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Abstract 

The word space is used in many ways and most of these applications 

give this word a different meaning. This makes the notion of space very 

obscure. Already in the common life of humans takes the word space 

many different uses. Especially philosophers, mathematicians, and 

physicists have attributed a huge number of interpretations of the noun 

“space”. This has led to a huge number of different forms of space. 

Humans live in an environment that is characterized by space and time. 

This paper focuses on the most elemental meanings that 

mathematicians and physicists attribute to the word “space”. Next, the 

immediate extensions of this elementary space are investigated. Since 

physicists investigate our physical reality, the paper also investigates 

how physical reality treats the notion of space. 

1 Mathematics versus reality 

Mathematicians are humans and therefore they need names or symbols 

and extensive descriptions and recipes of the notions that they use. 

Without these linguistic extensions, for humans, mathematics would be 

unworkable. Physical reality does not require these additions. Reality 

does not use manuals or handbooks. Reality just applies the bare 

concepts. Still, it must obey the rules that are set by the structures and 

recipes. Physical reality does not intelligently obey rules. Probably, 

reality uses the trial-and-error approach. But that means that this 

approach must be efficient enough. The structures and mechanisms 

that reality applies must guide their usage automatically. Simple 

structures must automatically emerge into more complicated structures 
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that offer restrictions that guide their usage. Mechanisms must limit the 

ways that they can be accessed. 

In mathematics, spaces exist in many forms, and in combination with 

mechanisms they constitute dynamic systems. We will investigate these 

spaces and mechanisms to explain how these bare ingredients can 

successfully constitute dynamic systems.  

The elemental spaces must emerge into more complicated spaces and 

the capabilities of these extensions must become automatically 

accessible.  

The restrictions that go together with the extension of the model limit 

the structures and mechanisms that reality applies. This limits the part 

of mathematics that is suitable for comprehending the lower levels of 

the structure and behavior of physical reality. This does not imply that 

the current state of humanly developed mathematics covers all aspects 

of these lower levels.  The lower levels of the structure and behavior of 

physical reality still contain incomprehensible mysteries. One of them is 

formed by the origin of the stochastic processes that control part of the 

dynamics of physical reality. 

2 Vector space 

In human mathematics, space is not a well-defined concept. A vector 

space is considered as a quite elemental form of space. It is a set of 

points, vectors, and scalars. The points can be connected by vectors. 

The scalars can be added and multiplied with other scalars. The vectors 

can be scaled via multiplication with a scalar. The vectors own a 

direction and a length. A parallel shift of the vector does not change the 

vector. Vectors can be added by shifting them such that the endpoint of 

the first vector coincides with the start point of the other vector. The 

start point of the first vector and the endpoint of the second vector 

form the sum vector. Another name for vector space is linear space. In 
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mathematics, many notions of space are extensions of an elemental 

vector space. 

3 Real numbers 

Simple scalars can be used to count objects. Together the counts form 

the natural numbers. If no objects exist in a set, then the count gets a 

special symbol that humans call zero. A shortage can be indicated by a 

negative count. Together with zero the negative counts and the natural 

numbers form the integer numbers. 

The counting also introduces the possibility to sequence scalars. Scalars 

can be attached to points. This enables the division of a vector into 

parts. The lengths of these fractions introduce the rational scalars. In 

this way, any location on a vector direction line can be approached 

arbitrarily close.  The direction line can also give place to scalars that 

cannot be interpreted as a fraction. Humans call these scalars irrational. 

The combination of the rational scalars and the irrational scalars form 

the set of what humans call the real numbers. The set of irrational 

numbers cannot be counted. The real scalars form a vector space in 

which only one vector has a unit length.  

In the real number space, division by a scalar is defined for all scalars 

that are not identical to zero.  

4 Complex numbers 

In the real number space, the product of a scalar with itself is defined 

for all scalars. However, this procedure cannot be reversed for negative 

scalars. To enable the reverse procedure a second vector must be 

introduced that will carry the square roots of the negative scalars. The 

two normed vectors are independent and join at the location of point 

zero. The resulting number space contains what humans call complex 

numbers. Humans call the square roots of negative numbers the 
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imaginary part of the complex number. Some people consider this 

qualification confusing because ‘imaginary’ also has other meanings. 

The complex number space is constituted of two different vector 

spaces. In one of the two vector spaces, arithmetic is defined that also 

holds for real numbers. In the other vector space, the product of the 

vectors is given by different arithmetic. In number theory, the 

qualification ‘imaginary’ indicates that the number obeys different 

arithmetic than real numbers do. 

5 Arithmetic for multiple dimensions 

In mathematics, a field is a set on which addition, subtraction, 

multiplication, and division are defined and behave mostly as the 

corresponding operations on rational and real numbers do. Division 

rings differ from fields only in that their multiplication is not required to 

be commutative. 

Number systems can contain several independent vectors. Along the 

direction of one of these vectors, the real numbers are arranged. The 

other dimensions obey a different kind of arithmetic. This invites to 

divide the numbers into two parts, a real scalar part, and an imaginary 

spatial part. We will use boldface to indicate the spatial part and we will 

indicate the scalar part with suffix ᵣ. 

Thus, the number a will be represented by the sum a=aᵣ+a. This means 

that the product c=a b of two numbers a and b will split into several terms 

c =cᵣ+c = a b = (aᵣ+a) (bᵣ+b) = aᵣ bᵣ +aᵣ b + a bᵣ + a b 

The product d of two spatial numbers a and b results in a real scalar part 
and a new spatial part 

d =dᵣ+d = a b  

dᵣ = −〈a,b〉 is the inner product of a and b 

d = a × b is the outer product of a and b 
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The spatial vector d is independent of a and independent of b. This means 
that 〈a,d〉=0, and 〈b,d〉=0   

For the inner product and the norm, ∥a∥ holds 〈a,a〉 = ∥a∥² 

Only three mutually independent spatial number parts can be involved in the 
outer product. 

These formulas still do not determine the sign of the outer product. Apart from 
that sign, the outer product is fixed. 

The product of multidimensional numbers will split into five terms. 

 c =cᵣ + c = a b ≡ (aᵣ + a) (bᵣ + b) = aᵣ bᵣ − 〈a,b〉 + a bᵣ + aᵣ b ± a×b 

Before these formulas are used, the sign of the outer product must be 
selected. 

All number systems that are associative division rings are either real 
numbers, complex numbers, or quaternions. The irrational numbers also 
obey the arithmetic that is shown above. Especially in multidimensional 
number systems, irrational numbers add stickiness to the number system. 

The conjugate a* of number a= aᵣ+a is defined by a*=aᵣ−a 

(ab)* =b*a* 

The norm ∥a∥ of a is defined by 

a a*= a*a = ∥a∥²= aᵣ²+∥a∥² 

5.1 Coordinate systems 

Multidimensional number systems exist in many versions that 

distinguish by the Cartesian and polar coordinate systems that 

sequence their elements. This sequencing determines the geometric 

symmetry and the geometric center of this version of the number 

system. 

In three spatial dimensions, the polar coordinates are called spherical 

coordinates. Cartesian coordinates can be converted into polar or 

spherical coordinates. Also, the reverse conversion exists. 
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The number system is mapped onto the underlying elemental vector 

space. The map offers much freedom to the corresponding sequencing 

procedure. For example, the enumeration of the Cartesian coordinates 

along the separate axes can be reversed on each of the axes. Also, the 

geometrical center of the coordinate system can be selected. The axes 

must be mutually independent, but further, the directions of the spatial 

axes can be selected freely. The final choice determines the geometric 

symmetry and the geometric center of the number system. 

Vector spaces that are equipped with an inner product are called 

Euclidean spaces. The existence of a uniquely defined outer product is 

not required for Euclidean space. 

6  Map of vector space 

If two vector spaces have the same number of mutually independent 

vectors, then they have the same dimension. This enables constructing 

a map of the first vector space onto the second vector space. This map 

introduces relations between the original vectors and their maps. It is 

possible to map a vector space onto itself.  In that case, one of the 

relations is called the inner product, and the vector space is called the 

inner product space. This naming is confusing because this inner 

product differs considerably from the inner product that exists between 

spatial parts in number systems. 

The resulting inner product space features the astonishing capability 

that its maps can archive the numbers that are delivered by the inner 

product of vectors that map onto themselves. For that reason, the maps 

are also called operators. The archived numbers are called eigenvalues 

and the involved vectors are called eigenvectors. The operators manage 

the archived numbers in their eigenspaces. The inner product space is a 

direct extension of the underlying elemental vector space. 
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This investigation passes the interesting question of why vector spaces 

exist that can map onto other vector spaces or themselves and what 

activates these spaces to construct that map. This paper leaves that 

question open. A century ago a group of mathematicians discovered the 

existence of such vector spaces. 

6.1 Hilbert space 

At the beginning of the last century David Hilbert and others discovered 

this behavior of inner product spaces. John von Neumann, the assistant 

of David Hilbert introduced the name Hilbert space for inner product 

spaces that are complete. The most important aspect of Hilbert spaces 

is their capability to archive sets of numbers inside the eigenspaces of 

operators. The eigenvalues of all operators of a Hilbert space must be a 

member of a selected version of an associative division ring[2]. This 

selected version supplies the Hilbert space with a private parameter 

space that determines the geometric symmetry and the geometric 

center of the Hilbert space. This private parameter space is the natural 

parameter space of the Hilbert space. It is the parameter space of 

functions for which the target values populate the eigenspaces of a 

class of natural operators. Other operators can exist in a Hilbert space 

that manages a different parameter space of a function in their 

eigenspace. These are not natural operators.  

6.2 Bra's and ket's 

Paul Dirac introduced a handy notation for the relationship that exists 

between an original vector and its map.  This relation applies to a bra 

and a ket [1]. This section treats the case that the inner product space 

applies quaternions to specify the values of its inner products. 

The bra f   is a covariant vector, and the ket g   is a contravariant 

vector. The inner product |f g  acts as a metric. It has a quaternionic 
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value. Since the product of quaternions is not commutative, care must 

be taken with the format of the formulas.  

