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Abstract: 
Assuming a geometrically closed universe, we predict a value for the cosmic curvature, 𝛺0 = 1.001802, 
a value within current observational bounds.  We also propose a thermodynamic heat engine model for 
the universe, which bypasses the need for an inflaton field.  Our model is based on a Carnot Cycle where 
we have isothermal expansion, followed by adiabatic expansion, followed by isothermal contraction, 
followed by adiabatic contraction, bringing us back to our original starting point.  For the working 
substance, we focus specifically on the CMB radiation filling the collective voids in the universe.  Using 
this construct, we identify cosmic inflation as the isothermal expansion phase, which lasts just under, 

10−35 𝑠𝑒𝑐𝑜𝑛𝑑𝑠.  The collective CMB volume we see today only increases by a factor of 5.65 times during 
this process, and homogeneity and perturbations in the CMB are explained.  The singularity problem is 
avoided and we have a clear mechanism for the work done by the cosmos in causing expansion, and 
later contraction.  For scaling laws with respect to the density parameters in Friedmann’s equations, we 

will assume a susceptibility model for space, where, 𝜒(𝑎)̅̅ ̅̅ ̅̅ , the smeared cosmic susceptibility, decreases 
with increasing cosmic scale parameter, "𝑎".  Within this framework, we can predict a maximum Hubble 
volume with minimum CMB temperature for the voids before contraction begins, as well as a minimum 
volume with maximum CMB temperature when expansion starts.  The thermodynamic heat cycle 
deviates from 100% efficiency in converting heat energy into mechanical energy (expansion) by a 
minuscule amount, namely, 1.033 10−29.  The significance of this number is not known. 
 
 
 
Introduction: 
Models for a cyclic universe and big bounce, versus big bang, scenario, for the cosmos are once again 
coming into vogue [1-5].  They bypass some of the long standing problems in cosmology.  Among them 
we include the cosmic volume singularity problem, and horizon problem, i.e., coming up with an 
explanation for the causal isotropy in CMB temperature.  Big bounce scenarios can also explain the 
smoothness and relative flatness of the universe, allow for a universe without “edges”, and avoid the 
multiverse problem.  There are many other reasons.  Some good reviews for big bounce, versus big bang 
models, are given in references [6-8]. 
 
Many such models exist, some of which are very exotic [9-13].  Some rely on a mechanism whereby the 
total energy density in Friedmann’s equation starts to decrease as the scale parameter, "𝑎" , increases.  
For a big bounce scenario, we require, namely, that the Hubble parameter, at the point of expansion 

turning into contraction, equals zero, 𝐻 = 0, and furthermore, that, �̇� > 0.  A dot over a variable 
designates a derivative with respect to cosmological time.  Unfortunately, this takes us into physics 
beyond the 𝛬𝐶𝐷𝑀 model.  In the standard cosmological model, dark energy takes over (dominates) at 
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high "𝑎" values, and stays constant. As such, there is no simple way to scale various density components 
such that, at some future cosmological epoch, the Hubble parameter, 𝐻, vanishes. 
 
Some time ago we also proposed, and advocated for, a different type of big bounce model [14].  Our big 
bounce universe was modeled as a thermodynamic heat engine.  Specifically, we argued for a Carnot 
heat engine cycle for the cosmos, where we have isothermal expansion from points 1 → 2 (see  the 
figure below), followed by adiabatic expansion from points 2 → 3, followed by isothermal contraction 
from points 3 → 4, followed by adiabatic contraction from points 4 → 1, bringing us back to our original 
starting point.  The working substance, which experiences the specific volume expansion and 
contraction, is the CMB radiation which fills the collective voids in the universe, what is seen in WMAP 
and Planck data.  This part which expands, and will later contract, is called the “system”.  The 
“surroundings” are collectively the cooler regions (pockets) in the universe which have given up heat 
initially, and which will later fill with ordinary matter.  This part will hardly expand (it may even contract) 
due to the action of losing heat energy, and eventually gravity will prevent further expansion.  
Diagrammatically, the four step process is represented by Figure 1, which is not drawn to scale.  It is for 
representative purposes only.  The universe, currently, finds itself somewhere between points, 2, and 3, 
towards the bottom end near point 3. 
 
 

  
 
 
Figure 1:  The lines from points 1 to 2, and from points 3 to 4, are drawn greatly exaggerated lengthwise 
in this diagram.  They should be drawn almost infinitely close to one other if this figure were to scale. 
Figure 1 is definitely not to scale in either the x or y sense and it given for qualitative, illustrative 
purposes only. 
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In Figure 1, the thermodynamic point 1 represents the minimum volume, the maximum temperature, 
the maximum internal energy density, the maximum pressure, and the maximum entropy density, for 
the CMB radiation, which we currently see in WMAP/Planck temperature maps.  Point 3, on the other 
hand, indicates the maximum volume, the minimum temperature, the minimum internal energy density, 
and the minimum entropy density, for same.  From point 1 to point 2, an amount of heat, |𝑄𝐻| , is given 
up by the surroundings to the system, and from point 3 to 4,  heat energy is supplied by the system, |𝑄𝐶| 
, and given back to the surroundings. 
 
