A STEP TOWARDS QUANTUM GRAVITY By Jonathan Deutsch

ABSTRACT

We will learn to calculate Newton's classical force of gravity in a new quantummechanical (h-based) way. (Einstein's general relativity obtains the same classical result as Newton.) Just 8 steps are required:

- 1) Calculate Newtonian classical gravity for absolutely any situation. $F_{gravity}=Gm_1m_2$. /r², where G=6.6728674 X 10⁻⁸ cm³/gmsec²; m₁ and m₂ are the 2 masses; r is the distance between them; cm=centimeter; gm=gram; and sec=second.
- 2) Separately, take ANY MASS AT ALL - m - and set it equal to 1.
- 3) Set m's de Broglie wavelength - λ - equal to -1.
- 4) Set the time, t, taken for light to travel λ (= λ /c) equal to $\sqrt{-1}$.
- 5) Calculate a numerical value for the three c-g-s units via steps 2), 3) and 4) respectively.
- 6) Calculate G using these new unit equivalencies, resulting in a positive number result. (t² will cancel -1 because t = $\sqrt{-1}$]. Call this result y.
- 7) Recalculate step 1), REPLACING G with y, and REPLACING the c-g-s units with the new unit equivalencies, resulting in another positive number. Call it n.
- 8) Calculate nh/ λ t. This quantum-mechanical term will ALWAYS be exactly equal to the classical gravity, Gm₁m₂/r², calculated in step 1) (minus late-decimal rounding.) This will ALWAYS be true FOR ANY AND ALL m₁,m₂, r, m, λ and t.

A STEP TOWARDS QUANTUM GRAVITY

- 1) First, we calculate classical Newtonian gravity $-Gm_1m_2/r^2$. For example, let $m_1 = 1.6 \times 10^{25}$ gm (planetary size); $m_2 = 1.7 \times 10^{26}$ gm; and $r = 1.8 \times 10^{12}$ cm. Gm_1m_2/r^2 is here calculated to be 5.6019126 $\times 10^{19}$ gmcm/sec² (= dynes). Einstein would obtain this result as well via general relativity. Our task is to generate a quantum-mechanical term that gives us this exact classical result.
- 2) Take ANY MASS AT ALL - for example, m=2.0164598 X 10^{1,536,827}gm - and set it equal to 1.
- 3) Take m's de Broglie wavelength - λ (=h/mc) (h=6.626069 X 10⁻²⁷ gmcm²/sec and c=2.9979246 X 10¹⁰ cm/sec)=1.0960886 X 10^{-1,536.864} sec - and set it equal to -1.
- 4) Take the time, t, taken for light to travel one λ (= λ /c) - =3.6561579 X 10^{-1,536.875} sec - and set it equal to $\sqrt{-1}$. (We will use t= $\sqrt{-1}$ a bit later, when t² will cancel out with -1.)
- 5) Calculate new numerical values for the three units based on 2), 3) and 4) respectively:

m=2.0164598 X $10^{1.536,827}$ gm = 1 implies that gm=4.9591863 X $10^{-1,536,828}$; λ =h/mc=1.0960886 X $10^{-1,536,864}$ cm = -1, implies that cm= -9.12335 X $10^{1,536.863}$; and t= λ /c=3.6561579 X $10^{-1,536,875}$ sec (= $\sqrt{-1}$), which implies that sec=2.7351116 X $10^{1,536,874}$ t(=2.7351116 X $10^{1,536,874} \sqrt{-1}$).

- 6) We recalculate G, replacing 6.6728674 X 10^{-8} cm³/gmsec² with a calculation using the three c-g-s unit equivalencies of step 5). G thus = 1.3658876 X $10^{3,073,663}$. Call this positive number y.
- 7) We recalculate Gm_1m_2/r^2 , REPLACING G with y, and REPLACING the three c-g-s units with their unit equivalencies (step 5)). Gm_1m_2/r^2 thus recalculated = 3.3880593 X $10^{-3,073,693}$. Call this last positive number n.
- 8) Calculate nh/ λ t, a quantum mechanical term. It will ALWAYS exactly equal step 1)'s classical Gm₁m₂/r². We will perform this calculation in detail for clarity: nh/ λ t=[(3.3880593 X 10^{-3,073,693}) (6.626069 X 10⁻²⁷gmcm²/sec)] /[{1.0960886 X 10^{-1,536,864}cm)(3.6561579 X 10^{-1,536.875}sec)] =[22.449514 X 10^{-3,073,720}gmcm²/sec]/[4.0074729 X 10^{-3,073,739}cmsec] =5.6019128 X 10¹⁹gmcm/sec² (= dynes)

=Gm₁m₂/r² of step 1) (minus late-decimal rounding)! nh/ λ t will ALWAYS equal Gm₁m₂/r², each calculated one hundred percent normally, in proper units. Notice how neatly the two "million-dollar" exponents together create 10¹⁹!

CONCLUSION

Although still retaining the bare outline of classical gravity, we have nonetheless created a quantum-mechanical term, nh/ λ t, which ALWAYS equals Gm₁m₂/r². This, then, is indeed a step towards quantum gravity. Whether m₁ and m₂ are two planets, two electrons, or anything else - - even two galaxies - - nh/ λ t will ALWAYS equal Gm₁m₂/r² quite precisely. The reader is invited to try this process on his own with entirely different values for everything. As long as ANY m=1, its λ = -1 and its t= $\sqrt{-1}$, nh/ λ t will always equal Gm₁m₂/r². (In short, the quantum-mechanical ONENESS of the universe leads mathematically to quantum gravity, as it logically should.)

Any questions or comments should be addressed to the author at forsablue@aol.com. All such questions and comments will be answered promptly.