6.2.1 Ket vectors 

The addition of ket vectors is commutative and associative. 

 f g g f f g+ = + = +   (6.2.1) 

 ( ) ( )f g h f g h f g h+ + = + + = + +   (6.2.2) 

Together with quaternions, a set of ket vectors forms a ket vector 

space. Ket vectors are covariant vectors.  

A quaternion   can be used to construct a covariant linear combination 

with the ket vector f   

 f f =   (6.2.3) 

6.2.2 Bra vectors 

For bra vectors hold 

 f g g f f g+ = + = +   (6.2.4) 

 ( ) ( )f g h f g h f g h+ + = + + = + +   (6.2.5) 

Bra vectors are contravariant vectors. 

 *f f =   (6.2.6) 

Quaternions can constitute linear combinations with bra vectors. 

A set of bra vectors form the vector space that is adjunct to the vector 

space of ket vectors that are the origins of these maps. If the map 

images the adjunct space onto the original vector space, then the bra 

vectors may be mapped onto the same ket vector. 
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6.2.3 Inner products 

For the inner product holds 

 
*

| |f g g f=   (6.2.7) 

For quaternionic numbers   and    hold 

 ( )
**

*| | | |f g g f g f f g   = = =   (6.2.8) 

 | |f g f g =   (6.2.9) 

 
( )

( )

* *

*

| | |

|

f g f g f g

f g

   

 

+ = +

= +
  (6.2.10) 

This corresponds with (6.2.3) and (6.2.6) 

 *f f =   (6.2.11) 

 g g =   (6.2.12) 

We made a choice. Another possibility would be f f =  and 

*g g =   

6.2.4 Operator construction 

f g  is a constructed operator.  

 ( )
†

g f f g=   (6.2.13) 

The superfix † indicates the adjoint version of the operator. 

 For the orthonormal base  iq consisting of eigenvectors of the 

reference operator, holds 
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 |n m nmq q =   (6.2.14) 

The reverse bra-ket method enables the definition of new operators 

that are defined by quaternionic functions. 

  
1

(| )| i i

N

i

ig h g hF q F q q
=

=    (6.2.15) 

The symbol F is used both for the operator F and the quaternionic 

function ( )F q .  This enables the shorthand 

 ( )i i iF q F q q   (6.2.16) 

for operator F . It is evident that for the adjoint operator 

 ( )† *

i i iF q F q q   (6.2.17) 

For reference operatorRholds 

 
i i iq q q=R   (6.2.18) 

If  iq  consists of all rational values of the version of the quaternionic 

number system that Hilbert spaceHapplies then the eigenspace of R

represents the natural parameter space of the separable Hilbert space

H. It is also the parameter space of the function ( )F q that defines the 

operator F in the formula (6.2.16). 

6.2.5 Operator types 

I  is used to indicate the identity operator. 

For normal operator N  holds † †NN NN= . 

For unitary operator U holds † †UU U U I= =  

For Hermitian operator H holds †H H=  
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A normal operator N  has a Hermitian part 
†

2

N N+
 and an anti-

Hermitian part 
†

2

N N−
 

For anti-Hermitian operator A  holds †A A= −  

6.3 Separable space 

In mathematics a topological space is called separable if it 

contains a countable dense subset; that is, there exists 

a sequence  
0i

i
i

f
=

=
  of elements of the space such that every 

nonempty open subset of the space contains at least one element 

of the sequence. 

Its values on this countable dense subset determine every continuous 

function on the separable inner product space.  

The Hilbert space ℌ is separable. That means that a countable row of 

elements  nf exists that spans the whole space. In this Hilbert space, 

the quaternions are treated as a mathematical field. 

If ( )| ,m nf f m n=  [1 if n=m; otherwise 0], then   nf is an 

orthonormal base of Hilbert space ℌ. 

A ket base  k  of ℌ is a minimal set of ket vectors k  that span the 

full Hilbert space ℌ. 

Any ket vector f  in ℌ can be written as a linear combination of 

elements of  k . 

 |
k

f k k f=    (6.3.1) 
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A bra base  b  of ℌ† is a minimal set of bra vectors b  that span the 

full Hilbert space ℌ†. 

Any bra vector f  in  ℌ† can be written as a linear combination of 

elements of  b . 

 |
b

f f b b=    (6.3.2) 

Usually, a base selects vectors such that their norm equals 1. Such a 

base is called an orthonormal base. 

Separable Hilbert spaces do not support closed sets of irrational 

numbers. The eigenspaces of their operators are countable. 

6.4 Non-separable Hilbert space 

Every infinite-dimensional separable Hilbert space owns a unique non-

separable companion Hilbert space that embeds its separable partner. 

The non-separable Hilbert space allows operators that maintain 

eigenspaces that contain closed sets of irrational eigenvalues. These 

eigenspaces behave as dynamic sticky continuums. 

Gelfand triple and Rigged Hilbert space are other names for the 

general non-separable Hilbert spaces. 

In the non-separable Hilbert space, for operators with continuum 

eigenspaces, the reverse bra-ket method turns from a summation into 

an integration. 

 ( ) | |g h g h dVq dF q F q      (6.4.1) 

Here we omitted the enumerating subscripts that were used in the 

countable base of the separable Hilbert space. 

The shorthand for the operator F is now  
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 ( )F q F q q   (6.4.2) 

For eigenvectors q , the function ( )F q defines as 

 ( )  | | ' ( ') ' | ' 'F q q Fq q q F q q q dV d= =     (6.4.3) 

The reference operator that provides the continuum natural 

parameter space as its eigenspace follows from 

  | qg h g h dVdq q      (6.4.4) 

The corresponding shorthand is  

 q q q   (6.4.5) 

The reference operator is a special kind of defined operator. Via the 

quaternionic functions that specify defined operators, the claim 

becomes clear that every infinite-dimensional separable Hilbert space 

owns a unique non-separable companion Hilbert space that can be 

considered to embed its separable companion. 

The reverse bracket method combines Hilbert space operator 

technology with quaternionic function theory and indirectly with 

quaternionic differential and integral technology. 

6.5 Quaternionic function space 

Each quaternionic separable Hilbert space owns a reference operator 

that manages an eigenspace that is formed by the version of the 

quaternionic number system that this Hilbert space applies to specify 

the values of the inner product of its vector pairs. This eigenspace is the 

natural eigenspace of this Hilbert space. 

The eigenvectors of the reference operator constitute an orthonormal 

base of the Hilbert space. The reference operator is a natural operator. 

A category of normal operators can be defined that share the 
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eigenvectors of the reference operator and use the target values that 

belong to the original eigenvalues as the new eigenvalues of the defined 

operator. These operators are natural operators. According to this 

reasoning is every quaternionic separable Hilbert space a quaternionic 

function space. In that function space, the eigenvectors of the reference 

operator represent Dirac delta distributions. 

6.5.1 Position space and change space 

If the members of the real axis are interpreted as instants of time, then 

the spatial parts of the quaternions form spatial positions in a dynamic 

position space. The dynamic position space corresponds to the 

eigenspace of the natural reference operator. Thus, another name of 

the natural reference operator is position operator.  

Another orthonormal base of the Hilbert space forms another function 

space. An orthonormal base exists in which each member can be 

written as a linear combination of all base vectors of the position space 

such that all superposition coefficients have the same norm. We call the 

resulting space a change space. The eigenvectors of the change 

operator correspond to the parameter space of the change space. This 

is not a natural parameter space and the change operator is not a 

natural operator. Any dynamic function that is defined in the position 

space corresponds with a function in the change space. That function is 

the Fourier transform of the original function that is defined in the 

dynamic position space. 

Integrating in position space in a selected spatial direction results in the 

full compression of that dimension in change space. 

6.5.2 Fourier transform 

Fourier transforms are easier described in a complex-number-based 

Hilbert space. The complex-number-based Hilbert space results from 

selecting all base vectors that belong to the same spatial direction in the 
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dynamic position space of the quaternionic Hilbert space and construct 

a new complex-number-based Hilbert space from the selected 

orthonormal base. 

The Fourier transform in this complex-number-based Hilbert space is 

given by the relation between ( )f x  and ( )nf   in the sum 

 ( ) ( ) 2

1( ) ni x

n n n

n

f x f e
   



+

=−

= −   (6.5.1) 

In the limit where ( )1 0n n  + = − → the sum becomes an integral 

 ( ) 2( ) i xf x f e d  


−
=    (6.5.2) 

In these formulas, the symbol i  represents a normalized spatial number 

part of a complex number.  

The function 2 ipxe  is an eigenfunction of the operator i
x




. 

 2 22ipx ipxi e pe
x

 


=


  (6.5.3) 

The eigenvalue p represents the eigenfunction and the eigenvector p in 

the change space. In the same sense, the Dirac delta ( )x  is an 

eigenfunction of the position operator and corresponds with the 

eigenvalue x  of the position operator i
p


−


. 

 2 22ipx ipxi e xe
p

  −
− =


  (6.5.4) 

 ( )1
( )

2

ip x a
x a e dp



 −

−
− =    (6.5.5) 
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 2 2( )ipa ipxe x a e dx 


−
= −   (6.5.6) 

 

 

6.5.3 Suggestion for quaternionic Hilbert space 

In the quaternionic Hilbert space the exponential poses problems. We 

suggest splitting that term into two inner products 
*

| |q q = with 

a constant norm |q   

 ( )  | | ( ) | ' 'f q q Fq q f q dV d   = =     (6.5.7) 

The operator F  manages the base vectors of the position space as its 

eigenvectors and its eigenspace is described by function ( )f q  

 ( )F q f q q   (6.5.8) 

The two inner products rotate part of the value of ( )f  . 

 ( )  | | ( ) |f F q f q q dVd     = =     (6.5.9) 

The operator F  manages the base vectors of the change space as its 

eigenvectors and its eigenspace is described by function ( )f   

 ( )F f     (6.5.10) 

The two inner products rotate part of the value of ( )f q . 