The advantages of this proposed heat engine model are many.  Among the most important [14], we 
would list, 

1) No inflaton field is needed.  The isothermal expansion phase from point 1 to point 2 in the 

diagram above is identified with cosmic inflation, lasting about, 10−35 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. 
2) We can explain ∆𝑇/𝑇 ≅ 5 ∗ 10−5 at thermodynamic point 2.  The CMB temperature at this 

point is estimated to equal, 𝑇2 = 𝑇1 = 3.01 ∗ 1027𝐾𝑒𝑙𝑣𝑖𝑛. 
3) No CMB volume singularity exists at point 1, as this point has a finite volume, a finite energy 

density, a finite pressure, and a fixed temperature. 
4) We have an actual physical mechanism for evaluating the work done by the universe in 

expanding, and then contracting.  If we were to consider only the process whereby we proceed 
from point 2 to point 3 and then directly back again to point 2, then there would be no area 
enclosed under the pressure versus volume diagram above.  In other words no work would be 
done by the CMB radiation in expansion and contraction.  Isothermal expansion, and isothermal 
contraction, is a necessary input, we believe, to define a certain amount of work done. 

5) The universe is cyclic having no beginning nor end in time.  It does however have an upper limit 
in volume, which we call, 𝑉3, and lower bound in volume, which we designate by, 𝑉1 , to 
conform to the thermodynamic points illustrated in the diagram, Figure 1.  The pressure and 
volume refer only to the CMB radiation, which we see today in WMAP and Planck satellite data.  

It amounts to, 9.153 ∗ 10−5 𝜌0, where 𝜌0 is the current mass density of the universe, given our 
choice for Hubble constant. 

6) Being a closed universe, the cosmos has no “edges”, a problem which was already appreciated 
by Einstein, in 1917.  He advocated for a universe without boundaries [15-16], as did Willem de 
Sitter, Carl Friedrich von Weizsäcker, and George Gamow. 

 
There are other reasons, which were discussed in reference [14], and which will not be repeated here. 
 
As mentioned, it was estimated that, 𝑇1 = 𝑇2 = 3.01 ∗ 1027𝐾𝑒𝑙𝑣𝑖𝑛, in the isothermal process lasting 

approximately 10−35 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 in going  from point 1 to point 2.  Moreover, the volume increase in CMB 
radiation in this process was estimated to equal a mere, 𝑉2/𝑉1 ≅ 5.65, a very modest increase [14] in 
comparison to the standard inflation scenario.  What drives volume expansion in this isothermal process 
is entropy increase to the voids, a one way street from surroundings to system, making the surroundings 
cooler and the system hotter, as a consequence.  Once the system collective volume increases, there is 
no heat energy left over for the system to give back to the surroundings.  It is in this isothermal phase, 
specifically, that we have entropy increase to the system, an amount calculated to equal, 𝑆2/𝑆1 ≅ 5.65.  
The entropy density is immense and can be calculated, as well as internal energy density, and pressure, 
given the estimated temperature.  These quantities are all functions of temperature, and temperature 

https://en.wikipedia.org/wiki/Willem_de_Sitter
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https://en.wikipedia.org/wiki/Carl_Friedrich_von_Weizs%C3%A4cker
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only, for blackbody radiation [14].  The surrounding is treated as a reservoir from which heat can be 
drawn, and if large enough, may not necessarily contract as a consequence. 
 
A natural question arises.  Can the CMB temperature at thermodynamic point 3 in the diagram above, 
𝑇3 , be estimated?  This would indicate the point of contraction for the cosmos as a whole.  Knowing the 
present Hubble radius, we would be able to determine the future Hubble radius, 𝑅3 , where the Hubble 
constant momentarily vanishes, 𝐻3 = 0, and where we have maximum volume, 𝑉3.  We believe the 
answer is yes, and this is the main thrust of this paper.  For that we need to postulate a closed universe, 
and then predict the curvature in the present cosmos.  This is done in section II.  We will also need a 
specific mechanism for decreasing the total density parameter in Friedmann’s equation.  This is done in 

section III, where we introduce a decreasing smeared cosmic susceptibility, 𝜒(𝑎)̅̅ ̅̅ ̅̅  , with increasing scale 
parameter, which is based on previous published work [17-18].  We will show explicitly how this feature 
can cause the universe to eventually contract.  Furthermore, we will be in a position to calculate how 
much longer it will expand given a very crude, but specific one-parameter model.  Finally in section IV, 
our summary and conclusions are presented. 
 
