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Abstract

In the first part, we deal with the question of which points we have to connect to
generate a non self-intersecting polygon. Afterwards, we introduce a polyhole, which
is a generalization of a polygon. Roughly speaking a polyhole is a big polygon, where
we cut out a finite number of small polygons.
In the second part, we present two ‘centers’, which we call center and barycenter .
In the case that both centers coincide, we call these polygons nice. We show that
if a polygon has two symmetry axes, it is nice. We yield examples of polygons with
a single symmetry axis which are nice and which are not nice. We show that all
symmetry axes intersect at one point.
In the third part, we introduce the Spieker center and the Point center for polygons.
We define beautiful polygons and perfect polygons.
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1 Introduction

We look for a criterion to generate a simple polygon.
Let us assume a set of k + 1 points called Points ⊂ R2, where Points = {(x1, y1), (x2, y2),
. . . (xk−1, yk−1), (xk, yk), (xk+1, yk+1)}. We joint the possible edges. We define the subset Union
of R2, Union :=

⋃
[(xi, yi), (xi+1, yi+1)] for i ∈ {1, 2, . . . k−1, k}. With the expression ‘[a, b]’ we

mean all points on the line segment between a and b and the boundaries a and b. We say that
Points is suitable if and only if Union is homeomorphic to the circle {(x, y) ∈ R2 | x2+y2 = 1}.

Definition 1.1. We call Union a polygon if and only if it holds (xi, yi) ̸= (xj , yj) for i ̸= j
where i, j ≤ k. We demand that there are no consecutive collinear points (xi, yi), (xi+1, yi+1),
(xi+2, yi+2); also (xk−1, yk−1), (xk, yk), (x1, y1) and (xk, yk), (x1, y1), (x2, y2) are not collinear.
The element (xi, yi) is called a vertex. We name a polygon such that Points is suitable a simple
polygon. If we have a simple polygon we include its interior, and it holds (xk+1, yk+1) = (x1, y1)
and k > 2.

An r-gon is a simple polygon with r vertices.
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2 Starlike Polygons

We can start also with a circle {(x, y) ∈ R2 | x2+y2 = 1}. We presume a finite set called A of k
different points on the circle, where k > 2 and A = {a⃗1, a⃗2, . . . a⃗k−1, a⃗k} is in counterclockwise
order. We map A bijectively into a set H = {h⃗1, h⃗2, . . . h⃗k−1, h⃗k}, a⃗i 7→ h⃗i, such that the three
points h⃗i, a⃗i and (0, 0) are collinear and the norm of h⃗i is positive. We demand that there are
no collinear points h⃗i, h⃗i+1, h⃗i+2, and also that h⃗k−1, h⃗k, h⃗1 and h⃗k, h⃗1, h⃗2 are not collinear. We
keep the order as in A. We move all points with the same vector m⃗, i.e. Z := {z⃗1, z⃗2, . . . z⃗i,
. . . z⃗k−1, z⃗k} ⊂ R2 where 1 ≤ i ≤ k and z⃗i := h⃗i + m⃗. We keep the order. We call a polygon
with a set of vertices V = {v⃗1, v⃗2, . . . v⃗k−1, v⃗k} a starlike polygon if and only if V provided with
an appropriate order can be constructed as it is just described for Z. We add v⃗k+1 := v⃗1 into
V . Please see the following Proposition 2.2. Note that V is a suitable set.

Questions 2.1. Is there an alternative description of starlike polygons? Is every convex simple
polygon a starlike polygon?

Proposition 2.2. We get a simple polygon P if there is a set of points V = {v⃗1, v⃗2, . . .
v⃗k−1, v⃗k, v⃗k+1} ⊂ R2 constructed as above where k > 2 and

P :=
⋂

{ Circle ⊂ R2 | V ⊂ Circle, where Circle is homeomorphic to the circle area

{x2 + y2 ≤ 1}, and the points between v⃗i and v⃗i+1, 1 ≤ i ≤ k, are a subset of Circle}

Proof. The claim of the proposition is trivial, since V is a suitable set.

It follows that a starlike polygon is a compact set, homeomorphic to any circle area, and for all
1 ≤ i ≤ k the vector v⃗i is a boundary point. All starlike polygons are simple polygons.
A triangle is a starlike polygon, too.