In physics the change operator , ,
x y z

   
 =  

   
 is often called the 

momentum operator and the change space is called momentum space. 
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These names are confusing because the momentum operator that 

represents the product of mass and velocity differs from the change 

operator. 

The quaternionic momentum operator is treated later in more detail. 

7 Field equations 

Field equations are quaternionic functions or quaternionic differential 

and integral equations that describe the behavior of the continuum part 

of fields. 

7.1 Quaternions 

We will use a vector cap to indicate the spatial part and we will indicate 

the scalar part with suffix ᵣ. This differs from the earlier notation that 

uses boldface for the spatial part of the quaternion. 

Thus, the number a will be represented by the sum 
ra a a= + . This 

means that the product c ab=  of two numbers a  and b will split into several 

terms 

 ( )( )r r r r r r rc c c ab a a b b a b a b ab ab= + = = + + = + + +   (7.1.1) 

The product d of two spatial numbers a and b results in a real scalar part 

and a new spatial part 

 rd d d ab= + =   (7.1.2) 

,rd a b= −  is the inner product of a and b  

d a b=  is the outer product of a and b  

The spatial vector d is independent of a and independent of b . This means 

that , 0a d = and , 0b d =  

For the inner product and the norm a holds 
2

,a a a=  
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Only three mutually independent spatial number parts can be involved in the 

outer product. 

These formulas still do not determine the sign of the outer product. Apart from 

that sign, the outer product is fixed. 

Quaternionic multiplication obeys the equation  

 
( )( )
,

r r r

r r r r

c c c ab a a b b

a b a b a b ab a b

= + = = + +

= − + +  
  (7.1.3) 

The   sign indicates the freedom of choice of the handedness of the 

product rule that exists when selecting a version of the quaternionic 

number system. The version must be selected before it can be used in 

calculations. 

Two quaternions that are each other’s inverse can rotate the spatial 

part of another quaternion. 

 /c ab a=   (7.1.4) 

The construct rotates the spatial part of b  that is perpendicular to a  

over an angle that is twice the angular phase  of ia a e =  where 

/i a a=  . 

Cartesian quaternionic functions apply a quaternionic parameter space 

that is sequenced by a Cartesian coordinate system. In the parameter 

space, the real scalar parts of quaternions are often interpreted as 

instances of (proper) time, and the spatial parts are often interpreted as 

spatial locations. The real scalar parts of quaternionic functions 

represent dynamic scalar fields. The spatial parts of quaternionic 

functions represent dynamic vector fields. 
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7.2 Quaternionic differential calculus 

The differential change can be expressed in terms of a linear 

combination of partial differentials. Now the total differential 

change df of field f equals 

 
f f f f

df d idx jdy kdz
x y z




   
= + + +

   
  (7.2.1) 

In this equation, the partial differentials , , ,
f f f f

x y y

   

   
  behave like 

quaternionic differential operators. 

The quaternionic nabla   assumes the special condition that partial 

differentials direct along the axes of the Cartesian coordinate system in 

a natural parameter space of a non-separable Hilbert space. Thus, 

 
4

0

i

i i

e i j k
x x y z=

    
 = = + + +

    
   (7.2.2) 

This will be applied in the next section by splitting both the quaternionic 

nabla and the function in a scalar part and a vector part. 

The first-order partial differential equations divide the first-order 

change of a quaternionic field into five different parts that each 

represent a new field. We will represent the quaternionic field change 

operator by a quaternionic nabla operator. This operator behaves like a 

quaternionic multiplier. 

The first order partial differential follows from 

 , , , r
x y z

    
 = =  +  

    
  (7.2.3) 

The spatial nabla is well-known as the del operator and is treated in 

detail in Wikipedia [5].  

https://en.wikipedia.org/wiki/Del
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( )

,

r

r r r r

   


    

 
=  = +  + 

 

=  −  +  +   

  (7.2.4) 

In a selected version of the quaternionic number system, only the 

corresponding version of the quaternionic nabla is active. In a selected 

Hilbert space, this version is always and everywhere the same. 

The differential   describes the change of field  . The five separate 

terms in the first-order partial differential have a separate physical 

meaning. All basic fields feature this decomposition. The terms may 

represent new fields. 

 ,r r r  =  −    (7.2.5) 

 r r   =  +      (7.2.6) 

f is the gradient of f . 

, f is the divergence of f . 

f  is the curl of f . 

 ( ) 2,     =  =    (7.2.7) 

 ( ), 0   =   (7.2.8) 

 ( ) 0r   =   (7.2.9) 

 ( ) ( ) ( ), ,      =   −     (7.2.10) 

Sometimes parts of the change get new symbols 

 r rE  = − −   (7.2.11) 
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 B =    (7.2.12) 

The formula (7.2.4) does not leave room for gauges. In Maxwell 

equations, the equation (7.2.5) is a gauge. 

 ( ), 0B =   (7.2.13) 

 
r r rE B  = −  − = −   (7.2.14) 

 
( ) ( ) ( )

( ) 

, , ,

,

r r

r r r

E

x

 



 = −  −  

  +   =
  (7.2.15) 

 

 

The conjugate of the quaternionic nabla operator defines another type 

of field change. 

 *

r =  −   (7.2.16) 

 
( )*

,

r

r r r r

   


    

 
=  = −  + 

 

=  +  +  −  

  (7.2.17) 

All dynamic quaternionic fields obey the same first-order partial 

differential equations (7.2.4) and (7.2.17).  

 † * † *

r r r =  =  − =  +  =  +    (7.2.18) 

In the Hilbert space, the quaternionic nabla is a normal operator. 

 † † * * ,r r  =  =   =  =   +     (7.2.19) 

Are normal operators who are also Hermitian. 
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The separate operators
r r   and ,   are also Hermitian operators. 

They can also be combined as ,r r=   −    . This is the d’Alembert 

operator. The solutions of , 0r r  +   =  and , 0r r  +   =  

differ. They differentiate between the behavior of the field. The 

equations describe the behavior of the embedding field that physicists 

call their universe. This dynamic field exists everywhere in the reach of 

the parameter space of the function. The homogeneous d’Alembert 

equation is known as the wave equation and offers waves and wave 

packages as its solutions. Both equations offer shock fronts as solutions 

but only the operators in (7.2.19) deliver shock fronts that feature a 

spin or polarization vector. Integration over the time domain turns both 

equations in the Poisson equation and removes the spin or polarization 

vector. Shock fronts require a corresponding actuator and occur only in 

odd numbers of participating dimensions. Spherical shock fronts require 

an isotropic actuator. 

7.3 Continuity equations 

Continuity equations are partial quaternionic differential equations. 

7.3.1 Field excitations 

The dynamic changes of the field are then interpreted as field 

excitations or as field deformations or field expansions. 

Field excitations are solutions of second-order partial differential 

equations.  

One of the second-order partial differential equations results from 

combining the two first-order partial differential equations  =  and 
* =  . 
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( )( )( )

( )

* * *

,

r r r

r r

     



=  =   =  =  +   −  +

=   +  
  (7.3.1) 

Integration over the time domain results in the Poisson equation 

 , =    (7.3.2) 

Under isotropic conditions, a very special solution of the Poisson 

equation is the Green’s function
1

4 'q q −
  of the affected field [33]. 

This solution is the spatial Dirac ( )q   pulse response of the field under 

strict isotropic conditions. 

 
( )

3

'1

' '

q q

q q q q

−
 = −

− −
  (7.3.3) 

 

( )
( )3

1 1
, ,

' '

'
, 4 '

'

q q q q

q q
q q

q q


    
− −

−
= −  = −

−

  (7.3.4) 

This solution corresponds with an ongoing source or sink that exists in 

the field.  

Change can take place in one dimension or combined in two or three 

dimensions. 

Under isotropic conditions, the dynamic spherical pulse response of the 

field is a solution of a special form of the equation (7.3.1)  
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 ( ) ( ) ( ), 4 ' 'r r q q      +   = −    (7.3.5) 

Here ( )   is a step function and ( )q  is a Dirac pulse response. For the 

spherical pulse response, the pulse must be isotropic. 

After the instant ' , the equation turns into a homogeneous equation.  

A remarkably simple solution is the shock front in one dimension along 

the line 'q q− . 

 ( )( )' 'f q q c n  = −  −   (7.3.6) 

Here n  is a normed spatial quaternion. This spatial quaternion has an 

arbitrary direction that does not vary in time. Here, the normalized 

vector n can be interpreted as the polarization of the solution [41]. 

In isotropic conditions, we better switch to polar coordinates. Then the 

equation gets the form 

 

( )

2 2

2 2

2 2

2 2

2

0

r r r

r
r







   
+ + 

   

  
= + = 

  

  (7.3.7) 

 

The second line describes the second-order change of r  in one 

dimension along the radius r. That solution is described above. A 

solution of this line is 

 ( )r f r c n =    (7.3.8) 

 

The solution of (7.3.7) is described by 
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( )( )' '

'

f q q c n

q q

 


−  −
=

−
  (7.3.9) 

The normalized vector n  can be interpreted as the spin of the solution. 

The spherical pulse response acts either as an expanding or as a 

contracting spherical shock front. Over time this pulse response 

integrates into the Green’s function. This means that the isotropic pulse 

injects the volume of the Green’s function into the field. Subsequently, 

the front spreads this volume over the field. The contracting shock front 

collects the volume of the Green’s function and sucks it out of the field. 

The ± sign in the equation (7.3.5) selects between injection and 

subtraction. 

Shock fronts only occur in one and three dimensions. A pulse response 

can also occur in two dimensions, but in that case, the pulse response is 

a complicated vibration that looks like the result of a throw of a stone in 

the middle of a pond. 

Equations (7.3.1) and (7.3.2) show that the operators 
2

2




and ,   

are valid second-order partial differential operators. These operators 

combine in the quaternionic equivalent of the wave equation [6]. 