 
 
II. Friedmann’s Equation with Curvature, and Estimating 𝜴𝟎 
We start with Friedmann’s equation with curvature built in.  As is well-known, it can be written in the 
form,  

�̇�2 − (8𝜋𝐺/3) 𝜌 𝑅2 = −𝑘𝑐2                                (2 − 1)  

The variable,  , is the Hubble radius, 𝐺 equals Newton’s constant, and a dot over a quantity designates a 
derivative with respect to cosmological time.  The Friedmann equation shows that a universe that is 
spatially closed (with 𝑘 =  +1) has negative total ``energy'': the expansion will eventually be halted by 
gravity, and the universe will recollapse.  Conversely, an unbound model is spatially open (𝑘 =  −1) and 
will expand forever.  For a flat universe, 𝑘 = 0.  Equation (2 − 1) can be rewritten in terms of the 

Hubble constant, 𝐻 ≡ �̇�/𝑅, as, 
 
    𝐻2 − (8𝜋𝐺/3) 𝜌 = −𝑘𝑐2/𝑅2     (2 − 2) 
 
We also know that for a given rate of expansion there is a critical density that will bring the expansion 
asymptotically to a halt: 
     𝜌𝐶𝑅𝐼𝑇 = 3𝐻2/(8𝜋𝐺)                   (2 − 3) 
 
Therefore, upon rearranging terms, equation, (2 − 2), can be re-expressed as, 
 
    𝜌 = 𝜌𝐶𝑅𝐼𝑇 + (𝑘𝑐2/𝑅2)(3/(8𝜋𝐺))    (2 − 4) 
  
We can define a density parameter as the ratio of actual density to critical density.  Using equation, 
(2 − 4), we find that, 
 
    𝛺 ≡ 𝜌/𝜌𝐶𝑅𝐼𝑇 = 8𝜋𝐺𝜌/(3𝐻2)      (2 − 5) 
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If, 𝑘 = 0, then we have a flat universe, and 𝛺 = 1.  If we have positive curvature, 𝑘 = +1, then the 
universe is closed, and in this situation, by equation, (2 − 5), 𝛺 > 1.  For an open universe, 𝑘 = −1, and 
we find that 𝛺 < 1.  From here on in, we will assume a closed universe where, 𝑘 = +1. 
 
With conventional scaling (𝛬𝐶𝐷𝑀 model), we have 
 

 𝐻2 = 8𝜋𝐺𝜌/3 = 𝐻0
2 [𝛺𝑅,0 𝑎−4 + 𝛺𝑀𝐴𝑇𝑇𝐸𝑅,0 𝑎−3 + 𝛺𝐷𝐸,0 − (𝛺0 − 1) 𝑎−2]  (2 − 6) 

 
In this equation, “𝑎” is the cosmic scale parameter; we are using the convention where, 𝑎0 = 1.  The 
scale parameter is related to the redshift, 𝑍, by the equation, 𝑎 = 𝑇0/𝑇 = 𝑅/𝑅0 = (1 + 𝑍)−1.  The 
temperature,  , is the 𝐶𝑀𝐵 temperature, and 𝑅 is the observable Hubble radius.  Hubble’s constant can 

be rewritten as, = �̇�/𝑅 = �̇�/𝑎 .  All subscripts, “0”, refer to the present epoch and variables without a 
subscript refer to a different cosmological epoch.  The density parameters, 𝛺𝑅,0 , 𝛺𝑀𝐴𝑇𝑇𝐸𝑅,0 , 𝛺𝐷𝐸,0 , 
refer to the current epoch values for radiation, matter (ordinary and dark matter), and dark energy 
components, respectively.   
 
If we specialize equation, (2 − 6), to the present epoch, we see that, 
 
        𝛺𝑅,0 + 𝛺𝑀𝐴𝑇𝑇𝐸𝑅,0 + 𝛺𝐷𝐸,0 = (𝛺0 − 1)    (2 − 7) 

 
We also note that, using equations, (2 − 5), (2 − 4) and, (2 − 3), we have 
 
    (𝛺 − 1) = 𝑘𝑐2/(𝐻2𝑅2)      (2 − 8) 
 
Another way to write equation (2 − 8) is to make use of equation, (2 − 6).  We can prove that, 
 
  (𝛺 − 1) = 𝑘𝑐2/(𝐻2𝑅2)  

    = 𝑘𝑐2/(𝑅0
2 𝑎2) 𝐻0

−2 (𝛺𝑅,0 𝑎−4 + 𝛺𝑀𝐴𝑇𝑇𝐸𝑅,0 𝑎−3 + 𝛺𝐷𝐸,0 − (𝛺0 − 1) 𝑎−2)−1 

    = (𝛺0 − 1)/( 𝛺𝑅,0 𝑎
−4 + 𝛺𝑀𝐴𝑇𝑇𝐸𝑅,0 𝑎−3 + 𝛺𝐷𝐸,0 − (𝛺0 − 1) 𝑎−2) (2 − 9) 

 
This beautiful result will allow us to find the amount of curvature in any epoch, given the current value.  
 
In the current epoch, the radiation component equals, 𝛺𝑅,0 = 9.153 𝐸 − 5.  We assume that, at 
present, 𝑇0 = 2.725 𝐾𝑒𝑙𝑣𝑖𝑛, and we have three species of neutrinos.  Our value for 𝐻0 equals, 

67.74 𝑘𝑚/(𝑠 𝑀𝑝𝑐) =  6.925 × 10−11
  yr−1, as estimated by the latest Planck surveys [19-21].  We know 

that, 𝛺𝑅,0ℎ2 = 4.2 𝐸 − 5, where ℎ ≡ 𝐻0/(100 𝑘𝑚/(𝑠 ∙ 𝑀𝑝𝑐)).  Using the Hubble value measured 

above and solving for 𝛺𝑅,0 gives us the value indicated.  The radiative contribution is so small that it is 
typically ignored when discussing the future fate of the universe.  However, we will include it in our 
discussion as it precisely defines our “system” in the thermodynamic heat engine. 
 
For dark energy, the latest estimate is, 𝛺𝐷𝐸,0 = .6911, as indicated by the Planck Collaborations [19-21].  
According to the 𝛬𝐶𝐷𝑀 model, this does not scale as the universe expands.  In the quintessence 
models, the dark energy component is assumed to barely scale. 
 
We next consider the observed value for, 𝛺0.  This is not exactly equal to unity, but has the value [19-
21], 



 
6 

 

 

     𝛺0 = 1.00231−0.0054
+0.0056                (2 − 10) 

 
Within observational error, this value is so close to one, that it is often assumed that it equals precisely 
unity, as in the 𝛬𝐶𝐷𝑀 model.  We will however relax this assumption.  We will instead take this value as 

precise, and claim for the time being, that, 𝛺0 = 1.00231−0.0
+0.0.   In other words, we will not assume 

flatness, where, 𝛺0 = 1.  Using our precise value for, 𝛺0 , and equation, (2 − 8), we find that the 
Hubble radius equals, 
 

    𝑅0 = (𝑐/𝐻0)(. 00231)−1/2 = 2.841 𝐸27 𝑚𝑒𝑡𝑒𝑟𝑠             (2 − 11) 

This calculated value is very, very close to another value obtained by entirely different means.  That 
value was, 𝑅0 = 3.217 𝐸27 𝑚𝑒𝑡𝑒𝑟𝑠.  It was obtained by relating dark matter to dark energy through a 
polarization model for space [17-18].  It is a very precise value, good to three significant figures, because 
it is based entirely on the present estimates for the density parameters in Friedmann’s equation. We will 
henceforth use this estimate and work backwards to find our predicted value for density curvature.  
Using equation, (2 − 8), we find that  

   (𝛺0 − 1) = 𝑐2/(𝐻0
2 𝑅0

2) = 1.802 𝐸 − 3       (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒)     (2 − 12) 

This small value is well within observational bounds as indicated by equation, (2 − 10). 

We next calculate 𝛺𝑀𝐴𝑇𝑇𝐸𝑅,0 using equations, (2 − 12) , and (2 − 7).  We believe the estimates for, 
𝛺𝑅,0 , and, 𝛺𝐷𝐸,0, given above to be quite accurate.  The estimate for, 𝛺𝑀𝐴𝑇𝑇𝐸𝑅,0, is probably not as 

accurate, as it factors in ordinary matter and dark matter.  Using equation, (2 − 12), we calculate that, 
𝛺𝑀𝐴𝑇𝑇𝐸𝑅,0 = 1.001802 − .6911 − 9.153 𝐸 − 5 = .3106.  We are now in a position to ask at what point 
the universe will start to contract.  For the universe to start contracting, we demand that, 𝐻 = 0.  Thus, 
we will attempt to solve equation, (2 − 6), under the condition that 𝐻 = 0 for a particular scale factor, 
𝑎3, corresponding to point 3 in the diagram above, Figure 1.  From this equation, for a big bounce from 
expansion to contraction, the following condition must be satisfied. 

𝛺𝑅,0 𝑎3
−2 + 𝛺𝑀𝐴𝑇𝑇𝐸𝑅,0 𝑎3

−1 + 𝛺𝐷𝐸,0 𝑎3
+2 = (𝛺0 − 1)             (2 − 13) 

This equation, however, can never be satisfied for, 𝑎3 > 1, given the density parameters listed above.  
This leads us to conclude that a big bounce scenario is impossible with conventional, 𝛬𝐶𝐷𝑀 model, 
scaling.  The third term on the left hand side, the dark energy contribution, makes it impossible.  If we 
believe in a big bounce contraction, and a closed universe, some other mechanism for scaling is 
required. 

 
III. Heat Engine Model and Subsequent Contraction  
As mentioned in the introduction, our thermodynamic heat engine model for the cosmos consists of 
four separate processes, as outlined in our diagram, Figure 1.  We have isothermal expansion from point 
1 to point 2, our cosmic inflation phase.  This is followed by adiabatic expansion, from point 2 to point 3.  
Isothermal contraction from point 3 to point 4 follows, which is our cosmic deflation phase.  And finally, 
to bring us back to our initial starting point, from point 4 to point 1, we have adiabatic contraction.  
From the voids perspective, heat energy from surroundings to system (the voids) drives an increase in 
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entropy in going from, 1 →  2.  This increases the volume of the voids.  From, 2 →  3, we have adiabatic 
expansion driven by a decrease in internal energy density.  The entropy stays constant.  In going from, 
3 →  4, a loss of heat drives volume contraction, with an attendant loss of entropy (given up to the 
surroundings).  And finally from, 4 →  1, volume contraction is caused by an increase in internal energy 
density.  All these variables refer to the CMB radiation seen in the WMAP/ Planck data. 
 
