A STEP TOWARDS QUANTUM GRAVITY
By Jonathan Deutsch

Abstract

We will learn to calculate Newton's classical force of gravity in a new quantummechanical (h-based) way. (Einstein's general relativity obtains the same classical result as Newton.) Just 8 steps are required:

1) Calculate Newtonian classical gravity for absolutely any situation. $F_{\text {gravity }}=G m_{1} m_{2-}$ $/ r^{2}$, where $G=6.6728674 \times 10^{-8} \mathrm{~cm}^{3} / \mathrm{gmsec}^{2} ; \mathrm{m}_{1}$ and m_{2} are the 2 masses; r is the distance between them; $\mathrm{cm}=$ centimeter; gm=gram; and sec=second.
2) Separately, take ANY MASS AT ALL --m - - and set it equal to 1 .
3) Set m's de Broglie wavelength $-\boldsymbol{\lambda}-$ - equal to -1 .
4) Set the time, t, taken for light to travel $\lambda(=\lambda / c)$ equal to $\sqrt{-1}$.
5) Calculate a numerical value for the three c-g-s units via steps 2), 3) and 4) respectively.
6) Calculate G using these new unit equivalencies, resulting in a positive number result. (t^{2} will cancel -1 because $\mathrm{t}=\sqrt{-1}$]. Call this result y .
7) Recalculate step 1), REPLACING G with y, and REPLACING the c-g-s units with the new unit equivalencies, resulting in another positive number. Call it n.
8) Calculate $n h / \lambda t$. This quantum-mechanical term will ALWAYS be exactly equal to the classical gravity, $\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$, calculated in step 1) (minus late-decimal rounding.) This will ALWAYS be true FOR ANY AND ALL $m_{1}, m_{2}, r, m, \lambda$ and t.

A STEP TOWARDS QUANTUM GRAVITY

1) First, we calculate classical Newtonian gravity - $-\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$. For example, let $m_{1}=1.6 \times 10^{25} \mathrm{gm}$ (planetary size); $m_{2}=1.7 \times 10^{26} \mathrm{gm}$; and $\mathrm{r}=1.8 \times 10^{12} \mathrm{~cm}$. $G m_{1} m_{2} / r^{2}$ is here calculated to be $5.6019126 \times 10^{19} \mathrm{gmcm} / \mathrm{sec}^{2}$ (= dynes). Einstein would obtain this result as well via general relativity. Our task is to generate a quantum-mechanical term that gives us this exact classical result.
2) Take ANY MASS AT ALL - - for example, $m=2.0164598 \times 10^{1,536,827} \mathrm{gm}-$ - and set it equal to 1.
3) Take m's de Broglie wavelength $-\lambda(=h / \mathrm{mc})\left(\mathrm{h}=6.626069 \times 10^{-27} \mathrm{gmcm}^{2} / \mathrm{sec}\right.$ and $\left.c=2.9979246 \times 10^{10} \mathrm{~cm} / \mathrm{sec}\right)=1.0960886 \times 10^{-1,536.864} \mathrm{sec}--$ and set it equal to -1.
4) Take the time, t, taken for light to travel one $\lambda(=\lambda / c)--=3.6561579 \mathrm{X}$ $10^{-1,536.875}$ sec - and set it equal to $\sqrt{-1}$. (We will use $t=\sqrt{-1}$ a bit later, when t^{2} will cancel out with -1.)
5) Calculate new numerical values for the three units based on 2), 3) and 4) respectively:
$\mathrm{m}=2.0164598 \times 10^{1.536,827} \mathrm{gm}=1$ implies that $\mathrm{gm}=4.9591863 \times 10^{-1,536,828}$; $\lambda=\mathrm{h} / \mathrm{mc}=1.0960886 \times 10^{-1,536,864} \mathrm{~cm}=-1$, implies that $\mathrm{cm}=-9.12335 \mathrm{X}$ $10^{1,536.863}$; and $t=\lambda / c=3.6561579 \times 10^{-1,536,875} \sec (=\sqrt{-1})$, which implies that $\sec =2.7351116 \times 10^{1,536,874} \mathrm{t}\left(=2.7351116 \times 10^{1,536,874} \sqrt{-1}\right)$.
6) We recalculate G, replacing $6.6728674 \times 10^{-8} \mathrm{~cm}^{3} / \mathrm{gmsec}^{2}$ with a calculation using the three c-g-s unit equivalencies of step 5). G thus $=1.3658876 \mathrm{X}$ $10^{3,073,663}$. Call this positive number y.
7) We recalculate $\mathrm{Gm}_{1} \mathrm{~m}_{2} / r^{2}$, REPLACING G with y, and REPLACING the three $c-g-s$ units with their unit equivalencies (step 5)). $G m_{1} m_{2} / r^{2}$ thus recalculated $=3.3880593 \times 10^{-3,073,693}$. Call this last positive number n.
8) Calculate $n h / \lambda t$, a quantum mechanical term. It will ALWAYS exactly equal step 1)'s classical $G m_{1} m_{2} / r^{2}$. We will perform this calculation in detail for clarity: $\mathrm{nh} / \lambda \mathrm{t}=\left[\left(3.3880593 \times 10^{-3,073,693}\right)\left(6.626069 \times 10^{-27} \mathrm{gmcm}^{2} / \mathrm{sec}\right)\right]$ $/\left[\left\{1.0960886 \times 10^{-1,536,864} \mathrm{~cm}\right)\left(3.6561579 \times 10^{-1,536.875} \mathrm{sec}\right)\right]$ $=\left[22.449514 \times 10^{-3,073,720} \mathrm{gmcm}^{2} / \mathrm{sec}\right] /\left[4.0074729 \times 10^{-3,073,739} \mathrm{cmsec}\right]$ $=5.6019128 \times 10^{19} \mathrm{gmcm} / \mathrm{sec}^{2}$ (= dynes) $=G m_{1} m_{2} / r^{2}$ of step 1) (minus late-decimal rounding)! nh/ λt will ALWAYS equal $G m_{1} m_{2} / r^{2}$, each calculated one hundred percent normally, in proper units. Notice how neatly the two "million-dollar" exponents together create 10^{19} !

CONCLUSION

Although still retaining the bare outline of classical gravity, we have nonetheless created a quantum-mechanical term, nh/ $\lambda \mathrm{t}$, which ALWAYS equals $\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$. This, then, is indeed a step towards quantum gravity. Whether m_{1} and m_{2} are two planets, two electrons, or anything else - - even two galaxies - $n h / \lambda$ t will ALWAYS equal $\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$ quite precisely. The reader is invited to try this process on his own with entirely different values for everything. As long as ANY $m=1$, its $\lambda=-1$ and its $t=\sqrt{-1}, \mathrm{nh} / \lambda \mathrm{t}$ will always equal $G m_{1} m_{2} / r^{2}$. (In short, the quantum-mechanical ONENESS of the universe leads mathematically to quantum gravity, as it logically should.)

Any questions or comments should be addressed to the author at forsablue@aol.com. All such questions and comments will be answered promptly.