 
2

2
,  



 
= −   = 

 
   (7.3.10) 

This equation also offers one-dimensional and three-dimensional shock 

fronts as its solutions. 

 
( )( )' '

'

f q q c

q q

 


−  −
=

−
  (7.3.11) 

https://en.wikipedia.org/wiki/Wave_equation
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 ( )( )' 'f q q c  = −  −   (7.3.12) 

These pulse responses do not contain the normed vector n . Apart from 

pulse responses, the wave equation offers waves as its solutions. 

If locally the field can be split into a time-dependent part ( )T  and a 

location-dependent part ( )A q , then the homogeneous version of the 

wave equation can be transformed into the Helmholtz equation [7]. 

 
2

2

2
,


  




=   = −


   (7.3.13) 

 ( , ) ( ) ( )q A q T  =    (7.3.14) 

 
2

2

2

1 1
,

T
A

T A





=   = −


   (7.3.15) 

 2, 0A A  + =    (7.3.16) 

 
2

2

2
0

T
T




+ =


   (7.3.17) 

The time-dependent part ( )T   depends on initial conditions, or it 

indicates the switch of the oscillation mode. The switch of the 

oscillation mode means that temporarily the oscillation is stopped and 

instead an object is emitted or absorbed that compensates the 

difference in potential energy. The location-dependent part of the field 

( )A q  describes the possible oscillation modes of the field and depends 

on boundary conditions.  The oscillations have a binding effect. They 

keep moving objects within a bounded region.  

For three-dimensional isotropic spherical conditions, the solutions have 

the form 

https://en.wikipedia.org/wiki/Helmholtz_equation
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 ( ) ( )( ) ( ) 
0

, , ,
l

m

lm l lm l

l m l

A r a j kr b Y   


= =−

= +    (7.3.18) 

Here 
lj  and 

ly  are the spherical Bessel functions, and m

lY  are 

the spherical harmonics [13][14]. These solutions play a role in the 

spectra of atomic modules. 

Planar and spherical waves are the simpler wave solutions 
of the equation (7.3.13) 

  

 ( ) ( ) 0, exp ,q n k q q   = − − +   (7.3.19) 

 ( )
( ) 0

0

exp ,
,

n k q q
q

q q

 
 

− − +
=

−
  (7.3.20) 

A more general solution is a superposition of these basic types. 

Two quite similar homogeneous second-order partial differential 

equations exist. They are the homogeneous versions of equations 

(7.3.5) and (7.3.10). The equation (7.3.5) has spherical shock front 

solutions with a spin vector that behaves like the spin of elementary 

particles. Obviously, the field only reacts dynamically when it gets 

triggered by corresponding actuators. Pulses may cause shock fronts 

that after the trigger keeps traveling. Oscillations must be triggered by 

periodic mechanisms.  

The inhomogeneous pulse activated equations are 

 ( ) ( ) ( ), 4 ' 'r r q q         = −    (7.3.21) 

https://en.wikipedia.org/wiki/Spherical_Bessel_Function
https://en.wikipedia.org/wiki/Spherical_Harmonics
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7.4 Enclosure balance equations 

Enclosure balance equations are quaternionic integral equations that 

describe the balance between the inside, the border, and the outside of 

an enclosure. 

These integral balance equations base on replacing the del operator   

with a normed vector n . The vector n  is oriented outward and 

perpendicular to a local part of the closed boundary of the 

enclosed region. 

 n       (7.4.1) 

This approach turns part of the differential continuity equation into a 

corresponding integral balance equation. 

 

 dV n dS  =      (7.4.2) 

n dS    plays the role of a differential surface. n  is perpendicular to that 

surface. 

This result separates into three parts 

 
,

,

r

r

n

n n n

    

  

 = −  +    

= − +  
  (7.4.3) 

The first part concerns the gradient of the scalar part of the field 

 r rn       (7.4.4) 

 
r rdV n dS  =      (7.4.5) 

The divergence is treated in an integral balance equation that is known 

as the Gauss theorem. It is also known as the divergence theorem [15]. 
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 , ,n     (7.4.6) 

 , ,dV n dS  =    (7.4.7) 

The curl is treated in a corresponding integrated balance equation 

 n      (7.4.8) 

 dV n dS  =     (7.4.9) 

Equation (7.4.7) and equation (7.4.9) can be combined in the extended 

theorem 

 dV n dS  =       (7.4.10) 

The method also applies to other partial differential equations. For 

example 

 
( ) ( ), ,

, ,n n n n

   

 

  =   −     

= −
  (7.4.11) 

 ( )     , ,
V S S

dV dS dS    =   −      (7.4.12) 

One dimension less, a similar relation exists. 

 ( ), ,
S C

a n dS a dl =    (7.4.13) 

This is known as the Stokes theorem[16] 

The curl can be presented as a line integral 

 
0

1
, lim ,

A
C

n dr
A

 
→

 
   

 
   (7.4.14) 
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7.5 Derivation of physical laws 

The quaternionic equivalents of Ampère's law are [19] 

 
r rJ B E J n B E  =     =    (7.5.1) 

 , , ,r

S C S

B n dS B dl J E n dS = = +      (7.5.2) 

The quaternionic equivalents of Faraday's law are [20]: 

 ( ) ( )r r r rB E B n E  =   = −   =   = −  (7.5.3) 

 , , ,r

c S S

E dl E n dS B n dS=  = −      (7.5.4) 

 ( ) rJ B E v  =   − =   −  =   (7.5.5) 

 ( ), , ,r

S C S

n dS dl v n dS    = = +      (7.5.6) 

The equations (7.5.4) and (7.5.6) enable the derivation of the Lorentz 

force [21]. 

 rE B = −   (7.5.7) 

 ( )
( )

( )
( )0

0 0, , ,
S S S

d d
B n dS B n ds B n ds

d d
 

 
 

= +     (7.5.8) 

The Leibniz integral equation states [22] 

 

( )
( )

( ) ( ) ( ) ( ) ( )
( )( )0 0

0

0 0 0 0 0

,

, , ,

S

S C

d
X n dS

dt

X X v n dS v X dl



 



    = +  − 



 
 

 (7.5.9) 

https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction
https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction
https://en.wikipedia.org/wiki/Leibniz_integral_rule#Three-dimensional.2C_time-dependent_case
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With X B=   and , 0B =   follows 

 ( )
( )

( ) ( ) ( )
( )( )

( )
( )

( ) ( )
( )

0 0

0 0

0 0 0

0 0 0

, , ,

, ,

B

S S C

C C

d

d

d
B n dS B n dS v B dl

d

E dl v B dl

  

 



   


  


=

= − 

= − − 

  

 

 

 (7.5.10) 

The electromotive force (EMF)    equals [23] 

 

 

( )

( )

( )
( )

( ) ( )
( )

00

0 0

0

0 0 0

,

, ,

B

C

C C

F d
dl

q d

E dl v B dl

 

 






  

=


= = −

= + 



 

  (7.5.11) 

 F qE qv B= +    (7.5.12) 

  

https://en.wikipedia.org/wiki/Electromotive_force
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8 Systems of Hilbert spaces 

Only a subtle difference exists between an elemental vector space and 

the Hilbert space that maps this vector space onto itself. The inner 

product is the most important difference. The fact that the Hilbert 

space is complete is another difference. Several properties of Hilbert 

spaces are the consequence of this difference. An important property is 

the private natural parameter space of the Hilbert space that provides 

its geometric symmetry and its geometric center. An important 

restriction is that Hilbert spaces can only cope with number systems 

that are associative division rings. This excludes octonions and 

biquaternions. Each Hilbert space selects a version of an associative 

division ring that is determined by the coordinate systems, which 

sequence the elements of the chosen number system. These choices 

determine the geometric symmetry and the geometric center of the 

Hilbert space. 

These restrictions still leave the possibility that in a system of Hilbert 

spaces all members share the same underlying elemental vector space. 

In this system, one of the members acts as the background platform. All 

other members float with their geometric center over the parameter 

space of the background platform. If the background platform features 

infinite dimensions, then its non-separable companion also becomes 

part of the background platform. The resulting system of Hilbert spaces 

will be called the Hilbert repository. 

8.1 Hilbert repository 

Sharing the same underlying vector space imposes new restrictions and 

enables new capabilities. The restrictions enforce that not all possible 

Hilbert spaces can be a member of the Hilbert repository. The 

coordinate systems of the selected versions of the number systems 

must have their Cartesian coordinate axes in parallel. This limits the 

allowed symmetries to a small set.  
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This restriction is not obvious and current mathematics does not yet 

deliver this hard requirement. The existence of this restriction is derived 

from the Standard Model of particle physics. The Standard Model 

reflects the knowledge of particle physicists that is derived from 

measurements. In the Standard Model, the set of elementary fermions 

show great similarity with the set of separate quaternionic Hilbert 

systems that populate the Hilbert repository. Elementary fermion types 

appear to correspond with the differences between the symmetries of 

the allowed floating separable Hilbert spaces and the symmetry of the 

background platform. 

The differences between the symmetries of the floating platforms and 

the background platform generate sources and sinks that locate at the 

geometric centers of the floating platforms. The sources and sinks 

correspond to symmetry-related charges that may be zero or can have 

one of a restricted set of values. Non-zero symmetry-related charges 

generate corresponding symmetry-related fields. 

8.2 Embedding in the background platform 

The differences in the symmetry between the platforms only become 

apparent when a floating platform is embedded into the background 

platform. A special operator in the non-separable Hilbert space of the 

background platform acts as the embedding field for discrete 

eigenvalues that originate from the eigenspace of the footprint 

operators that reside in the floating platform and are mapped in the 

eigenspace of this special operator. The special operator represents the 

dynamic universe field. If an isotropic difference between the 

embedded eigenvalue and the embedding field exists, then the 

embedding field reacts with a spherical pulse response. The pulse 

response temporarily deforms the embedding field.  
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8.3 Footprint 

An ongoing embedding of a stream of symmetry-breaking eigenvalues 

will cause a persistent deformation of the embedding field. The 

eigenspace of the footprint operator can archive a cord of quaternionic 

storage bins that contain the timestamps and the embedding locations. 

