Abstract
This short paper is about nontrivial zeros of Riemann's zeta function.
Assume z is the real part of all nontrivial zeros between $0<\operatorname{Re}(z)<1$
define:

$$
\xi(z)=1 / 2 z(1-z) \pi^{-z / 2} \Gamma(z / 2) \zeta(z)
$$

which satisfies the reflection formula

$$
\xi(z)=\xi(1-z)
$$

which means

$$
\xi(0)=\xi(1)=1 / 2
$$

if we put in any real part between $0<\operatorname{Re}(z)<1$ in the reflection formula

$$
\xi(z)=\xi(1-z)
$$

the only invariant real part is $\xi(\operatorname{Re}(z))=1 / 2$

$$
\xi(1 / 2)=\xi(1 / 2)
$$

because z is the real part of all nontrivial zeros and $\operatorname{Re}(z)=1 / 2$ is the only invariant real part in $\xi(z)$, the real part of all nontrivial zeros is invariant at $1 / 2$.

References:

