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Abstract

Recent analysis of the ”Relativistic Ring” problem [1]. revealed that
its angular momentum features a ”paradox” maximum at circumferential
velocity ≈ 0, 24 c declining to near zero with increasing velocity. This
apparent ”paradox” can be resolved by a new approach based on simu-
lated high external forces up to the ”Weak Energy Limit” in a low ve-
locity regime 0 < v << c. Simulations comprise a ”Relativitic Rod” in
uniform translational motion subjected to a pair of mutually opposed ex-
ternal forces and a pressurized ”Relativistic Ring”. If the external forces
simulate centrifugal force on a ”Relativitic Rod” its canonical momen-

tum features a maximum at velocity v̂ =
√

2
3
c being analogue to the

maximum canonical angular momentum of a RR. Remarkably, rotational
velocity of a pressurized ”Relativistic Ring” can be modulated by varia-
tion of pressure - at constant canonical angular momentum.

1 Introduction

The ”Relativistic Ring” (RR) paradox is a simplified version of famous ”Ehren-
fest Paradox” (EP) [2]. The EP was to demonstrate that the classical notion
of a rigid-body and Euclidean metric were untenable in relativistic mechanics
thus attracting substantial attention in the early days of relativity, presum-
ably inspiring Einstein in his formulation General Relativity. Initially, the RR
problem focused on the change of the radius of a rotating RR with increasing
rotational velocity. [2]. A frequent source of confusion is that a rotating RR is
subjected to the combined effects of various critical issues like centrifugal and
Coriolis-forces, Lorentz-factors, non-Euclidian metrics, a non-inertial frame of
reference and speculative hypothesis of rigidness. It will be revealed that a key
issue of the RR angular momentum paradox is the decline of moment of iner-
tia with increasing velocity finally vanishing at the Weak- Energy Limit (WEL).

https://www.gregegan.net/SCIENCE/Rings/Rings.html
https://en.wikipedia.org/wiki/Ehrenfest_paradox
https://www.nature.com/articles/234399a0#Abs1
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2 Methodology

The new approach focuses on determination, isolation and simulation of crucial
factors and their particular effects on canonical angular momentum and moment
of inertia of a RR, unbiased by their combined effects and interactions.
As centrifugal force is a key issue of apparent RR paradoxes the analysis simu-
lates the effects of centrifugal force by two methods:

a) A ”Relativistic Rod” in slow uniform motion subjected to a pair of mutually
opposed external forces ±F in proportion to the square of velocity acting on its
leading and trailing faces.
b) Frictionless isostatic pressure acting on a slowly rotating RR.

For the sake of brevity, clarity and instructiveness most of the analysis will be
restricted to a low velocity domain (v/c0 ≈ 0, dt′/dt ≈ 1 and Lorentz-factors
≈ 1) without introducing any significant error. It will be shown why the relevant
entity is canonical angular momentum, instead of kinetic angular momentum.

3 Hypothesis of rigidness

It is clear from the outset that elasticity, compressibility, mass-density and other
material characteristics are crucial for the characteristics of a RR. For the sake
of simplicity and instructiveness the ”Highest Relativistically Compatible Rigid-
ness” (HRCR) conjectured in [2]. [3]. will be used.
HRCR corresponds to a linear-elastic (Hooke’s) law in accordance with Young’s
modulus λ = ρ0c

2 where ρ0 is mass density [2]..
HRCR satisfies the following essential requirements:

3.1 Weak Energy Limit

The ”Weak Energy Limit” (WEL) reflects the ultimate relativistically permitted
force-density or stress transmittable by an object of mass-density ρ0.
Consequently for a rigid body

ŵ = ρ0c
2 = T00c

2 = −T11 (1)

where ŵ = ρ0c
2 is peak energy density, ρ0 = T00 mass-density, T11 a main-axis

(normal) component of the stress-energy-momentum 4-tensor Tik.