After sequencing the timestamps, the archive shows an ongoing 

hopping path that translates into an ongoing embedding process. This 

embedding process runs during the running episode of the Hilbert 

repository and acts as an imaging process in which the image quality is 

characterized by an Optical Transfer Function [25][26]. This function is 

the Fourier transfer of the Point Spread Function. The Point Spread 

Function can be interpreted as a hop landing location density 

distribution. Its Fourier transform is the Optical Transfer Function of the 

embedding of the footprint of the considered object. 

8.3.1 Footprint mechanism 

The mechanism that generates the content of the eigenspace of the 

footprint operator did its work in the creation episode of the Hilbert 

repository. The private natural parameter space of the Hilbert space 

also existed in this creation episode. The timestamps and the hopping 

locations of the hopping path were taken from this private parameter 

space. The footprint mechanism owns a characteristic function that 

ensured that the hopping path recurrently regenerates a hop landing 

location swarm that features a stable location density distribution 

which is the Fourier transform of the characteristic function of the 

footprint mechanism. The location density distribution equals the 

mentioned Point Spread Function, and the characteristic function 

equals the corresponding Optical Transfer Function [26]. 

The hopping path, the hop landing location swarm, the location density 

distribution, and the Point Spread Function reside in the position space. 
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The location density distribution equals the Point Spread Function and 

describes the hop landing location swarm. 

The Optical Transfer Function equals the characteristic function of the 

footprint mechanism and both reside in the change space. 

Nothing is said about the distribution of the timestamps. In imaging 

processes, the distribution of discrete objects in the imaging beam can 

often be characterized as the result of a combination of a Poisson 

process and a binomial process, where the binomial process is 

implemented by a spatial point spread function. In that case, the 

Poisson process handles the distribution of the timestamps.  

8.3.2 Footprint characteristics 

The footprint generates a nearly constant stream of potential point-like 

actuators in the form of a swarm that features a constant location 

density distribution. The actuators that originate from the same floating 

separable Hilbert space have a constant symmetry. Some of these 

actuator symmetries can break the symmetry of the embedding field 

and therefore they can generate pulse responses that at least 

temporarily deform this field. A sufficiently constant and sufficiently 

dense and coherent stream of actuators can generate a persistent 

deformation. 

8.4 Stickiness 

The first order partial differential equation indicates what happens 

when a field resists change.  

In that case, the terms in the equation try to compensate each other. 

 , 0?r r r r r        = + =  =  −  +  +    =  (8.4.1) 

The scalar part and the vector part are treated separately. 

 , 0?r r r  =  −  =   (8.4.2) 
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 0?r r   =  +    =   (8.4.3) 

For example, if the curl equals zero, then 

 
r r  = −   (8.4.4) 

will set the vector part of the change to zero.  In this way, vector change 

parts can compensate for scalar change parts. 

The Green’s function, the shock fronts, and the oscillations also 

demonstrate the stickiness of dynamic quaternionic fields. Discrete sets 

of quaternions do not show this stickiness. 

8.4.1 Potential 

In physics, potential energy is the energy held by an object because of 

its position relative to other objects.  

The gravitational potential at a location is equal to the work (energy 

transferred) per unit mass that would be needed to move an object to 

that location from a fixed reference location [29][30][31][32][34]. 

The spherical shock fronts integrate over time into the Green’s function 

of the field. Thus, the shock front injects the content of the Green’s 

function into the affected field. All spherical shock fronts spread the 

contents of the front over the full field.  

We consider the gravitational potential to be zero at infinity. Thus, if 

infinity is selected as a reference location, then the gravitational 

potential at a considered location is equal to the work (energy 

transferred) per unit mass that would be needed to move an object 

from infinity to that location. Thus, the potential represents the reverse 

action of the combined spherical shock fronts. 

8.4.2 Center of deformation 

The deformation potential ( )V r  describes the effect of a local response 

to an isotropic point-like actuator and reflects the work that must be 

https://en.wikipedia.org/wiki/Energy
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done by an agent to bring a unit amount of the injected stuff from 

infinity back to the considered location. 

 ( ) /pV r m G r=    (8.4.5) 

Here 
pm  represents the mass that corresponds to the full pulse 

response. G  takes care for adaptation to physical units. r is the distance 

to the location of the pulse.  

A stream of footprint actuators recurrently regenerates a coherent 

swarm of embedding locations in the dynamic universe field. That 

swarm generates a potential 

 ( ) /V r MG r=    (8.4.6) 

Here M  represents the mass that corresponds to the considered 

swarm of pulse responses. r is the distance to the center of the 

deformation. This formula is valid at sufficiently large values of r  such 

that the whole swarm can be considered as a point-like object. 

In a coherent swarm of massive objects , 1,2,3,...ip i n= , each with static 

mass 
im  at locations 

ir , the center of mass R  follows from [28] 

 ( )
1

0
n

i i

i

m r R
=

− =  (8.4.7) 

Thus 

 
1

1 n

i i

i

R m r
M =

=   (8.4.8) 

Where 

 
1

n

i

i

M m
=

=   (8.4.9) 
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In the following, we will consider an ensemble of massive objects that 

own a center of mass R  and a fixed combined mass M as a single 

massive object that locates at R . The separate masses 
im may differ 

because, at the instant of summation, the corresponding deformation 

might have partly faded away.  

R  can be a dynamic location. In that case, the ensemble must move as 

one unit. The problem with the treatise in this paragraph is that in 

physical reality, point-like objects that possess a static mass do not 

exist. Only pulse responses that temporarily deform the field exist. 

Except for black holes, these pulse responses constitute all massive 

objects that exist in the universe. 

8.5 Pulse location density distribution 

It is false to treat a pulse location density distribution as a set of point-

like masses as is done in formulas (8.4.7) and (8.4.8). Instead, the 

gravitational potential follows from the convolution of the location 

density distribution and the Green’s function. This calculation is still not 

correct, because the exact result depends on the fact that the 

deformation that is due to a pulse response quickly fades away and the 

result also depends on the density of the distribution. If these effects 

can be ignored, then the resulting gravitational potential of a Gaussian 

density distribution would be given by [35] 

 
( )

( )
ERF r

g r GM
r

  (8.5.1) 

Where ( )ERF r  is the well-known error function. Here the gravitational 

potential is a perfectly smooth function that at some distance from the 

center equals the approximated gravitational potential that was 

described above in the equation (8.4.6). As indicated above, the 

convolution only offers an approximation because this computation 
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does not account for the influence of the density of the swarm and it 

does not compensate for the fact that the deformation by the individual 

pulse responses quickly fades away. Thus, the exact result depends on 

the duration of the recurrence cycle of the swarm. 

In the example, we apply a normalized location density distribution, but 

the actual location density distribution might have a higher amplitude. 

This might explain why some elementary module types exist in three 

generations. These generations appear to have their own mass. 

 

This might also explain why different first-generation elementary 

particle types show different masses. Due to the convolution, and the 

coherence of the location density distribution, the blue curve does not 

show any sign of the singularity that is contained in the red curve, which 

shows the Green’s function. 

In physical reality, no point-like static mass object exists. The most 

important lesson of this investigation is that far from the gravitational 

center of the distribution the deformation of the field is characterized 

by the here shown simplified form of the gravitation potential   

 ( )
GM

r
r

   (8.5.2) 

Warning: This simplified form shares its shape with the Green’s 

function of the deformed field. This does not mean that the Green’s 
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function owns a mass that equals 
1

GM
G

= . The functions only share the 

form of their tail. 

8.6 Rest mass 

The weakness in the definition of the gravitation potential is the 

definition of the unit of mass and the fact that shock fronts move with a 

fixed finite speed. Thus, the definition of the gravitation potential only 

works properly if the geometric center location of the swarm of injected 

spherical pulses is at rest in the affected embedding field. The 

consequence is that the mass that follows from the definition of the 

gravitation potential is the rest mass of the considered swarm. We will 

call the mass that is corrected for the motion of the observer relative to 

the observed scene the inertial mass. 

8.7 Observer 

The inspected location is the location of a hypothetical test object that 

owns an amount of mass. It can represent an elementary particle or a 

conglomerate of such particles. This location is the target location in the 

embedding field. The embedding field is supposed to be deformed by 

the embedded objects.  

Observers can access information that is retrieved from storage 

locations that for them have a historic timestamp. That information is 

transferred to them via the dynamic universe field. This dynamic field 

embeds both the observer and the observed event. The dynamic 

geometric data of point-like objects are archived in Euclidean format as 

a combination of a timestamp and a three-dimensional spatial location. 

The embedding field affects the format of the transferred information. 

The observers perceive in spacetime format. A hyperbolic Lorentz 

transform converts the Euclidean coordinates of the background 

parameter space into the spacetime coordinates that are perceived by 

the observer.   
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8.7.1 Lorentz transform 

In dynamic fields, shock fronts move with speed c . In the quaternionic 

setting, this speed is unity.  

 2 2 2 2 2x y z c + + =   (8.7.1) 

In flat dynamic fields, swarms of triggers of spherical pulse responses 

move with lower speed v. 

For the geometric centers of these swarms still holds: 

 2 2 2 2 2 2 2 2 2 2' ' ' 'x y z c x y z c + + − = + + −   (8.7.2) 

  

If the locations  , ,x y z and  ', ', 'x y z  move with uniform relative speed v, 

then 

 ( ) ( )' cosh sinhct ct x = −   (8.7.3) 

 ( ) ( )' cosh sinhx x ct = −   (8.7.4) 

 ( )
( ) ( )

2 2

exp exp
cosh

2

c

c v

 


+ −
= =

−
  (8.7.5) 

 ( )
( ) ( )

2 2

exp exp
sinh

2

v

c v

 


− −
= =

−
  (8.7.6) 

 ( ) ( )
2 2

cosh sinh 1 − =   (8.7.7) 

This is a hyperbolic transformation that relates two coordinate systems, 

which is known as a Lorentz boost [8]. 