The work done, per cycle, is the enclosed area under the pressure versus volume loop in Figure 1.  We 
calculated this to equal [14], 

𝑊𝑇𝑂𝑇𝐴𝐿  =  |𝑄𝐻|  −  |𝑄𝐶| 

                                                                     =  4𝑝𝐻(𝑉2  −  𝑉1)  −  4𝑝𝐶(𝑉3  −  𝑉4) 

                                                                     =  4𝑝𝐻(𝑉2  −  𝑉1)  −  4𝑝𝐶(𝑇𝐻/𝑇𝐶)3(𝑉2  −  𝑉1) 

                                                                     =  4𝑝𝐻(𝑉2  −  𝑉1)[1 − (𝑝𝐶/𝑝𝐻)(𝑇𝐻/𝑇𝐶)3] 

                                                                     =  4𝑝𝐻(𝑉2  −  𝑉1)(𝑒𝐶𝐴𝑅𝑁𝑂𝑇)                               (3 − 1) 

 
In these equations, |𝑄𝐻|, is the heat energy absorbed by the voids in process 1 →  2, at CMB 
temperature, 𝑇1 = 𝑇2 = 𝑇𝐻.   The, |𝑄𝐶|, is the heat lost by the voids to the surroundings in process, 
3 →  4, at temperature, 𝑇3 = 𝑇4 = 𝑇𝐶 .   The 𝑝𝐻 is the CMB radiative pressure at, 𝑇1 = 𝑇2 = 𝑇𝐻, 
whereas, 𝑝𝐶  is the CMB radiative pressure at, 𝑇3 = 𝑇4 = 𝑇𝐶  .  The 𝑉𝑖 stands for the radiative volume at 
thermodynamic point, 𝑖.  And, 𝑒𝐶𝐴𝑅𝑁𝑂𝑇 , stands for the efficiency of this Carnot cycle.  It turns out [14] 
that  
 
     𝑒𝐶𝐴𝑅𝑁𝑂𝑇 = (1 − 𝑇𝐶/𝑇𝐻)    (3 − 2) 
 
We notice that the efficiency is defined just like that for an ideal gas.  We keep in mind, however, that 
we are dealing with CMB blackbody radiation, and only that portion which is visible today in WMAP/ 
PLANCK satellite data.  Because, 𝑇𝐶 ≪< 𝑇𝐻, this cycle is very close to 100% efficient.  A knowledge of 𝑇𝐶  
is needed to calculate the exact efficiency, as well as the exact amount of work done by this radiation.  
We estimated 𝑇𝐻 to equal 3.01 𝐸27 𝐾𝑒𝑙𝑣𝑖𝑛 [14].  The heat transfer from point 1 to point 2 caused a 
temperature fluctuation decrease from, ∆𝑇/𝑇~1 , to, ∆𝑇/𝑇 ≈ 5  𝐸 − 5, which is what we observe today 
in satellite data. 
 
As seen in section II, conventional scaling behavior is problematic for proving a big bounce contraction.  
Modifications to the standard model have to be made.  While many big bounce models are interesting, 
we believe that our heat engine model for the cosmos is particularly straight forward and intuitive.  
However, what kind of scaling behavior can we assume for the various components making up the total 
energy density?  We are specifically thinking of dark matter and dark energy scaling.  We do not believe 
that dark matter scales like ordinary matter, nor do we accept that dark energy barely scales.  Our 
reasoning is given in references [17-18].  In those publications, we believe that dark matter and dark 
energy are actually related, and have an intrinsic origin, the polarization and susceptibility of space.  This 
will contribute totally to dark matter, and partially to dark energy.  The details can be found in those 
works. 
 
What is needed for our purposes are the scaling laws for dark matter, and dark energy.  These were 
found in reference [18] as, 
 



 
8 

 

  𝜌𝐷𝑀/𝜌𝐷𝑀,0 = (𝜒/𝜒0) (𝐾0/𝐾) 𝑎−3,  𝜌𝐷𝐸/𝜌𝐷𝐸,0 = (𝐾0/𝐾) 𝑎−3         (3 − 3𝑎, 𝑏) 
 
In these equations, 𝜒 = 𝜒(𝑎), is the cosmic susceptibility due to macroscopic, gravitational Planck 
particle dipole formation, and alignment.  The relative gravitational permittivity, 𝐾(𝑎), is related to 𝜒(𝑎) 
through the equation, 𝐾(𝑎) = 1 − 𝜒(𝑎).  We are adopting a Winterberg model for space, where we 
have a vast assembly (sea) of positive and negative mass Planck particles, which together form an 
electrically neutral, and massively neutral medium, the vacuum, in the unperturbed state. 
 
