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Abstract

We define the photoelectric effect with the specific heat term replacing the work
function. The photon propagator involving the radiative correction is also considered.
We consider the Debye specific head for the 3D crystal medium, the specific heat for the
2D medium and specific heat for the Wigner crystal.

1 Introduction

The photoelectric effect is a quantum electromagnetic phenomenon in which electrons
are emitted from matter after the absorption of energy from electromagnetic radiation.
Frequency of radiation must be above a threshold frequency, which is specific to the
type of surface and material. No electrons are emitted with a frequency below of the
threshold. The photoelectric effect was theoretically explained by Einstein in his paper in
1905 (Einstein, 1905; 1965) and the term ”light quanta” called ”photons” was introduced
by chemist G. N. Lewis, in 1926. Einstein writes (Einstein, 1905; 1965): In accordance
with the assumption to be considered here, the energy of light ray spreading out from
point source is not continuously distributed over an increasing space but consists of a
finite number of energy quanta which are localized at points in space, which move without
dividing, and which can only be produced and absorbed as complete units.

The linear dependence on the frequency was experimentally determined in 1915, when
Robert Andrews Millikan showed that Einstein formula

h̄ω =
mv2

2
+W (1)

was correct. Here, h̄ω is the energy of the impinging photon, v is the electron velocity
measured by the magnetic spectrometer and W is the work function of concrete material.
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The work function for Aluminium is 4.3 eV, for Beryllium 5.0 eV, for Lead 4.3 eV,
for Iron 4.5 eV, and so on (Rohlf, 1994). The work function concerns the surface
photoelectric effect, where the photon is absorbed by an electron in a band. The
theoretical determination of the work function is the problem of the solid state physics.
On the other hand, there is the so called atomic photoeffect (Amusia, 1987; Berestetzky
et al., 1989), where the ionization energy plays the role of the work function. The system
of the ionization energies is involved in the tables of the solid state physics.

The formula (1) is the law of conservation of energy. The classical analogue of the
equation (1) is the motion of the Robins ballistic pendulum in the resistive medium.

The idea of the existence of the Compton effect is also involved in the Einstein article.
He writes (Einstein, 1905; 1965): The possibility should not be excluded, however, that
electrons might receive their energy only in part from the light quantum. However, Einstein
was not sure, a priori, that his idea of such process is realistic. Only Compton proved the
reality of the Einstein statement.

At energies h̄ω < W , the photoeffect is not realized. However, the photo-conductivity
is the real process. The photoeffect is realized only in medium and with low energy
photons, but with energies h̄ω > W , which gives the Compton effect negligible. For
h̄ω ≫ W the photoeffect is negligible in comparison with the Compton effect. At the
same time it is necessary to say that the Feynman diagram of the Compton effect cannot
be reduced to the Feynman diagram for photoeffect. In case of the high energy gamma
rays, it is possible to consider the process called photoproduction of elementary particles
on protons in LHC, or, photo-nuclear reactions in nuclear physics (Levinger, 1960). Such
processes are energetically far from the photoelectric effect in solid state physics.

Eq. (1) represents so called one-photon photoelectric effect, which is valid for very
weak electromagnetic waves. At present time of the laser physics, where the strong
electromagnetic intensity is possible, we know that so called multiphoton photoelectric
effect is possible (Delone et al., 1999). Then, instead of equation (1) we can write

h̄ω1 + h̄ω2 + ...h̄ωn =
mv2

2
+W. (2)

The time lag between the incidence of radiation and the emission of a photoelectron
is very small, less than 10−9 seconds.