This transformation can concern two platforms P  and 'P  on which 

swarms reside and that move with uniform relative speed. 

https://en.wikipedia.org/wiki/Lorentz_transformation#Physical_formulation_of_Lorentz_boosts


42 
 

However, it can also concern the storage location P  that contains a 

timestamp t and spatial location  , ,x y z and platform 'P  that has 

coordinate time t  and location  ', ', 'x y z  . 

In this way, the hyperbolic transform relates two platforms that move 

with uniform relative speed. One of them may be a floating Hilbert 

space on which the observer resides. Or it may be a cluster of such 

platforms that cling together and move as one unit. The other may be 

the background platform on which the embedding process produces 

the image of the footprint. 

The Lorentz transform converts a Euclidean coordinate system 

consisting of a location  , ,x y z and proper timestamps   into the 

perceived coordinate system that consists of the spacetime coordinates 

 ', ', ', 'x y z ct in which 't  plays the role of coordinate time. The uniform 

velocity v  causes time dilation 
2

2

'

1

t
v

c


 =

−

 and length contraction 

2

2
' 1

v
L L

c
 =  −   

8.7.2 Minkowski metric 

Spacetime is ruled by the Minkowski metric [9]. 

In flat field conditions, proper time τ is defined by 

 
2 2 2 2 2c t x y z

c


− − −
=    (8.7.8) 

And in deformed fields, still 

 2 2 2 2 2 2 2 2ds c d c dt dx dy dz= = − − −   (8.7.9) 
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Here ds  is the spacetime interval and d is the proper time interval. dt  

is the coordinate time interval 

8.7.3 Schwarzschild metric 

Polar coordinates convert the Minkowski metric to the Schwarzschild 

metric [10]. The proper time interval d obeys 

 ( )
1

2 2 2 2 2 2 2 2 21 1 sins sr r
c d c dt dr r d d

r r
  

−

   
= − − − − +   

   
  (8.7.10) 

Under pure isotropic conditions, the last term on the right side 

vanishes.  

According to mainstream physics, in the environment of a black hole, 

the symbol sr  stands for the Schwarzschild radius [11]. 

 
2

2
s

GM
r

c
=  (8.7.11) 

 

The variable r equals the distance to the center of mass of the massive 

object with mass M . 

The Hilbert Book model finds a different value for the boundary of a 

spherical black hole. That radius is a factor of two smaller. 

8.8 Inertial mass 

The Lorentz transform also gives the transform of the rest mass to the 

mass that is relevant when the embedding field moves relative to the 

floating platform of the observed object with uniform speed v . 

In that case, the inertial mass M relates to the test mass M0 as 

 0
0 2

2
1

M
M M

v

c

= =

−

 (8.8.1) 
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This indicates that the formula (8.4.6) for the gravitational potential at 

distance r must be changed to 

 0

2

2

( )

1

M G
V r

v
r

c

=

−

   (8.8.2) 

8.9 Inertia 

The relation between inertia and mass is complicated [36][37]. We 

apply an artificial field that resists its changing. The condition that for 

each type of massive object, the gravitational potential is a static 

function, and the condition that in free space, the massive object moves 

uniformly, establish that inertia rules the dynamics of the situation. 

These conditions define an artificial quaternionic field that resists 

change. The scalar part of the artificial field is represented by the 

gravitational potential, and the uniform speed of the massive object 

represents the imaginary (vector) part of the field. 

The first-order change of the quaternionic field can be divided into five 

separate partial changes. Some of these parts can compensate each 

other.  

Mathematically, the statement that in the first approximation nothing 

in the field  changes indicates that locally, the first-order partial 

differential   will be equal to zero. 

 , 0r r r r      =  =  −  +  +    =  (8.9.1) 

Thus 

 , 0r r r  =  −  =  (8.9.2) 

 0r r   =  +    =  (8.9.3) 



45 
 

These formulas can be interpreted independently. For example, 

according to the equation (8.9.2), the variation in time of r  can 

compensate the divergence of  . The terms that are still eligible for 

change must together be equal to zero. For our purpose, the curl 

of the vector field   is expected to be zero. The resulting terms of the 

equation (8.9.3) are 

 0r r  +  =  (8.9.4) 

In the following text plays  the role of the vector field and r plays the 

role of the scalar gravitational potential of the considered object. For 

elementary modules, this special field concerns the effect of the hop 

landing location swarm that resides on the floating platform on its 

image in the embedding field. It reflects the activity of the stochastic 

process and the uniform movement in the free space of the floating 

platform over the background platform. It is characterized by a mass 

value and by the uniform velocity of the platform concerning the 

background platform. The real part conforms to the deformation that 

the stochastic process causes. The imaginary part conforms to the 

speed of movement of the floating platform. The main characteristic of 

this field is that it tries to keep its overall change zero. The author calls 

  the conservation field. 

At a large distance r , we approximate this potential by using the 

formula 

 ( )r

GM
r

r
   (8.9.5) 

Here M is the inertial mass of the object that causes the deformation. 

The new artificial field ,
GM

v
r


 

=  
 

considers a uniformly moving mass 
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as a normal situation. It is a combination of scalar potential 
GM

r
 and 

uniform speed v .  

If this object accelerates, then the new field ,
GM

v
r

 
 
 

 tries to counteract 

the changev of the vector field v  by compensating this with an 

equivalent change of the scalar part 
GM

r
 of the new field  . According 

to the equation (8.9.4), this equivalent change is the gradient of the real 

part of the field. 

 
3

GM GM r
a v

r r

 
= = − = 

 

 
 (8.9.6) 

This generated vector field acts on masses that appear in its realm. 

Thus, if two uniformly moving masses m  and M  exist in each other’s 

neighborhood, then any disturbance of the situation will cause the 

gravitational force 

 ( )
( ) ( )0 1 2 0 0 1 2

1 2 0 3 3

1 2 1 2

Gm M r r Gm M r r
F r r m a

r r r r


− −
− = = =

− −
 (8.9.7) 

Here 0M M=  is the inertial mass of the object that causes the 

deformation. 
0m is the rest mass of the observer. 

The inertial mass M relates to its rest mass 0M  as 

 0
0 2

2
1

M
M M

v

c

= =

−

 (8.9.8) 

This formula holds for all elementary particles except for quarks.  

The problem with quarks is that these particles do not provide an 

isotropic symmetry difference. They must first combine into hadrons to 
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be able to generate an isotropic symmetry difference. This 

phenomenon is known as color confinement. 

8.10 Momentum field 

In the formula (8.9.7) that relates mass to force the factor  that 

corrects for the relative speed can be attached to 0m  or to 0M  

 ( )
( )0 0 1 2

1 2 3

1 2

Gm M r r
F r r

r r


−
− =

−
 (8.10.1) 

The force relates to the temporal change of the momentum P of the 

observer 

  
dP

F P
dt

= =  (8.10.2) 

The momentum vector P  is part of a quaternionic field P . The 

momentum depends on the relative speed of the moving object that 

causes the deformation which defines the mass. The speed is 

determined relative to the field that embeds the object and that gets 

deformed by the investigated object. 

 
rP P P= +  (8.10.3) 

 
22 2

rP P P= +  (8.10.4) 

 
0P m v=  (8.10.5) 

 
2 22 2

0P m v=  (8.10.6) 

 
2 22 2 2 2 2 2

0 0rP m c P m v = = +  (8.10.7) 

 
0 /P m c E c= =  (8.10.8) 

 2

0E m c=  (8.10.9) 
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( )

22 2 2 2 2 2

0 0

2
22 2 2 2 2 2 2 2

0 0 01

rP m c m v

v
m c v m c m c

c

 

 

= −

 
= − = − =  

 

 (8.10.10) 

 
0r

E
P m c

c
= =  (8.10.11) 

 
0P m v=  (8.10.12) 

 

 
0 0 0r

E
P P P m c m v m v

c
 


= + = + = +  (8.10.13)  

If 0v =  then 0P =  and 0rP P P m c= = =  

Here Einstein’s famous mass-energy equivalence is involved. 

 2 2

0E m c mc= =  (8.10.14) 

The disturbance by the ongoing expansion of the embedding field 

suffices to put the gravitational force into action. The description also 

holds when the field  describes a conglomerate of platforms and 2M

represents the mass of the conglomerate. 

The artificial field  represents the habits of the underlying model that 

ensures the constancy of the gravitational potential and the uniform 

floating of the considered massive objects in free space. 

Inertia ensures that the third-order differential (the third-order change) 

of the deformed field is minimized. It does that by varying the speed of 

the platforms on which the massive objects reside. 

Inertia bases mainly on the definition of mass that applies to the region 

outside the sphere where the gravitational potential behaves like the 

Green’s function of the field. There, the formula r

GM

r
 = applies. 
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Further, it bases on the intention of modules to keep the gravitational 

potential inside the mentioned sphere constant. At least that holds 

when this potential is averaged over the regeneration period. In that 

case, the overall change    in the conservation field  equals zero. Next, 

the definition of the conservation field supposes that the swarm which 

causes the deformation moves as one unit. Further, the fact is used that 

the solutions of the homogeneous second-order partial differential 

equation can superpose in new solutions of that same equation. 

The popular sketch in which the deformation of our living space is 

presented by smooth dips is obviously false. The story that is 

represented in this paper shows the deformations as local extensions of 

the field, which represents the universe. In both sketches, the 

deformations elongate the information path, but none of the sketches 

explain why two masses attract each other. The above explanation 

founds on the habit of the stochastic process to recurrently regenerate 

the same time average of the gravitational potential, even when that 

averaged potential moves uniformly. Without the described habit of the 

stochastic processes, inertia would not exist. 

The applied artificial field also explains the gravitational attraction by 

black holes. 

The artificial field that implements mass inertia also plays a role in other 

fields. Similar tricks can be used to explain the electrical force from the 

fact that the electrical field is produced by sources and sinks that can be 

described with the Green’s function.  