3.1.1 Velocity of sound

In a linear-elastic material with Young’s modulus λ the velocity of sound is
c =

√
λ/ρ0. For HRCR any disturbance must propagate with c thus λ = ρ0c

2.

https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/relativistically-rigid-rod/40384A04440555E8D3D1152F085E5C2B
https://https://link.springer.com/article/10.1007/s10714-014-1816-x
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/relativistically-rigid-rod/40384A04440555E8D3D1152F085E5C2B
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3.1.2 Extensibility

The WEL can also be met by any material of Young’s modulus λ < ρ0c
2 pro-

vided its extensibility allows for an expansion factor ε sufficiently large to satisfy
the condition λε ≥ ρ0c

2.

3.2 Inertial frames of reference

S will denote a laboratory inertial frame with coordinates x,t, and S′ an inertial
frame moving with |vx| = |v| throgh S along the x-axis with coordinates x’, t’
where x′ ‖ x.
Generally, index ”0” will denote an initial state of an entity, index ”1” a subse-
quent changed state of that entity, like velocity, length, radius, mass or force.

4 Relativistic Rod

4.1 General

A ”Relativistic Rod” is a highly instructive analogue model of a RR differ-
ing from a RR in that it is in slow uniform translational motion v devoid of
acceleration and inertial forces. Thus it enables to circumvent the analytical
complexities related to relativistic formulation of centrifugal and Coriolis forces
as well as a non-inertial frame of reference.
Instead, the effect of centrifugal force in a RR is simulated by a pair of mutually
opposed external drawing forces ±F ∝ v2 each of them acting on the leading
and trailing faces of a ”Relativistic Rod” - their magnitude increasing with the
square of velocity like centrifugal force.
For the sake of clarity and instructiveness, the issues of elastic expansion and
expansion energy-mass-inertia will only be considered where a substantial effect
would alter a result.

4.2 Lagrangian of a Relativistic rod

For a relaxed ”Relativistic Rod” (±F = 0) and v << c : Proper-length l0 ≈ l
and proper-mass M0 ≈M .

The Lagrangian L = wk −wp of an object moving with velocity v through S is
the difference among its kinetic wk and potential energy wp. For a rod of length
l and mass M subjected to a pair of external forces ±F :

L ≈ Mv2

2
− Flv2

2c2
(2)
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4.3 Canonical Momentum of a Relativistic Rod

Canonical Momentum of a.m. ”Relativistic Rod” results from an Euler-Lagrange
transformation of (2):

P ≈ v(M − Fl

c2
) (3)

The term Flv/c2 in (4) reflects the momentum assignable to the passive me-
chanical energy flux Fv corresponding relativistic momentum flux Fv/c2 from
the leading (A) to the trailing face (B) of the rod. (Note that the term in brack-
ets in (3) can be interpreted as the inertia of a ”Relativistic Rod” subjected to
±F .)

4.3.1 Canonical Momentum of a ”Relativistic Dipole”

A ”Relativistic Rod” can most instructively be imagined as an electric dipole
p = ql comprising a pair of charges ±q kept at distance l moving through an
electrostatic potential field Φ(x). Such dipole is subjected to a pair of forces
±F = ±q∇Φ corresponding to a potential difference p∇Φ = Fl among its lead-
ing and trailing charges±q. [5].

The Lagrangian of an electric dipole is

Lq ≈
Mv2

2
− ql∇Φv2

2c2
(4)

Canonical momentum Pq of a dipole results from an Euler-Lagrange transfor-
mation of (4):

Pq ≈ v(M − p∇Φ

c2
) (5)

If such dipole was in uniform motion with ~v ‖ ~∇Φ its leading charge would per-
manently absorb external field energy flowing backwards through the rod to be
released into the potential field throgh the trailing charge at distance l. In result
relativistic field energy/mass of Φ is permanently offset backwards through the
moving dipole corresponding to relativistic momentum-flux g = −p∇Φv

c2 through
the rod.

