, is dependent on two parameter:
inverse scale κ and γ. In the self-reference frame where
there are no internal dynamics γ is a function of the par-
ticle’s relative environment and that includes not only
relative motion to another free particle that defines ki-
netic energy but also to what occurs in a bound state
with the restraints of a potential.
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The expression uf (r) and ub(r) for 3D elementary mas-
sive fermion and boson in their own frame of reference,
which for the fermion solution will be taken as an elec-
tron is one of the two solutions of equation 3. The lower
solution being for the boson where 1F1 and U are hyper-
geometric functions (Wallace and Wallace, 2014a).

uf (r) = Ae−κr1F1[
2

1 + iγ
, 2, (1 + iγ)κr]

ub(r) = Ae−κrU [
2

1 + iγ
, 2, (1 + iγ)κr]

(2)

The function u(r) is dependent on three parameter κ the
inverse scale, γ, and the dimension, n. In the derivation
the γ was introduced from the ratio of E/mc2 for the
particle and no dynamical arguments were used in the
derivation.

∂2u(r)

∂r2
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− iκ2γu(r) = 0 (3)

IV. SOLVING THE RELATIVISTIC WAVE EQUATION

There are actually a pair of laboratory frame wave
equation derived from the relativistic conservation of en-
ergy that replace the Schrödinger and Dirac equations
(Wallace and Wallace, 2020).
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The upper equation describes the behavior of a free
field that can be massless or massive and the lower equa-
tion describes the relative dynamics of a particle, free
or bound in a potential such as the hydrogen atom. By
dropping the quadratic potential term and setting γ to
one the result is the relativistic origin of the Schrödinger
equation that has now been properly derived as an ap-
proximation. Both equations 4 are derived from E2 =
p2c2 + (moc

2)2 where mo is the rest mass of the particle.

A. A Simple Solution for the Coulomb Potential

Applying equation 1 to hydrogen atom with the
Coulomb potential was not even considered because the
point charge of the Coulomb potential is not valid be-
cause the electron has a finite structure (Wallace and
Wallace, 2015). However, Peter Hagelstein in looking for
problem to give his quantum mechanics class for a final

exam, found a simple ground state solution to the spa-
tial part upper equation 4 using the Coulomb potential.
His three dimensional spherically symmetric trial solu-
tion is φ(r) ∼ rse−βr also solves the lower equation for
the bound ground state and thus allows the major correc-
tions to this state to be computed for the error introduced
by the Coulomb potential.

The trial solution for the time dependent portion of
the wave function:

Φ(r, t) = φ(r)e−
iEt
~ (5)

producing.
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Taking φ(r) = rse−βr yields in 3D spherical coordinates:
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B. Approximate Trial Solution

The relativistic wave equation is completely general
until one supplies a potential. In the case of the modi-
fied Dirac equation two parameters are added to account
for the electrostatic field of a point charge and the elec-
tron’s magnetic moment. However, necessary correction
to the Coulomb potential because of the structure of the
electron can easily be computed and shown in figure1.

VCoul.(r) = − Ze2

4πεor
(8)

∆V (r) = VCoul(r)−
∫ r

∞
uf∗(x)uf (x)dx (9)

The classical potential that is singular at the origin
will be used and this can be partially corrected for the
fact the electron has a distributed charge once an ini-
tial solution has been obtained. The Coulomb potential
does not take into account the electron’s finite size that
rolls off close to the origin. This correction is small for
the hydrogen atom’s ground state and the nuclear charge
distribution effect is even smaller (Wallace and Wallace,
2015), however, the energy correction will grow for higher
Z single electron ions.
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Figure 1 The difference between the 1/r po-
tential of a point charge and the electron’s
structural potential is significant in the
electrons core region. In the plot r = 1
represent the electron’s scale of ~/mc =
3.86×10−13m. (Wallace and Wallace, 2015)

The two potential terms in the relativist wave equation
become:

V +
V 2
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Substituting the classical potential and separating in
terms of r allows E, s and β to be computed as all factors
of rm must be equal to zero.

E +
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Solving for s and then substituting for the fine structure
constant α:

s2 + s =
Z2e4

(4πc~εo)2
= α2Z2 (12)

s =
√

1 + 4Z2α2 − 1 (13)

For β the equation is simplified by using the Bohr radius
ao:
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Then the expression for the ground state energy of the
1S state when the factor representing the reduce mass
effect is applied where mN is the nucleon mass. (Bethe
and Salpeter, 1957).