Proposition 2.3. If we have a set of k + 1 points called Points = {(x1, y1), (x2, y2), . . .
(xk, yk), (xk+1, yk+1)} ⊂ R2 which forms a polygon we get a simple polygon if and only if
Points is suitable.

Proof. Trivial.

3 Polyholes

We define a subset of R2, which we will call a polyhole. This geometric structure consists of a
finite number of simple polygons P, P1, P2, P3, . . . Pm−1, Pm. From the polygon P we cut out
polygons P1, P2, P3, . . . Pm−1, Pm.

Definition 3.1. Let {P, P1, P2, P3, . . . Pm−1, Pm} be a set of simple polygons. A polyhole is
defined as P without P1 ∪ P2 ∪ P3 ∪ . . . ∪ Pm−1 ∪ Pm

A corresponding definition is possible for polytopes. To define them please see [1].

Definition 3.2. Let {P, P1, P2, P3, . . . Pm−1, Pm} be a set of polytopes. A polytopehole is
defined as P without P1 ∪ P2 ∪ P3 ∪ . . . ∪ Pm−1 ∪ Pm.

Questions 3.3. What is the barycenter of a polyhole, if it is realized with homogeneous material
of constant thickness? What is the barycenter of a polytopehole of R3, if it is realized with
homogeneous material?

2



Figure 1:

The polyhole on the left-hand

side consists of a square where

we cut out two triangles.

4 Nice Polygons

We assume a suitable set of points called Points = {(xi, yi) | i ∈ {1, 2, . . . k − 1, k, k + 1}}.
We define two ‘centers’, where the center Cent is just the arithmetic mean of the first and
second coordinates of the generating points, respectively.
We got the following formulas for the barycenter B = (Bx, By) of a simple polygon from [2]
or [3]. Please see also [4] and [5]. Area is the area of a simple polygon. Note that Area ̸= 0
and that in [2] and [4] the barycenter is called a Centroid, and further that B is the center of
gravity of the polygon, if it is realized with homogeneous material of constant thickness. Note
that the order in the polygon is counterclockwise. We write

Di = xi · yi+1 − xi+1 · yi, where 1 ≤ i ≤ k (4.1)

Area =
1

2
·

k∑
i=1

Di (4.2)

Bx =
1

6 · Area
·

k∑
i=1

(xi + xi+1) ·Di, By =
1

6 · Area
·

k∑
i=1

(yi + yi+1) ·Di (4.3)

Cent =
1

k
·

(
k∑

i=1

xi,

k∑
i=1

yi

)
(4.4)

Definition 4.1. Let us presume a simple polygon P . We call P nice if and only if it holds
B = Cent.

Proposition 4.2. Every triangle is nice

Remark 4.3. When we use the term symmetry axis of a polygon P we mean a line segment
s in the convex hull of P of maximal length, i.e. it holds for a symmetry axis t in the convex
hull of P with more than one common point with s that t ⊂ s.

Proposition 4.4. If a simple polygon has two different symmetry axes, it is nice
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Proof. The proposition is an easy consequence of the fact that both the center of gravity and
Cent must be on a line determined by a symmetry axis. Please see Lemma 4.11.

Lemma 4.5. The property of being nice or being not nice remains with these operations.

• Revolving P by an arbitrary angle around any point

• Shifting P by an arbitrary vector

Proof. We assume B ̸= Cent. Let us revolve P by an arbitrary angle around any point. There
is a positive distance d between B and Cent. It will be kept since a rotation is a distance
preserving map. Hence the distance between the image points of B and Cent is also d. After
the rotation still P is not nice.
In the case B = Cent we have nothing to show.

Lemma 4.6. Both operations which we have mentioned above in Lemma 4.5 are distance
preserving operations. Therefore the shape of a polygon is kept after these operations.

Proof. Trivial.

In a polygon we fix four real numbers.

Definition 4.7. We define
minx := minimum of the set of the first coordinates of the set of the vertices Points of P .
miny := minimum of the second coordinates of Points,
maxx := maximum of the first coordinates of Points,
maxy := maximum of the second coordinates of Points.
Let minx < maxx and miny < maxy. Note that in a simple polygon P these conditions
are fulfilled. We define a simple polygon called Rectangle(P ) by four vertices (maxx,maxy),
(minx,maxy), (minx,miny), (maxx,miny).

Remark 4.8. In a simple polygon P it holds that both P and the convex hull of Points are
in Rectangle(P ).