4.3.2 Variation of external force at constant canonical momentum

This is to determine how variable of external forces ±F would affect the velocity
v of a ”Relativistic Rod” if its initial canonical momentum P0 remained con-
served. Imagine a rod of proper length l0 ≈ l aligned parallel to the x− axis, in
uniform motion through S with velocity v << c along the x− axis. At a given
instant in S a pair of mutually opposed forces ±F begins to act simultaneously
in S at (A) and (B). The task is to determine how the simultaneous incidence
of forces ±F in S (∆t = 0) transforms into non-simultaneous incidence in S’ by

https://ui.adsabs.harvard.edu/abs/1988AmJPh..56..795R/abstract
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a time-interval ∆t′ 6= 0 given by a Lorentz-transformation:

∆t′ ≈ vl0
c2

(6)

As the pair of forces ±F is initiated simultaneously (∆t = 0) in S no retroactive
momentum can be transferred from S′ to S during this event i.e. ±F∆t = 0.
However in S′ force +F acting on (A) begins to act by time shift ∆t′ before the
force −F at (B) begins to act in opposed direction establishing a new equilib-
rium of forces in the rod.

In result the non-simultaneous incidence of ±F in S’ on the rod changes its
kinetic momentum by

∆p′ = F∆t′ =
Fvl

c2
(7)

Note that ∆p′ is identical with the relativistic momentum assignable to the
passive energy-momentum-flux from A to B −Fv/c2 - opposed to v - which
reflects conservation of canonical momentum in S and S′. Recall that forces
acting parallel to ~v i.e. ±~F ‖ ~v are identical in S and S’ thus F ′x = Fx.
For 0 < v << c and dt′/dt ≈ 1 the approximation ∆p′ ≈ ∆p ≈ Fvl0/c

2 can be
used without introducing any substantial error.

4.4 Conservation of canonical momentum

P0 = M0v0 is the initial (constant) canonical momentum of a relaxed ”Rela-
tivistic Rod” (±F = 0) of mass M ≈ M0 moving with v0 << c through S,
and P1 its canonical momentum after being subjected to external forces ±F .
Then conservation of canonical momentum requires P0 = P1 = const. Ac-
cordingly the right side of (3) → (Mv − Flv/c2) must remain unchanged for
any incremental change ∆p = Flv/c2. Consequently an incremental change of
kinetic momentum M∆v = M(v1 − v0) is required to counterbalance ∆p i.e.
M∆v = −Flv/c2. This implies that both incremental changes are interlaced by
a reactive principle. The task thus is to determine velocity v1 as a function of
v0 after the incidence of ±F on the rod.

Conservation of canonical momentum requires P1 = P0 = Mv0:

P1 = Mv1 −
Flv1

c2
= Mv0 (8)

yielding

v1 =
v0

1− F
mc2

(9)

where m = M/l. Note that for F = mc2 in (9) a singularity would exist. (9)

also implies an upper limit of expansion ε̂ = ∆̂l/l = 1 demarked by the WEL.
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It can further be concluded that relativistic inertia (Mv − Flv/c2) of a ”Rela-
tivistic Rod” declines with increasing forces ±F and would vanish at the WEL
F̂ = mc2.

Consideration of expansion energy-mass in (9) - based on Hooke’s law with

Young’s modulus k̂ = mc2- would lead to a relativistic mass-increment ∆M ≤
0, 5M0. However at the same instance the length l0 of the ”Relativistic Rod”
would expand to l1 = 2l0 counterbalancing any effect of mass-increase ∆M on
v1.

4.5 Simulation of Centrifugal Force

Let a ”Relativistic Rod” of mass M0 and length l0 be steadily accelerated up to
velocity v̂, while at the same time an external pair of forces acts on the ”Rela-
tivistic Rod” with magnitude ±F1 ∝ v2 thus simulating centrifugal force. The
task is to determine the velocity v̂1 at which peak canonical momentum P̂1 is
achieved.

In this section: Lorentz-factor γ = (1− v2/c2)
−1/2 ≈ 1 + v2

2c2 will apply.