E = − moc
2

(1 + γ)
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The wave function then becomes:

Φ(r, t) = Ar
√
1+4Z2α2−1 e

− Zr

ao

√
1+4Z2α2

−iEt~ (16)

where ao is the Bohr radius. The interesting feature of
the bound state wave function is that it does not con-
tain γ as does the free particle relativistic wave function.
Whereas, γ is firmly embedded in the ground state en-
ergy expression. It is also a principal parameter in the
particle’s own self-reference frame that can control the
particle’s convergence. In free space relativity functions
to produce both spatial contraction and time dilation in
all massive particle (Wallace and Wallace, 2014a). How-
ever, in a bound state we are not dealing with classical
orbits rather the direct effect of a potential field on a par-
ticle’s structure. The correction to the 1S ground state
energy of hydrogen by the Schrödinger equation solution
is small due to taking into account the difference between
the static charge distribution and the point charge de-
scription of the electron (Wallace and Wallace, 2015).

The small wave function changes are found in table II
in terms of the rs factor that is practically a factor of 1
and the exponential factor is little changed from the Z
scaling of the Schrödinger equation solution. So that the
wave function is much the same as found in the ground
state Schrodinger solution. The bound state wave func-
tion for the ground state in the laboratory frame is in-
dependent of γ, whereas the energy level is γ dependent.
The modified Dirac ground state wave function is singu-
lar at the origin and will not be dealt with because its
resulting energies for the ground state as a function of
Z closely follow the Schrödinger energy values and will
be similarly affected by the electron charge distribution
correction (Bethe and Salpeter, 1957).

To expose the electron’s structure in a bound struc-
ture, higher field levels are needed and are found in one
electron ion’s with higher nuclear charges, Z. There is no
parameter γ in either the modified Dirac or Schrödinger
ground state energy expressions. The energies of the
ground state from the three different equations for hy-
drogen are shown in table III.

The shift in the ground state energy due to an elec-
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Table II β and s that yields ∼ 1 for r ≤ 1 with little
affect on the the wave function in equation 16 close
to the origin.

Z β s

1 .998935 .000106497

2 1.99957 .000212983

4 3.99829 .000425920

8 7.99319 .000851659

16 15.9728 .001702594

32 31.8915 .003402299

Table III All three ground state energies are close to
the experimental value but that is not sufficient proof
to find these numbers useful on their own. No correc-
tions have been made for electron charge distribution
that reduce the binding energy.

Method Energy eV Difference eV

Experiment -13.598433 -

Schrödinger Table I -13.605693 + 0.000146

Mod. Dirac Table I -13.598468 - 0.000035

Rel. Wave eq. 1 -13.595391 + 0.003042

Table IV First order corrections to the Schrödinger
ground state energies, < 1S|∆V |1S >, due to the finite
scale of the electron that corrects the singular 1/r po-
tential, (Wallace and Wallace, 2015). With increasing
Z these are large corrections and close to the correc-
tions for the modified Dirac equation ground state en-
ergies. The correction ruins the seemingly good Z de-
pendence to both the Schrödinger and Dirac ground
state energies in eV.

Z 1S Table I Correction Exp. Cor. col. # 2

1 -13.605693 +.0071189 -13.598433 -13.598574

2 -54.422772 +.1113908 -54.41776 -54.308864

4 -217.69109 +1.7035464 -217.71858 -215.98754

8 -870.76436 +24.88695 -871.4101 -845.87741

16 -3,483.0514 +332.8845 -3,490.4189 -3,150.1729

32 -13,932.23 +3,809.444 -14,119.435 -10,122.79

tron with structure take both the Schrodinger and Dirac
ground state solutions far from the measured experimen-
tal values. Unlike the normal corrections to bound state
energies eg. Lamb shift contribution these changes are
large.

V. PARTICLES WITH STRUCTURE

A weak point in the Dirac and Pauli arguments for
their relativistic wave equation is that it is specifically de-
signed for the electron. With a general derivation for the
particle structure in its own frame of reference the sec-
ond order equations generate two solutions restricted to
a single spatial spherically symmetric variable, r. Where
uf (r;κ, n, γ) one for fermion and one ub(r;κ, n, γ) for a
boson dependent on three parameter: n the dimension
(1, 2, or 3), κ inverse particle scale, γ the ratio of the
particle energy to its self-energy. Dynamics is not ex-
pressed in this space, except through the parameter γ
for an unbound particle (Wallace and Wallace, 2014a).