8.10.1 Momentum operator 

The momentum function applies the natural parameter space and 

together with the reference operator they define the momentum 

operator. Thus, the momentum operator applies the eigenvectors of 
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the reference operator. This operator has no direct relation to the 

change space. An indirect relation runs via the Fourier transform. 

The momentum operator shows how to repair the defect of the 

definition of mass via the gravitational potential in the condition that 

the observer and the observed event move uniformly concerning each 

other.  This operator links inertial mass to rest mass via the Lorentz 

boost. 

8.10.2 Forces 

In the Hilbert repository, all symmetry-related charges are located at 

the geometric center of an elementary particle and all these particles 

own a footprint that for isotropic symmetry differences can deform the 

embedding field. In that case, the particle features mass and forces 

might be coupled to acceleration via  

 F ma=  (8.10.15) 

Or to momentum via F P=  (8.10.16) 

9 Symmetry restrictions 

9.1 Using volume integrals to determine the symmetry-related charges 

In its simplest form in which no discontinuities occur in the integration 

domain  , the generalized Stokes theorem runs as 

 d  
  

= =     (9.1.1) 

We separate all point-like discontinuities from the domain  by 

encapsulating them in an extra boundary. Symmetry centers represent 

spherically shaped or cube-shaped closed parameter space 

regions x

nH  that float on a background parameter spaceR . The 

boundaries x

nH  separate the regions from the domain x

nH . The regions
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x

nH are platforms for local discontinuities in basic fields. These fields are 

continuous in the domain H −  .  

 
1

N
x

n

n

H H
=

=   (9.1.2) 

The symmetry centers x

nS  are encapsulated in regions x

nH , and the 

encapsulating boundary x

nH is not part of the disconnected boundary, 

which encapsulates all continuous parts of the quaternionic manifold   

that exists in the quaternionic model. 

 
1 x

n

N

kH H H

d   
=−   

= = −       (9.1.3) 

In fact, it is sufficient that x

nH surrounds the current location of the 

elementary module. We will select a boundary, which has the shape of a 

small cube of which the sides run through a region of the parameter 

spaces where the manifolds are continuous. 

If we take everywhere on the boundary the unit normal to point outward, 

then this reverses the direction of the normal on x

nH which negates the 

integral. Thus, in this formula, the contributions of 

boundaries  x

nH  are subtracted from the contributions of the 

boundary . This means that  also surrounds the regions  x

nH  

 This fact renders the integration sensitive to the ordering of the 

participating domains. 

Domain  corresponds to part of the background parameter spaceR . As 

mentioned before the symmetry centers 
x

nS  represent encapsulated 

regions  x

nH that float on the background parameter spaceR . The 
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Cartesian axes of x

nS  are parallel to the Cartesian axes of background 

parameter spaceR . Only the orderings along these axes may differ. 

Further, the geometric center of the symmetry center x

nS is represented 

by a floating location on parameter spaceR . 

The symmetry center x

nS is characterized by a private symmetry flavor. 

That symmetry flavor relates to the Cartesian ordering of this parameter 

space. With the orientation of the coordinate axes fixed, eight 

independent Cartesian orderings are possible. 

The consequence of the differences in the symmetry flavor on the 

subtraction can best be comprehended when the encapsulation x

nH is 

performed by a cubic space form that is aligned along the Cartesian axes 

that act in the background parameter space. Now the six sides of the cube 

contribute differently to the effects of the encapsulation when the 

ordering of x

nH  differs from the Cartesian ordering of the reference 

parameter spaceR . Each discrepant axis ordering corresponds to one-

third of the surface of the cube. This effect is represented by 

the geometric symmetry-related charge, which includes the color 

charge of the symmetry center. It is easily comprehensible related to the 

algorithm which below is introduced for the computation of the 

geometric symmetry-related charge. Also, the relation to the color charge 

will be clear. Thus, this effect couples the ordering of the local 

parameter spaces to the geometric symmetry-related charge of the 

encapsulated elementary module. The differences with the ordering of 

the surrounding parameter space determine the value of the geometric 

symmetry-related charge of the object that resides inside the 

encapsulation! 
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9.2 Symmetry flavor 

The Cartesian ordering of its private parameter space determines the 

symmetry flavor of the platform [17]. For that reason, this symmetry is 

compared with the reference symmetry, which is the symmetry of the 

background parameter space. Four arrows indicate the symmetry of the 

platform. The background is represented by: 

 

Now the geometric symmetry-related charge follows in two steps. 

 

 

1. Count the difference of the spatial part of the geometric 

symmetry of the platform with the spatial part of the geometric 

symmetry of the background parameter space. 

2. Switch the sign of the result for anti-particles. 

Symmetrieversion 

Ordering 

x   y   z    τ 

Sequence Handedness 

Right/Left 

Color 

charge 

Electric 

charge * 3 

Symmetry type. 

 ⓪ R N +0 neutrino 

 ① L R − 1 down quark 

 ② L G − 1 down quark 

 ③ R B +2 up quark 

 ④ L B −1 down quark 

 ⑤ R G +2 up quark 

 ⑥ R R +2 up quark 

 ⑦ L N − 3 electron 

 ⑧ R N +3 positron 

 ⑨ L R − 2 anti-up quark 

 ⑩ L G − 2 anti-up quark 

 ⑪ R B +1 anti-down quark 

 ⑫ L B − 2 anti-up quark 

 ⑬ R G +1 anti-down quark 

 ⑭ R R +1 anti-down quark 

 ⑮ L N − 0 anti-neutrino 

 

 
 

  
 

  
  

   
 

  
  

   
  

   
   

    

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
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Probably, the neutrino and the antineutrino own an abnormal 

handedness.  

The suggested particle names that indicate the symmetry type are 

borrowed from the Standard Model. In the table, compared to the 

standard model, some differences exist with the selection of the anti-

predicate. All considered particles are elementary fermions. The 

freedom of choice in the polar coordinate system might determine the 

spin [18]. The azimuth range is 2π radians, and the polar angle range is 

π radians. Symmetry breaking means a difference between the platform 

symmetry and the symmetry of the background. Neutrinos do not break 

the symmetry. Instead, they probably may cause conflicts with the 

handedness of the multiplication rule. 

In the Hilbert repository, only point-like charges occur that represent 

sources or sinks. These charges move  

9.3 Potential of the electric field 

The potential of an electromagnetic field is a quaternionic function.  

 ( ) ( ) ( )r r r  = +    (9.3.1) 

The corresponding force is the Lorentz force. 

 
( )( ) r rF r Q v

Q E v B

   = − −  +  
 

 = +  

   (9.3.2) 

A stream of symmetry-related actuators that is represented by a source 

or sink and is characterized by a symmetry-related charge Q generates a 

scalar potential 

 
0

( )
4

r

Q
r

r



=    (9.3.3) 

https://en.wikipedia.org/wiki/Spherical_coordinate_system
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This means that its observation is affected by inertia in a way that is like 

the way that the observation of the gravitational potential is affected. 

This becomes noticeable in the electric force between two charges. 

9.3.1 Coulomb force 

The electric charge is coupled to the geometric center of a massive 

object. 

Another electric charge is coupled to another massive object. The 

charges repel or attract the charges that are located at the other 

geometric center. Thus, a relative speed of the two geometric centers is 

changed into an acceleration. 

With electromagnetic potentials the force from the Lorentz force. If the 

magnetic potential   equals zero, then only part of the electric field 

results.  

 
( )1 1 2

3

0 1 24
r

Q r r
E

r r




−
= − =

−
 (9.3.4) 

Thus, if two uniformly moving charges 1Q  and 2Q  exist in each other’s 

neighborhood, then any disturbance of the situation will cause the 

electrical force 
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The force repels for two sources or two sinks and attracts for the 

combination of a source and a sink. 

These formulas hold for all elementary particles including quarks.  
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10 Basic fields 

10.1 Coupling of basic fields 

Besides the fact that the geometric center of the elementary particles 

also forms the geometric center of the symmetry-related field of this 

particle the coupling of the symmetry of the particle to the Cartesian 

coordinate system of the particle couples the basic fields of the particle 

to the background field that acts as our universe. It tries to keep the 

Cartesian coordinate systems in parallel. This couples the curl of the 

particle’s geometric symmetry-related field to the curl of the 

embedding background field. A non-zero curl might even couple to the 

otherwise undetermined direction of the spin vector in the spherical 

shock fronts. This couples the direction of spin to a non-zero magnetic 

field. 

11 Conglomerates 

The Hilbert repository suggests that apart from the quarks all 

elementary fermions are constituted by excitations of the dynamic field 

that represents our universe. These excitations are spherical pulse 

responses that act as spherical shock fronts that locally and temporarily 

deform this embedding field. The quarks can combine into hadrons and 

are then also capable of generating spherical shock fronts.  

Further, the spherical shock fronts appear to constitute all discrete 

massive objects that exist in the universe. The exception to this rule is 

encapsulated regions that contain countable sets of objects and 

therefore do not form a compact continuum. We call these regions 

black holes because no field excitations exist in these regions and no 

field excitations can enter or leave these regions. Still, the region can 

and will deform its continuous surround. 

The above statement suggests that elementary fermions can constitute 

higher generations of fermions and can generate bosons. The notorious 
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exception is formed by photons. Photons are constituted by chains of 

equidistant one-dimensional shock fronts.   

The reason for this suggestion is that the footprint of elementary 

fermions is generated by stochastic processes that own a characteristic 

function, which is controlled from and specified in change space. 

This opens the possibility to also define the conglomerates of 

elementary particles in change space. Each conglomerate is defined by a 

private stochastic process that owns a characteristic function, which is a 

dynamic superposition of the characteristic functions of the 

components of the conglomerate. The superposition coefficients act as 

displacement generators. In this way, these coefficients specify the 

internal positions of the components. These dynamic coefficients define 

internal oscillations. 

In change space, the location in the configuration space has no 

significance. Thus, components of a composite can locate far from each 

other in configuration space. This is the reason that entanglement 

exists. Entanglement becomes noticeable when components obey 

exclusion principles. 