In reference [18], we assumed that 𝜒(𝑎) increases with an increase in cosmological time.  This 
assumption will have to be relaxed in this paper.  After a certain point in time, the 𝜒(𝑎) may actually 
decrease with increasing cosmological time, i.e., with increasing scale parameter, 𝑎.  This goes counter 
to previous thinking.  The reason we assumed that 𝜒(𝑎) must increase with increasing “𝑎” is because 
ordinary matter had to form before the space surrounding it could be polarized.  It is well known that 
ordinary matter is made up of quarks and leptons, particles which only started to freeze out below, 
𝐸16 𝐾𝑒𝑙𝑣𝑖𝑛 (1 𝑇𝑒𝑣)  [22-25].  Before that point, time wise, we presumably only had radiation, and now 
possibly, Planck particles, which are called planckions by Winterberg.  We also believe that atomic 
matter clumping into ordinary matter (solids, liquids, gases, and plasmas) was necessary before the 
surrounding space could be polarized.  Thus the inception temperature for significant macroscopic 
susceptibility was probably after recombination, i.e., after, 𝑎 ≅ 1/1100.  Only from that point onwards 
could solids, liquids, and non-ionized gases form.  We assumed specific functions whereby 𝜒(𝑎) 
increased with increasing cosmic scale parameter in reference, [18].  However, this will never lead to 
eventual big bounce contraction.  At some point in cosmological time, the 𝜒(𝑎) must flip, and start to 
decrease with increasing scale parameter, "𝑎".  We can call the cosmological flip point, 𝑎∗.  We are 
imagining a charging up, and then, discharging process for, 𝜒(𝑎), much like in a capacitor. 
 
Formalizing this scenario further, let us assume that, 
 
   𝜒(𝑎) = [1 − 𝑒−𝑎𝑥0] 𝑎 < 𝑎∗       (charging up process)             (3 − 4𝑎) 

   𝜒(𝑎) = 𝑒−𝜆𝑎  𝑎 ≥ 𝑎∗       (discharging process)             (3 − 4𝑏) 

 
The critical epoch of flip is characterized by scale parameter, 𝑎∗.  One will note that, 0 ≤ 𝜒(𝑎) ≤ 1, in 
both instances.  This is necessary so that, at every point in cosmological time, 𝜒(𝑎) + 𝐾(𝑎) = 1, where,  
𝐾(𝑎), is the relative gravitational permittivity.  Equation, (3 − 4𝑎), was an equation that we worked 
with in reference [18], and assumed an increasing 𝜒(𝑎) with increasing cosmic scale parameter, “𝑎”.  
The, 𝜆, in equation, (3 − 4𝑏), is new, and is a parameter which needs to be determined, if we accept a 
decreasing 𝜒(𝑎) with increasing scale parameter, “𝑎”. 
 
We will assume that the universe is currently in the decay mode with respect to cosmic susceptibility.  
We found in reference [17], that, 𝜒0 = 𝜒(𝑎0 = 1) = .842 .  This left us with, 𝐾0 = 𝐾(𝑎0 = 1) = .158, 
such that, 𝜒 + 𝐾 = 1, is satisfied.  We therefore specialize equation, (3 − 4𝑏), to the present epoch and 
demand that, 
    

     . 842 = 𝑒−𝜆 1      (3 − 5) 
 
The solution is, 𝜆 = .1720.  Using this value in equation, (3 − 4𝑏), we can find the susceptibility going 
forward in cosmological time. 
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The physical motivation for a decreasing cosmic 𝜒(𝑎) with increasing scale parameter, “𝑎” , is not 
known.  A possible explanation is as follows.  As the scale parameter increases, we can expect more 
clumping of ordinary matter within regions of space where we have matter.  This will lead to higher local 
temperature in those regions, which in turn implies less local susceptibility, and less polarization, in the 
surrounding regions.  Higher temperature tends to frustrate, and disrupt, any macroscopic ordering of 
dipole moments.  Thus, if the local susceptibility goes down, then the smeared, cosmic average should 
also start to decrease.  There may be other reasons for a decrease in 𝜒(𝑎) for an increase in scale 
parameter, but this one comes to mind as being very plausible. 
 