A. Origin of Fermion and Boson Statistics

The role of γ for the bound state and its affect on
structure of the particle is of interest for both bosons
and fermions. The simplest way to see the effect is to
plot out the particle’s density function comparing values
γ when it both greater and less than one.

The effect of an external binding potential in altering
γ acts differently on fermions than bosons. This can be
seen in their density function, u∗(r)u(r)rn−1.

Figure 2 Origin of the Bose-Einstein conden-
sate is seen in the shrinkage of the boson
density function in an external binding po-
tential.

As Z goes to higher values for the one electron ions
the Dirac values for the ground state energy are quite
good and close to the experimental values. However, the
details are buried within the calculation of the ground
state energy. In the development of the modified Dirac
equation a set of corrections include the spin angular mo-
mentum of the electron and its associated field.

bound state rest free
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Figure 3 Origin of fermion repulsion is seen
in the wave function diverging at large r
in an external binding potential.

0 < γ < 1 ⇐= γ = 1 =⇒ γ > 1

The two corrections in the modified Dirac equation deal
with the electrostatic and magnetic fields, not the struc-
ture of the electron, which is still a point. There are
no corrections in the Schrödinger equation that implies
the corrections of the Dirac equation are canceling out
each other. The finite core size of the electron only pro-
duces a small correction for the hydrogen atom. Con-
veniently the magnetostatic/angular moment contribu-
tion to the electron’s ground state energy can be treated
separately so that the relativistic wave equation poten-
tial only need contain the electrostatic field (Wallace and
Wallace, 2020).

In the electron’s own frame of reference, its self-
reference frame, γ modifies the electron’s structure. In
free space for γ < 1 the electron is not a stable particle,
its wave function is divergent and grows. However, in a
bound state this divergence is controlled by the binding
potential and γ can take on values that are less than 1.

Table V Computed values from equation 15 of γ an
approximation to correct the bound state energies.

z γ estimate

1 .9995563

2 .998204

4 .9928343

8 .9715725

16 .8905061

32 .6200965

The main approximation that has been made in the
examples thus far was that relativistic field equation was

not solved with either a correct electron or nuclear elec-
trostatic potentials as these become γ dependent and
alter the entire problem. The solutions with classical
Coulomb potential of equation 5 only can be used a guide.
The reason is that γ decreases below 1 the bound state
energy also drops to lower negative values making the
binding stronger. Competing against that is the elec-
tron’s distributed charge and the spreading of the elec-
tron wave function with increasing Z that will reduce
the binding energy. The equations have to be solved nu-
merical to minimize the energy because the potential is
now coupled to the solution. Analogous to a return to
Thomas-Fermi and the associated methods that followed.

At a Z = 1 the collection of corrections to the ground
state energy are small. As Z increases the competi-
tion between greater binding and the electron’s finite
scale not helping brings in two large and competing con-
tributions to the ground state energy that destroy the
Schrödinger/Dirac approximations at increasing Z. The
only way to recover the ground state energy is properly
include the relativistic effect on energy with γ taking on
values less than one. This single electron ion behavior
at high Z is an extreme case, however, this changes the
way normal nucleon binding with two competing fields,
electrostatic and strong force, tied to boson and fermion
structure respectively need to be treated.

VI. ACKNOWLEDGMENT

Peter Hagelstein for a useful method in solving the
ground state of hydrogen and one electron ions using the
relativistic laboratory frame equation.

REFERENCES

Bethe, H., and E. Salpeter, 1957, Quantum Mechanics of One-
and Two-Electron Atoms (Springer, Berlin).

Consa, O., 2020, Progress in Physics 16, arXiv 2010.10345v1.
Dirac, P. A. M., 1932, Proc.Roy. Soc. A 136, 453.
Schweber, S. S., 1994, QED and the Men Who Made It:

Dyson, Feynman, Schwinger, and Tomonaga (Princeton
Unvi. Press, Princeton, N.J.).

Wallace, J., and M. Wallace, 2014a, The Principles of Mat-
ter amending quantum mechanics (Casting Analysis Corp.,
Weyers Cave, VA).

Wallace, J., and M. Wallace, 2014b, viXra:1405.0015v1 .
Wallace, J., and M. Wallace, 2015, in Science and Technol-

ogy of Ingot Niobium for Superconducting Radio Frequency
Applications, edited by G. Myneni (AIP, Melville, NY),
volume 1687, pp. 040004–1–14, Electrostatics.

Wallace, J., and M. Wallace, 2020, “yes Virginia, Quantum
Mechanics can be Understood” 2nd ed. (Casting Analysis
Corp., Weyers Cave, VA).

.