Definition 4.9. Let s = {a⃗ + r · d⃗ | r ∈ [v, w] for fixed real numbers v, w} be a symmetry
axis of a polygon. We define l(s) as the line {a⃗ + r · d⃗ | r ∈ R}.

Remark 4.10. It holds that s is a subset of l(s).

Lemma 4.11. Let s be a symmetry axis of a simple polygon P . Both B and Cent are on the
line segment l(s) ∩ Rectangle(P ).

Proof. We assume a simple polygon P with a symmetry axis s and centers B and Cent. Note
that B is the center of gravity of P . Hence B must be on l(s), since s is a symmetry axis of P .
For the same reason, B is also in Rectangle(P ).
We use Lemma 4.6. We map P by a rotation and a shift parallel the vertical y axis into a second
polygon P ′ with a symmetry axis s′ and centers B′ and Cent′ such that s′ is on the x axis.
Assume a vertex (x′, y′) of P ′. Since s′ is a symmetry axis and it is on the x axis either y′ = 0
or there is a second vertex (x′,−y′) of P ′. If we add all vertices together we get Cent′ = (c′, 0)
with any real number c′, i.e. Cent′ is on the x axis. This means that Cent′ is on l(s′). Since
P ′ has the same shape as P we get that Cent is on l(s).
It is easy to show that Cent is a point in Rectangle(P ): It holds

minx =
1

k
·

k∑
i=1

minx <
1

k
·

k∑
i=1

xi <
1

k
·

k∑
i=1

maxx = maxx (4.5)
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If we consider correspondingly the second coordinate of Cent we get miny < 1
k ·
∑k

i=1 yi <
maxy, and it follows that Cent is in Rectangle(P ).
We get that Cent is in l(s) ∩Rectangle(P ). Lemma 4.11 has been proved.

Two symmetry axes intersect in one point. It is both B and Cent. The proof of Proposition
4.4 is finished.

Corollary 4.12. In a simple polygon with multiple symmetry axes all symmetry axes intersect
in one point. It is both B and Cent. It follows that a simple polygon with more than a single
symmetry axis is nice.

Note that one symmetry axis is not sufficient, as the kite defined by (0, 0), (1,−1), (3, 0), (1, 1)
shows, since 5

4 ̸= 4
3 . It is not nice.

We give an example of a polygon with a single symmetry axis which is nice, but not a tri-
angle.
We present a 5-gon. It has centers B = Cent, it is about (0.50, 0.85). The vertices are

(0, 0), (1, 0), (1, 1),

(
1

2
, 1 +

1

2
·
√
6

)
, (0, 1). We get B = Cent =

(
1

2
,
1

10
·
(
6 +

√
6
))

. (4.6)

This example proves the conjecture that besides triangles only polygons with two or more
symmetry axes are nice is wrong.

Figure 2:

On the left-hand side is

a nice 5-gon. It has sidelengths

1 and 1
2 ·

√
7. We show

a piece of the symmetry line

l(s), the axes, and two centers,

i.e. above the Spieker center

and below B = Cent.

(
1
2 , 1 +

1
2 ·

√
6
)

l(s)

(0, 1) (1, 1)

(0, 0) (1, 0)
(
1
2 , 0
)

•
•B
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5 Spieker Center and Point Center

In a triangle the Spieker center is well-known. We have gotten the formulas of the Spieker center
from [5]. Please see also [6]. The Spieker center of a triangle A = (xA, yA), B = (xB, yB), C =
(xC , yC) is its barycenter, at which the triangle is formed by a wire of constant diameter. The
interior of the triangle is not regarded. The Spieker center is outside the wire. The sidelengths
of the triangle are l1, l2 and l3, where sides with lengths l1 and l3 intersect in A, while sides
with lengths l1 and l2 intersect in B. The coordinates of the Spieker center (spiekerx, spiekery)
are

spiekerx =
(l1 + l3) · xA + (l1 + l2) · xB + (l2 + l3) · xC

2 · (l1 + l2 + l3)
and (5.1)

spiekery =
(l1 + l3) · yA + (l1 + l2) · yB + (l2 + l3) · yC

2 · (l1 + l2 + l3)
(5.2)