The ejected electron has the final plane wave

ψq =
1√
V
eiq·x, q =

p

h̄
, (3)

where p is the momentum of the ejected electron.
The probability of the emission of electron by the electromagnetic wave is of the well-

known form (Davydov, 1976):

dP =
e2p

8π2ε0h̄mω

∣∣∣∣∫ ei(k−q)·x(e · ∇)ψ0dxdydz

∣∣∣∣2 dΩ = C|J |2dΩ, (4)

where the interaction for absorption of the electromagnetic wave is normalized to one
photon in the unit volume, e is the polarization of the impinging photon, ε0 is the dielectric
constant of vacuum, ψ0 is the basic state of an atom. We have denoted the integral in ||
by J and the constant before || by C.
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2 Electrons in magnetic field

Let us consider the case with electrons in magnetic field as an analog of the Landau
diamagnetism. So, we take the basic function ψ0 for one electron in the lowest Landau
level, as

ψ0 =
(mωc

2πh̄

)1/2
exp

(
−mωc

4h̄
(x2 + y2)

)
, (5)

which is solution of the Schrödinger equation in the magnetic field with potentials
A = (−Hy/2,−Hx/2, 0, ), (Drukarev, 1988):[

p2x
2m

+
p2y
2m

− m

2

(ωc

2

)2
(x2 + y2)

]
ψ = Eψ. (6)

We have supposed that the motion in the z-direction is zero and it means that the
wave function exp[(i/h̄)pzz] = 1.

So, the main problem is to calculate the integral

J =

∫
ei(K·x)(e · ∇)ψ0dxdydz; K = k− q. (7)

with the basic Landau function ψ0 given by the equation (5).
Operator (h̄/i)∇ is Hermitean and it means we can rewrite the last integrals as follows:

J =
i

h̄
e ·
∫ [(

h̄

i
∇
)
ei(K·x)

]∗
ψ0dxdydz, (8)

which gives

J = ie ·K
∫
e−i(K·x)ψ0dxdydz, (9)

The integral in eq. (9) can be transformed using the cylindrical coordinates with
dxdydz = ϱdϱdφdz, ϱ2 = x2 + y2, which gives for vector K fixed on the axis z with
K ·x = Kz and with physical condition e ·k = 0, expressing the physical situation where
polarization is perpendicular to the direction of the wave propagation. So,

J = (i)(e · q)
∫ ∞

0

ϱdϱ

∫ ∞

−∞
dz

∫ 2π

0

dφe−iKzψ0. (10)

Using

ψ0 = A exp
(
−Bϱ2

)
; A =

(mωc

2πh̄

)1/2
; B =

mωc

4h̄
, (11)

the integral (10) is then

J = (−πi)A
B
(e · q)

∫ ∞

−∞
e−iKzdz = (−πi)A

B
(e · q)(2π)δ(K). (12)

Then,

dP = C|J |2dΩ = 4π4A
2

B2
C(e · q)2δ2(K)dΩ. (13)
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Now, let be the angle Θ between direction k and direction q, and let be the angle Φ
between planes (k,q) and (e,k). Then,

(e · q)2 = q2 sin2Θcos2 Φ. (14)

So, the differential probability of the emission of photons from the graphene (Pardy,
2010) in the strong magnetic field is as follows:

dP =
4e2p

πε0m2ωωc

[
q2 cos2 Θsin2Φ

]
δ2(K)dΩ; ωc =

|e|H
mc

. (15)

We can see that our result differs form the result for the original photoelectric effect
which involves still the term

1

(1− v
c
cosΘ)4

, (16)

which means that the most intensity of the classical photoeffect is in the direction of the
electric vector of the electromagnetic wave (Φ = π/2,Θ = 0). While the nonrelativistic
solution of the photoeffect in case of the Coulomb potential was performed by Stobbe
(1930) and the relativistic calculation by Sauter (Sauter, 1931), the general magnetic
photoeffect (with electrons moving in the magnetic field and forming atom) was not still
performed in a such simple form. The delta term δ · δ represents the conservation law
|k− q| = 0 in our approximation.

So, we have calculated only the process which can be approximated by the Schrödinger
equation for an electron orbiting in magnetic field.

3 Photon with the radiative correction

The photoeffect with the dressed photon is the process, where the dressed photon is taken
with the radiative correction in the form of the virtual electron-positron pair.