Coming back to our scaling laws, which is given by equation, (3 − 3𝑎), for dark matter, and, by 
equation, (3 − 3𝑏), for dark energy,  we are now in a position to come up with an alternative version to 
equation, (2 − 6).  This version will reflect the new assumed scaling behavior.  In place of equation, 
(2 − 6), we now consider 
 
𝐻2 = 8𝜋𝐺𝜌/3                            (3 − 6) 

      = 𝐻0
2 [𝛺𝑅,0 𝑎−4 + 𝛺𝑂𝑀,0 𝑎−3 + 𝛺𝐷𝑀,0 (𝜒/𝜒0) (𝐾0/𝐾) 𝑎−3 + 𝛺𝐷𝐸,0 (𝐾0/𝐾) 𝑎−3 − (𝛺0 − 1) 𝑎−2] 

 
The values for, 𝛺𝑅,0 , and 𝛺𝐷𝐸,0, remain as before.  We have broken up, 𝛺𝑀𝐴𝑇𝑇𝐸𝑅 ,0, in equation (2 − 6),  

into two components, an ordinary matter component, 𝛺𝑂𝑀,0 , and a dark matter component, 𝛺𝐷𝑀,0 , as 

both now scale differently, as indicated in equation, (3 − 6).  We saw that numerically, 𝛺𝑀𝐴𝑇𝑇𝐸𝑅 ,0 =

.3106.  We will assume that, 𝛺𝑂𝑀,0 = .0486, as indicated by the latest Planck Collaboration [19-21].  
This fixes the dark matter density parameter as, 𝛺𝐷𝑀,0 = (.3106 − .0486) = .2620.  We now have all 

the density parameter coefficients, which are needed for an evaluation of the right hand side of 
equation, (3 − 6). 
 
The right hand side of equation, (3 − 6), also depends on 𝜒(𝑎), and 𝐾(𝑎).   We assume equation, 
(3 − 4𝑏), holds for, 𝜒(𝑎), with 𝜆 = .172.  The 𝐾(𝑎) is then found using, 𝐾(𝑎) = 1 − 𝜒(𝑎).  The values 
for, (𝜒0, 𝐾0) = (.842, .158), are as found in reference [17].  Because the right hand side of equation, 
(3 − 6), is a complicated function of scale parameter, “𝑎”, we set up a table and step through various 
“𝑎” values.  The goal is to find that value of scale parameter, 𝑎3, such that the right hand side of 
equation (3 − 6) vanishes.  That is the point where CMB expansion turns into CMB contraction.  This we 
do next.  The results are presented in table form, Table 1. 
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In Table 1, column 3 is radiative scaling, column 4 represents ordinary matter scaling, column 5 is dark 
matter scaling, and column 6 reflects dark energy scaling.  The curvature scales as in column 8, and in 

column 9, the final column, we have the ratio, 𝐻2/𝐻0
2 , as determined by equation, (3 − 6).  One will 

notice, that 𝐻2 goes from a positive value to a negative value around, = 87.6 .  The critical epoch, 𝑎3, 
must, therefore, be close to this value.  We have determined the point where expansion turns to 
contraction for the CMB radiation.  The Hubble radius will have expanded to roughly 87.6 times its 
current value, and the CMB temperature will drop to approximately, 1/87.6 times its current value, 
which is, 𝑇0 = 2.725. 
 
Why the numbers line up at 𝑎3 = 87.6 is unknown.  To us, it would seem analogous to asking why water 
boils at 100 degrees Celsius at atmospheric pressure.  It just does.  The CMB radiation only has so and so 
much energy, or stored work, at its disposal for expansion and then contraction.  That is why it stops 
expansion at this temperature, and starts to contract.  Looking at equation, (3 − 1), it is very clear that 
the final lowest temperature determines the total amount of work done, as well as the final CMB 
volume.  The steam has run out. 
 
We close with a quick calculation, a crude estimate really, of the efficiency of the Carnot cycle for the  
CMB radiation, found in WMAP /Planck temperature maps.  Using equation, (3 − 2), we find that 
 

𝑒𝐶𝐴𝑅𝑁𝑂𝑇 = (1 − 𝑇𝐶/𝑇𝐻) 

        = (1 − (2.725/87.6) (1/3.01 𝐸27)) 

        = (1 − 1.0335 𝐸 − 29)   (3 − 7) 

 
We see that the deviation from 100% efficiency, i.e., (1 − 𝑒𝐶𝐴𝑅𝑁𝑂𝑇), is a mere, 1.0335 𝐸 − 29.  This 
heat cycle is extremely efficient.  This is a number, for which the significance is unknown, if it even has a 
special significance. 

TABLE 1 Susceptibilty Decay Model

1 8.42E-01 9.15E-05 0.0486 2.62E-01 6.91E-01 1.802E-03 1.000E+00

2 7.09E-01 5.72E-06 6.08E-03 1.50E-02 4.69E-02 4.505E-04 6.750E-02

5 4.23E-01 1.46E-07 3.89E-04 2.89E-04 1.51E-03 7.208E-05 2.120E-03

10 1.79E-01 9.15E-09 4.86E-05 1.07E-05 1.33E-04 1.802E-05 1.743E-04

20 3.21E-02 5.72E-10 6.08E-06 2.04E-07 1.41E-05 4.505E-06 1.588E-05

30 5.75E-03 1.13E-10 1.80E-06 1.05E-08 4.07E-06 2.002E-06 3.876E-06

40 1.03E-03 3.58E-11 7.59E-07 7.91E-10 1.71E-06 1.126E-06 1.342E-06

50 1.84E-04 1.46E-11 3.89E-07 7.25E-11 8.74E-07 7.208E-07 5.418E-07

60 3.30E-05 7.06E-12 2.25E-07 7.52E-12 5.06E-07 5.006E-07 2.300E-07

70 5.91E-06 3.81E-12 1.42E-07 8.48E-13 3.18E-07 3.678E-07 9.229E-08

87.5 2.92E-07 1.56E-12 7.25E-08 2.14E-14 1.63E-07 2.354E-07 1.790E-10

87.6 2.87E-07 1.55E-12 7.23E-08 2.10E-14 1.62E-07 2.348E-07 -8.972E-11
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IV. Summary and Conclusions 
We have shown how it is possible to create a closed universe using a cosmic susceptibility model with 