±F1 = ±αv2
1 (10)

M1 = γ1M0 (11)

Following (8)

P1 == γ1M0v1 −
αv3

1l0γ
−1
1

c2
(12)

A relative maximum P̂1 at v̂1 in (12) is determined by dP1/dv1 = 0:

dP1

dv1
= γ1M0 −

3αl0v
2
1

c2
= 0 (13)

v̂1
2 ≈ c2 γ1M0

3αl0
(14)

For α = M0/l0

v̂1
2 ≈ c2 γ1

3
(15)

For γ1 ≈ 1 +
v21
2c2 and dγ1

dv ≈ 0

v̂1 ≈
√

2

3
c (16)

The force ±F corresponding to v̂1 would be 2
3m0c

2 thus 2/3 of the WEL - which
would be reached at v1 = c.
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5 Pressurized ”Relativistic Ring”

This is to demonstrate why and how a key issue of RR paradoxes is the decline
of its relativistic moment of inertia with increasing centrifugal force. The issue
of centrifugal force and angular momentum of a RR in a high velocity regime is
a frequent source of complexities and confusion which however can be circum-
vented in a low velocity regime v << c by substitution of centrifugal force with
equivalent isostatic (non-rotating) frictionless (perfect) fluid pressure like in a
rotating pressure-vessel. Recall that isostatic pressure is Lorentz-invariant and
always acts perpendicular to the local (tangential) velocity of a RR section, like
centrifugal force.

5.1 Relativistic Moment of Inertia of a pressurized RR

5.1.1 Pressurization at rest

This is to demonstrate that if centrifugal force is substituted by isostatic pres-
sure any desired variation of its moment of inertia can be induced by variation
of pressure/force without affecting its canonical angular momentum, at any ve-
locity 0 ≤ v << c. The first task thus will be to determine a relationship among
pressure/force and moment of inertia of a RR at rest. The analysis is restricted
to the axis of rotation (z-axis in the centroid, perpendicular to the plane of the
RR).

Let: M0 ≈ M1 ≈ M → mass, m0,m1 → mass per unit length, Θ0
Cl = Θ0 →

classical moment of inertia of a relaxed RR at rest and θ1 → moment of in-
ertia of a RR at rest expanded to radius r1 corresponding to expansion-factor
ε = r1 − r0/r0 i.e. r1 = r0(1 + ε).

θ0 = M0r0
2 = 2πm0r0

3 (17)

θ1 = M1r1
2(1− F12πr1

M1c2
) = M1r1

2(1− F1

m1c2
) (18)

where F1 → pressure-induced force, m1 = M1/2πr1.

Hence
Θ1 = M1r1

2(1− ε) = 4θ0(1− ε) (18.a)

Classically (for k << mc2) and r1 = 2r0 → r1
2 = 4r0

2 the moment of inertia
of an expanded ring would be Θ1

Cl = 4Θ0
Cl. For the highest relativistically

compatible Young-modulus k̂ = mc2 at expansion-factor ε = 1 the ultimate
force F̂1 = k̂ε̂ = m1c

2 corresponds to the WEL thus in (18, 18.a) Θ1 = 0.
Consequently a RR subjected to F̂1 can’t embody angular momentum and would
acquire characteristics analogue to those of a toroidal magnetostatic field.
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5.1.2 Mass-equivalent of elastic expansion-energy

If a linear-elastic law of force during expansion of a RR with Young’s modulus
k̂ = mc2 was hypothesized the expansion-energy-mass equivalent at ε = 1 would
be M ′ = 0, 5M0 thus its total inertial mass 3/2M0. If elastic expansion-energy-
mass equivalent was considered in (18, 18.a) with M ′ = 3/2M0

Θ1
′ =

3

2
M0r1

2(1− ε) = 6θ0(1− ε) (18.b)

Nonetheless Θ1 would vanish during pressurization at ε = 1.

5.2 Reactive Acceleration of a RR

This is to determine the counteracting effects of reactive acceleration and Cori-
olis deceleration on velocity during elastic expansion of a RR of HRCR, if an
initially given canonical angular momentum LC0 remains conserved, with con-
sideration of the decline of its moment of inertia.