11.1 Modular system 

The definition of these conglomerates causes that apart from black 

holes and photons, the discrete objects that exist in our universe and 

embed in the dynamic universe field form an extensive modular system 

with the elementary fermions as the elementary modules and individual 

modular systems at the top of the hierarchies. 

11.2 Module types 

Module types form type communities. These communities have a much 

longer lifespan than individual modules. In the competition between 

module communities, the community that takes the best care for its 

members and that also takes care of the module communities on which 
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it relies have the best chance of survival. This fact contrasts Darwin’s 

statement about the survival of the fittest individual. 

11.3 Atoms 

Compound modules are composite modules for which the geometric 

centers of the platforms of the components coincide. The charges of the 

platforms of the elementary modules establish the binding of the 

corresponding platforms. Physicists and chemists call these compound 

modules atoms or atomic ions. 

In free compound modules, the geometric symmetry-related charges do 

not take part in the oscillations. The targets of the private stochastic 

processes of the elementary modules oscillate. This means that the 

hopping path of the elementary module folds around the oscillation 

path and the hop landing location swarm gets smeared along the 

oscillation path. The oscillation path is a solution to the Helmholtz 

equation. Each fermion must use a different oscillation mode. A change 

of the oscillation mode goes together with the emission or the 

absorption of a photon. The center of emission coincides with the 

geometrical center of the compound module. During the emission or 

absorption, the oscillation mode, and the hopping path halt, such that 

the emitted photon does not lose its integrity. Since all photons share 

the same emission duration, that duration must coincide with the 

regeneration cycle of the hop landing location swarm. Absorption 

cannot be interpreted so easily. In fact, it can only be comprehended as 

a time-reversed emission act. Otherwise, the absorption would require 

an incredible aiming precision for the photon.  

The type of stochastic process that controls the binding of components 

appears to be responsible for the absorption and emission of photons 

and the change of oscillation modes. If photons arrive with too low 

energy, then the energy is spent on the kinetic energy of the common 
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platform. If photons arrive with too high energy, then the energy is 

distributed over the available oscillation modes, and the rest is spent on 

the kinetic energy of the common platform, or it escapes into free 

space. The process must somehow archive the modes of the 

components. It can apply the private platform of the components for 

that purpose. Most probably, the current value of the dynamic 

superposition coefficient is stored in the eigenspace of a special 

superposition operator. 

11.4 Molecules 

Molecules are conglomerates of compound modules that each keep 

their private geometrical center. However, electron oscillations are 

shared among the compound modules. Together with the geometric 

symmetry-related charges, this binds the compound modules into the 

molecule. 

12 Two episodes 

The footprint operator is already present at the time of the creation of 

the Hilbert repository and determines the behavior of the elementary 

particle throughout its existence. This fact is a great mystery. The 

humanly derived math does not yet offer an explanation. However, the 

existence of the footprint operator makes it possible to divide the 

model of physical reality into a preparatory episode in which there is no 

flowing time and an ongoing episode in which a continuing step-by-step 

embedding of the hop landing locations mimics the activities of the 

stochastic processes. The embedding process uses the stored and 

ordered time stamps to realize the corresponding hop landings. The 

range of running time is equal to the range of the archived time stamps. 

At the beginning of the running time, the field that represents our 

universe is still virginal and corresponds to the background parameter 
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space. After the first footprints are completed, the relevant elementary 

particles can start to form composite objects. 

12.1 In the beginning 

Before the embedding processes that mimic the activity of the 

stochastic processes started their action, the content of the universe 

was empty. It was represented by a flat field that in its spatial part, was 

equal to the parameter space of the background platform. At the 

beginning instant, a huge number of these mimicked stochastic 

processes started their triggering of the dynamic field that represents 

the universe. The triggers may cause spherical pulse responses that act 

as spherical shock fronts. These spherical shock fronts temporarily 

deform the universe field. In that case, they will also persistently 

expand the universe. Thus, from that moment on, the universe started 

expanding. This did not happen at a single point. Instead, it happened at 

a huge number of locations that were distributed all over the spatial 

part of the parameter space of the quaternionic function that describes 

the dynamic universe field. 

Close to the beginning of time, all distances were equal to the distances 

in the flat parameter space. Soon, these islands were uplifted with 

volume that was emitted at nearby locations. This flooding created 

growing distances between used locations. After some time, all 

parameter space locations were reached by the generated shock fronts. 

From that moment on the universe started acting as an everywhere 

expanded continuum that contained deformations which in advance 

were exceedingly small. Where these deformations grew, the distances 

grew faster than in the environment. A more uniform expansion 

appears the rule and local deformations form the exception. 

Deformations make the information path longer and give the idea that 

time ticks slower in the deformed and expanded regions. This 

corresponds with the gravitational redshift of photons. 
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Composed modules only started to be generated after the presence of 

enough elementary modules. The generation of photons that reflected 

the signatures of atoms only started after the presence of these 

compound modules. However, the spurious one-dimensional shock 

fronts could be generated from the beginning. 

This picture differs considerably from the popular scene of the big bang 

that started at a single location [12]. 

The expansion is the fastest in areas where spherical pulse responses 

are generated. For that reason, it is not surprising that the measured 

Hubble constant differs from place to place.  
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12.2 RTOS 

The archival of dynamic geometric data that takes place in the creation 

episode is determining the life story of the elementary particles. The 

activity of the stochastic processes is mimicked by the ongoing 

embedding process that implements the dynamic geometric data as an 

ongoing hopping path that recurrently regenerates a coherent hop 

landing location swarm that has a stable location density distribution. 

This location density distribution is the Fourier transform of the 

characteristic function of the stochastic process that filled the 

eigenspace of the footprint operator that resides at the private platform 

of the elementary particle. This activity acts as a Real-Time Operating 

System. The recurrent regeneration of the hop landing location swarm 

implements an effective guard against deadlocks and race conditions. 

13 Dark objects 

Mainstream physics suggests the existence of two types of dark objects 

[39][40]. These are dark energy and dark matter. In contrast to 

mainstream physics, the Hilbert Book Model presents these two types 

of dark objects as field excitations that act as shock fronts. Together 

these special field excitations constitute, except for black holes, all 

discrete objects that exist in the universe. 

Dark matter objects are spherical pulse responses that behave as 

spherical shock fronts. They constitute the footprints of elementary 

particles. Further, they populate as a veiling glare the universe in the 

neighborhood of large assemblies of conglomerates of elementary 

particles. 

Dark energy objects are one-dimensional pulse responses and behave 

as one-dimensional shock fronts. They appear spread over the universe, 

but more specifically divided equidistantly in chains that constitute 
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photons. Photons obey the Planck-Einstein relation E h= [24]. This 

means that the emission duration of photons is fixed and since all shock 

fronts move with speed c , at the instant of emission, all photons must 

feature the same length. 

13.1 Black holes 

We introduce a discontinuum as the antonym of a continuum. The 

universe is a mixed field. It can contain a set of enclosed spatial regions 

that encapsulate a discontinuum. A discontinuum is a dense discrete 

set. A discontinuum is countable. In physics, the equivalent of a 

discontinuum is a black hole. The enclosing surface is a continuum with 

a lower dimension than the enclosed region. No field excitations exist 

inside the discontinuum. Thus, no field excitations can pass the 

enclosing surface. Since a discontinuum deforms the surrounding 

continuum, this enclosed region owns an amount of mass. Together 

with the spherical shock fronts and the elementary modules, the 

discontinuums are the only objects in the universe that own mass. The 

mass of spherical shock fronts is volatile. Only when gathered in 

coherent and dense ensembles these shock fronts can cause a 

persistent amount of mass. That happens in the footprint of elementary 

modules. It also happens in the halos of galaxies. So, black holes can 

only be perceived by their gravitational potential. However, outside the 

border of the black hole, many phenomena can occur that are caused 

by the activity of massive objects that are attracted by the enormous 

gravitation that the black hole generates. Elementary particles that 

hover with their platform over the encapsulated region can drop part of 

their footprint actuators into the black hole. In this way, black holes can 

steadily grow. This paper does not consider the join of black holes and it 

does not consider the birth of a black hole by squeezing one or more 

neutron stars. 
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14 Conclusions 

The structure and the behavior of the Hilbert repository show an 

astonishing similarity with the structure and behavior of the set of 

elementary fermions in the Standard Model of particle physics. 

The universe is a dynamic field that is archived in the background 

platform of the Hilbert repository. This dynamic field can be described 

by a quaternionic function. Quaternionic differential calculus describes 

the dynamics of this field. Apart from the wave equation exists another 

second-order partial differential equation. 

Electric charges only appear at the geometric centers of the floating 

platforms on which elementary fermions reside. 

The shortlist of electric charges and color charges in the Standard 

Model conforms with the shortlist of symmetry-related charges in the 

Hilbert repository. 

Sources and sinks represent the symmetry-related charges. 

Elementary fermions behave as elementary modules. Except for black 

holes they constitute all massive objects that exist in the universe. 

Stochastic processes that own a characteristic function and can be 

considered as a combination of a Poisson process and a binomial 

process implement the wavefunction of elementary fermions. These 

processes produce an ongoing hopping path. An ongoing embedding 

process images the hop landing locations on the dynamic universe field. 

Dark objects play an essential role in the dynamics of the universe field. 

Dark matter objects are spherical pulse responses that behave as 

spherical shock fronts and integrate over time in the Green’s function of 

the field. 

Dark matter objects constitute the footprints of elementary fermions. 
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Dark matter objects explain the origin of gravity. 

Dark energy objects are one-dimensional pulse responses and behave 

as one-dimensional shock fronts. They appear spread over the universe, 

but more specifically they constitute photons divided equidistantly in 

chains. Photons obey the Planck-Einstein relation.  

Black holes are considered as encapsulated discontinuous regions that 

exist in a continuous surround. They become noticeable by their 

gravitational potential and by the phenomena that occur at their 

border. 
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