unconventional scaling behavior for dark matter and dark energy.  Utilizing a decreasing value for, 𝜒(𝑎)̅̅ ̅̅ ̅̅ , 
with an increase in cosmological time, we find that eventually the Hubble constant vanishes, 𝐻 = 0 and 

�́� > 1, which would suggest a big bounce from expansion to contraction.  Moreover, if we use a specific 

crude model of decay for 𝜒(𝑎)̅̅ ̅̅ ̅̅ , given by equation, (3 − 4𝑏), then the universe will start to contract in 
short order, relatively speaking, i.e., when 𝑎3 = 87.6.  This surprising value depends on the decay model 
chosen, and other decreasing susceptibility models can be entertained, which will lead to a different but 
inevitable outcome, namely, that the universe will eventually reach a point where it will experience a big 
bounce (crunch) and start to contract. 
 
We have also calculated a specific value for the curvature of space.  We believe that in the present 
epoch, the total curvature reads, 𝛺0 ≡ 𝜌0/𝜌𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿,0 = 1.001802.  This is a value well within current, 

observational bounds,  𝛺0 = 1.00231−0.0054
+0.0056  .  This value is so close to unity that one may assume 

flatness, as in the 𝛬𝐶𝐷𝑀 model.  We did not do so here.  Instead, we assumed that this deviation from 
flatness is very real.  The above value was based on using an established result from a previous work 
[17], namely that the observable Hubble radius equals, 𝑅0 = 3.217 𝐸27 𝑚𝑒𝑡𝑒𝑟𝑠.  See equation, 
(2 − 12), which relates curvature to radius in the present epoch, assuming a closed universe where, 
𝑘 = 1. 
 
We built upon our heat engine model for the cosmos.  The present voids in the universe, filled with CMB 
radiation, our thermodynamic “system”, follow collectively a Carnot cycle where we have four separate 
processes.  These are isothermal expansion (from point 1 → 2), followed by adiabatic expansion (from 
point 2 → 3) , followed by isothermal contraction (from point 3 → 4) , followed by adiabatic contraction 
(from point 4 → 1), bringing us back to our original starting point.  See Figure 1.  The voids interact with 
the cooler regions of space, the “surroundings”, i.e. exchange heat energy, in the processes from points, 
1 → 2, and from point 3 → 4.  We have an increase in entropy into the voids from points, 1 → 2, and an 
increase in entropy into the surroundings from points, 3 → 4.  The two are unequal in magnitude by 
equation, (3 − 1).  For a closed cycle, we can define a specific amount of work done, which is the area 
enclosed by the loop in Figure 1.  We can also define a specific efficiency, equation, (3 − 2).  The CMB 
radiation, we argued, must do actual physical work in expanding and contracting.  The heat transfer into 
the voids, from points, 1 → 2, and the heat transfer out of the voids, from points, 3 → 4, is a necessary 
ingredient in defining a specific amount of work done.  Without it, no work would be possible, as we 
require an area, which is enclosed by a loop.  The isothermal process from points, 1 → 2, has been 
identified as the cosmic inflation phase.  Following the cycle, and using our crude decay model for 
cosmic susceptibility, we have found that the deviation from 100% efficiency is a mere, 1.033 𝐸 − 29, a 
ridiculously small amount.  See equation, (3 − 7).  Whether this result can be tied in to other 
cosmological ratios is unclear. 
 
Further observational work is needed to confirm that the universe is indeed closed.  Slight positive 
curvature (𝑘 = 1) is assumed but this has yet to be demonstrated.  Indeed, we are going very far out on 
a limb with this assumption.  The cosmic susceptibility model, which has been proposed, is also a reach, 
even though there is some physical motivation from previous work.  The specific assumed scaling laws 
for dark matter and dark energy, equations, (3 − 3𝑎), and (3 − 3𝑏), respectively, have to be verified 
observationally somehow.  Finally, other models for cosmic susceptibility decay can be entertained.  Our 
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decreasing 𝜒(𝑎)̅̅ ̅̅ ̅̅   function, with increasing scale parameter value, is but one function out of many, which 
leads to a very specific outcome.  With this particular choice of function, the universe will start to 
contract already when the universe is 87.6 times current Hubble radius.  Other choices for a cosmic 
susceptibility functional decrease will undoubtedly lead to different bounces, i.e., different turn around 
points, and new predictions for temperature and volume at point 3. 
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