We have shown that such approach to the photon leads to the modification he photon
propagator. According to Dittrich (1978) and Schwinger (1973), the photon propagator
with radiative correction is in the momentum representation of the form:

D̃(k) = D(k) + δD(k), (17)

or,

D̃(k) =
1

|k|2 − n2(k0)2 − iϵ
+

+

∫ ∞

4m2

dM2 a(M2)

|k|2 − n2(k0)2 + M2c2

h̄2 − iϵ
, 18)

where the last term in equation (18) is derived on the virtual photon condition

|k|2 − n2(k0)2 = −M
2c2

h̄2
, (19)

where n is the index of refraction of the medium. The weight function a(M2) has been
derived in the following form (Dittrich, 1978; Schwinger, 1973):
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a(M2) =
α

3π

1

M2

(
1 +

2m2

M2

)(
1− 4m2

M2

)1/2

. (20)

The x-representation of D(k) in eq. (18) is as follows:

D+(x− x′) =

∫
(dk)

(2π)4
eik(x−x′)D(k). (21)

Or,

D+(x− x′) =

∫
(dk)

(2π)4
eik(x−x′)

|k2| − n2(k0)2 − iϵ
=

=
i

c

1

4π2

∫ ∞

0

dω
sin nω

c
|x− x′|

|x− x′|
e−iω|t−t′|. (22)

Now, with regard to the definition of x-representation (21) and (22) of the D+(x−x′),
we get the x-representation of the δD+ in the following form:

δD+(x− x′) =
i

c

1

4π2

∫ ∞

4m2

dM2a(M2)×

×
∫

dω
sin[n

2ω2

c2
− M2c2

h̄2 ]1/2|x− x′|
|x− x′|

e−iω|t−t′|. (23)

The function (23) differs from the the original function D+ especially by the factor

γ =

(
ω2n2

c2
− M2c2

h̄2

)1/2

(24)

and by the additional mass-integral which involves the radiative corrections to the original
photon processes. It was easily shown in case of the Čerenkov effect by author (Pardy,
1994).

So, to involve the photoelectric effect with the dressed photon with electron positron
pair we replace the wave function of photon exp(ik · x) by the function involving the
radiative correction factor as follows:

eik·x →
∫ ∞

4m2

dM2a(M2)eiκ·x, (25)

where κ · x = γ|k||x| cosφ.
The probability of the emission of electron by the electromagnetic wave is given by

eq. (4).
So, the main problem is to calculate the integral

J =

∫
ei(κ·x)(e · ∇)ψ0dxdydz; K = κ− q. (26)

with the basic Landau function ψ0 given by the equation (5).
Then, the differential probability of the emission of photons from the plane in the

strong magnetic field is as follows:
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dP =
4e2p

πε0m2ωωc

∫ ∞

4m2

dM2a(M2)
[
q2 cos2Θsin2 Φ

]
δ2(K)dΩ; ωc =

|e|H
mc

. (27)

We can see that our result differs form the result (15) by the mass term and by the
argument in the δ-function. The delta term δ ·δ represents the conservation law |κ−q| = 0
in our approximation. The dressed photon was here considered as the photon composed
from the electron-positron pair. It is not excluded that the photoelectric experiments with
the dressed photon is related to the experiments with the Vavilov-Cherenkov phenomenon
in metal nanofilms (Pardy, 2007, 2010, 2011; Zuev, 2009).

4 The specific heat form of the photo-electric effect

with the Debye crytal

It is well known that the Einstein approach the photoelectric effect is today considered as
the product of the naive thinking. More realistic approach is one, where the work function
is replaced by the thermal characteristic of medium under irradiation by photons. So we
replace the old Einstein equation (1) by the following one:

h̄ω =
mv2

2
+ CV∆T, (28)

where CV is the specific heat of medium and ∆T is the the change of temperature which
gives the information of the interaction of the energy of moving electron with the medium.
In other words, the energy loss of electron in medium is detected by the temperature state
of the crystal.