Definitions and Abbreviations in this section:

LC0 = Θ0ω0 Initial angular momentum of a relaxed RR
LC1 = Θ1ω1 Angular momentum of an expanded RR
Θ0 = Moment of inertia of a relaxed RR
Θ1 = Moment of inertia of an expanded RR
Θ1
′ = Moment of inertia of an expanded RR including expansion-energy-mass

ω0 = Angular velocity of a relaxed RR
ω1 = Angular velocity of an expanded RR
r0 = Radius of a relaxed RR
r1 = Radius of an expanded RR
v0 = ω0r0 = Circumferential velocity of a relaxed RR
v1 = ω1r1 = Circumferential velocity of an expanded RR
M0 = inertial mass of a relaxed RR
Mel = Mass-equivalent of elastic expansion-energy
M1 = M1 +Mel inertial mass of an expanded RR
m0 = M0/2πr0 = peripheral mass density of a relaxed RR at r0

m1 = M1/2πr1 = peripheral mass density of an expanded RR at r1

Imagine an initially relaxed RR of radius r0 and mass M0 freely rotating in its
own plane with initial tangential velocity v0 = ω0r0 << c and initial canonical
angular momentum LC0 = Θ0ω0.

Classically, if that ring was elastically expanded from r0 to r1 = 2r0 at constant
angular momentum its circumferential velocity would decelerate to v1 = 0, 5v0,
due to angular momentum conservation or the Coriolis effect.
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This is to determine the change of rotational velocity from v0 = ω0r0 to v1 =
ω1r1 caused by the decline of moment of inertia from θ0 to θ1 during elastic
expansion as a function of pressure-induced force F1, for constant canonical an-
gular momentum, i.e. LC0 =LC1.

Let LC0 = M0r0 × v0 → initial canonical angular momentum of a relaxed RR of
radius r0 and v0 = ω0r0 → initial tangential velocity. During elastic expansion
a force F1 emerges in the RR and causes a decline of its moment of inertia in
accordance with (18a).

Canonical angular momentum LC1 of a RR expanded from radius r0 to radius
r1 and periphery l1 = 2πr1 subjected to force F1

LC1 = M1(r1 × v1)(1− F1l1
M1c2

) = LC0 (19)

Substitution in (19): l1 = 2πr1 , M1 = 2πr1m1 yields

LC1 = 2πr1m1(r1 × v1)(1− F1

m1c2
) = LC0 = M0r0v0 (19.a)

v1 = v0
r0

r1
(1− F1

m1c2
)−1 (20)

v1 = v0
r0

r1
(1− ε1)−1 (20.a)

Note in (18) that for F1 = 0 and λ = 0 the classical expression of Coriolis-effect
results.

For HRCR → F̂1 = k̂ε1 = m1c
2ε1 and for ε̂1 = 1 → F̂1 = m1c

2 represents the
WEL.

As (20.a) is analogue to (9) a potential singularity at the WEL: ε1 = 1 does exist.

6 Summary and Conclusions

The new approach to the RR paradox is a first draft characterized by restriction
to a low-velocity (v << c) - high external force regime, including standstill. It
is revealed that apparent RR paradoxes result from a decline of moment of in-
ertia with increasing force/expansion, up to the WEL. The analysis starts with
a ”Relativistic Rod” in uniform motion at constant canonical momentum, sub-
jected to a pair of mutually opposed external forces. If the magnitude of such
pair of forces would increase with the square of velocity - like centrifugal force

- its canonical momentum featured a maximum at velocity v̂ =
√

3
2 c- vanishing
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at the WEL.

For the sake of simplicity and instructiveness a linear-elastic material charac-
teristic with Young’s modulus k = mc2 - satisfying the criteria for highest
relativistically compatible rigidness (HRCR) - is hypothesized.

Centrifugal force is analytically simulated by frictionless isostatic pressure act-
ing on a RR without affecting its canonical angular momentum. Analysis reveals
a steady decline of relativistic moment of inertia with increasing pressure/force
- vanishing at the WEL.

If a slowly rotating RR (v << c) of HRCR is elastically expanded by pressur-
ization at constant canonical angular momentum its velocity increases due to
the decline of its moment of inertia with increasing pressure, outpacing Coriolis-
deceleration up to the WEL.

It can be concluded that the crucial issue of apparent RR paradoxes is the de-
cline of its relativistic moment of inertia with increasing centrifugal force - being
caused by passive energy-momentum circulation increasing with the 3rd power
of velocity.
Any hypothetical material of HRCR would however be unrealistic as long as no
adequate quantum field theory exists.

The issue of energy conservation will be subject of a follow-up article.
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