The concept of the Spieker center can easily be generalized to polygons. We assume the
polygon is made from a wire of constant diameter. The shape of the polygon is formed by
the wire. We look for its center of gravity; it is generally outside the wire. We consider a new
polygon, constructed by k mass centers. Therefore it also has k vertices. We compute the Point
center of the new polygon. The Point center of an r-gon is defined by the imagination that the
masses are in the vertices of the polygon. Let m1,m2, . . .mr−1,mr be r masses. The polygon
has the Point center Point = (pointx, pointy), where

pointx =
1

M
·

r∑
i=1

mi · ai (5.3)

pointy =
1

M
·

r∑
i=1

mi · bi, and (5.4)

M =

r∑
i=1

mi is the sum of the masses and (5.5)

(a1, b1), (a2, b2), . . . (ar−1, br−1), (ar, br) are the vertices of the polygon. (5.6)

To calculate the Spieker center of a given polygon we have to consider a new polygon, con-
structed by k mass centers of the k edges. Therefore it also has k vertices. We assume that in
the new polygon the masses are on these k vertices. The Spieker center of the given polygon is
the Point center of the new polygon. The formulas are

spiekerx =
1

U
·

k∑
i=1

li ·
(
1

2
· (xi + xi+1)

)
=

1

2 · U
·
k+1∑
i=2

(li + li−1) · xi (5.7)

spiekery =
1

U
·

k∑
i=1

li ·
(
1

2
· (yi + yi+1)

)
=

1

2 · U
·
k+1∑
i=2

(li + li−1) · yi (5.8)

where li =
√

(xi − xi+1)2 + (yi − yi+1)2 and U =
k∑

i=1

li (5.9)

We define lk+1 := l1. Note the indices in the formulas! Note that it holds (xk+1, yk+1) =
(x1, y1). The variable ‘li’ means the length of one edge of the polygon. Every edge li :=
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[(xi, yi), (xi+1, yi+1)] has a center of gravity 1
2 · ((xi, yi) + (xi+1, yi+1)). U is the perimeter of

the polygon.
As an example we take the 5-gon of above. Its Spieker center is about (0.50, 0.93). In exact
coordinates it is(

1

2
,

1

6 + 2 ·
√
7
·
(
2 + 2 ·

√
7 +

1

2
·
√
42

))
=

(
1

2
,
√
7− 2 +

1

8
·
(
3 ·

√
42−

√
294
))

. (5.10)

Definition 5.1. Let us presume a simple polygon P . We call P beautiful if and only if it holds
that B equals the Spieker center. We call P perfect if and only if all three centers are the same,
i.e. it holds that B equals both Cent and the Spieker center.

Lemma 5.2. Let s be a symmetry axis of a simple polygon P . The Spieker center is on
s ∩ Rectangle(P ).

Proof. The line segment s is a symmetry axis both for the entire polygon and for its contour.
Because the Spieker center is the barycenter of the contour it must be on s. The statement
that the Spieker center is in Rectangle(P ) is trivial.

Proposition 5.3. Let a simple polygon has two or more symmetry axes. Then it is perfect.

Proof. The three points B,Cent and the Spieker center all are on the line determined by a
symmetry axis. There is only a single possibility that all points are on every line.

Conjecture 5.4. A triangle is perfect if and only if it is an equilateral triangle.

The next conjecture contains the previous one.

Conjecture 5.5. An r-gon is perfect if and only if it is an regular r-gon.

Conjecture 5.6. A simple polygon is beautiful if and only if it is perfect. In other words it
holds B = Spieker center if and only if B = Spieker center and B = Cent.

Conjecture 5.7. A simple polygon is beautiful if and only if it has more than one symmetry
axis.

We end the paper with an infinite number of questions. We define that a connection between
two points A and B is a continuous map f : [0, 1] → R2 such that f(0) = A and f(1) = B.

Questions 5.8. We assume a set of n different fixed points in R2. The first set of questions is:
Are there connections between all points such that the union of the connections is homeomorphic
to a circle? The second is the same, except that only line segments are allowed as connections.
In the next questions, we may use a subset of the set of points. We ask whether there are
connections of all points such that these connections are homeomorphic to m circles. In the last
set of questions, we ask the same, except that only line segments are allowed.

Acknowledgement: We thank Prof. Dr. Eberhard Oeljeklaus and Franziska Brown for
a careful reading of the paper, Rolf Baumgart for calculations, and Oksana Fidan for some
measurements
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