We know, that in case of the tree-dimensional crystal medium the term CV is givem
by the Debye formula (Debye, 1912a; 1912b):

CV = 3Nk

∫
dωϱ(ω)

(
h̄ω

2kT

)2(
sinh

h̄ω

2kT

)−2

, (29)

where ϱ(ω) is the density of states with the frequency ω.
In case of the two-dimensional crystal, it is possible to show that the term CV is as

follows

CV =

(
∂U

∂T

)
V

, (30)

where U is obtained by calculation in the form (Rumer et al., 1977):

U =
4

3
Nθ

(
1 + 3

(
T

θ

)3 ∫ θ/T

0

x2dx

ex − 1

)
, θ = h̄ω

(
N

πσ

)1/2

, (31)

where σ is the area of the crystal.
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5 The specific heat form of the photo-electric effect

with the Wigner crystal

A Wigner crystal is the solid (crystalline) phase of electrons (Wigner, 1934). A gas of
electrons moving in neutralizing background crystallize and form a lattice if the electron
density is less than a critical value. In this case the potential energy dominates the
kinetic energy at low densities, so the detailed spatial arrangement of the electrons
becomes important. To minimize the potential energy, the electrons form a body-
centered cubic lattice in 3D, a triangular lattice in 2D and an evenly spaced lattice
in 1D. Most experimentally observed Wigner clusters exist due to the presence of the
external potential trap. A crystalline state of the 2D electron gas can also be realized
by applying a sufficiently strong magnetic field. However, it is still not clear whether
it is the Wigner-crystallization that has led to observation of insulating behavior in
magnetotransport measurements on 2D electron systems, since other candidates are
present, such as Anderson localization. More generally, a Wigner crystal phase can be
occurring in non-electronic systems at low density. In contrast, most crystals melt as the
density is lowered (Wigner, 1934).

The specific heat of such medium was derived by Usov et al. (1980) in the case of a
strong magnetic field ωc ≫ ωp, where ωc is the cyclotron frequency and ωp is the plasma
frequency of the Wigner crystal . The Debye temperature of a Wigner lattice in the
absence of a magnetic field is θ ∼ h̄ωp (Usov et al., 1980).

In the Debye approximation, the specific heat of the system formed by the Wigner
lattice was obtained as follows (Usov et al., 1980):

CV ∼ N

V

(
Th̄ωc

θ2

)∫ θ2/T h̄ωc

0

x3/2exdx

(ex − 1)2
. (32)

Thus at T ≤ θ2/h̄ωc, where ωc is the cyclotron frequency, the specific heat of the
system CV is ∼ T 3/2B3/2, B being the magnetic induction (Usov et al., 1980). Carr has
shown that the Debye temperature of a WL in the absence of a magnetic field is θ ∼ h̄ωp

(Carr, Jr., 1961).

6 Discussion

The photoelectric effect is the integral part of the more general effect of the interaction
of photons with the noncrystalline and crystalline medium. The starting point of the
problem by author is the author diploma work (Pardy, 1965).

Of course, from the historical point of view, the starting point of interaction of light
with matter is the Newton Optics (Newton, 1704), where he introduced the light as the
system of photons interacting with medium composed from the Gassendi atoms.

Newton proposed that light was composed of corpuscles that traveled in straight lines.
That worked fine for reflection, because the bouncing of either particles or waves off
a planar surface follows the same law of reflection. But to explain refraction, he had
to presume that the particles traveled faster in a more optically dense material. But
Foucault’s 1850 experiment showed that light traveled more slowly in such media, so that
version of a particle theory of light had to be set aside.

Nevertheless, the Newton photo-atomic equation is as follows:
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Energy(photon) = Energy(atom) + Energy(loss of atom in medium) (32)

Let us remark that the last equation (32) was never published by Isaac Newton.
The Einstein formula was published after some centuries in the naive form:

h̄ω =
mv2

2
+W, (33)

where W is the work function.
The experimental form of the photoelectric equation with the large application in the

solid state physics, superconductivity, astrophysics, condensed matter physics, gas physics
and so on, is given here by our equation

h̄ω =
mv2

2
+ CV∆T, (34)

where CV is the specific heat at the constant volume of solid crystals, condensed matter
and liquids. The most interesting case is the application of the equation for the Wigner
crystal. It is not excluded that our equation (34) will play the substantial role in
the modern physics, cosmology, quantum chemistry and the quantum biophysics of
photosynthesis.
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