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Reduction of flow compressibility with the corresponding ideally invariant helicities, universally for various
fluid models of neutral and ionized gases, can be argued statistically and associated with the geometrical
scenario in the Taylor-Proudman theorem and its analogues. A ‘chiral base field’, rooted in the generic
intrinsic local structure, as well as an ‘equivalence principle’ is explained and used to bridge the single-
structure mechanics and the helical statistics. The electric field fluctuations may similarly be depressed by
the (self-)helicities of the two-fluid plasma model, with the geometry lying in the relation between the electric
and density fields in a Maxwell equation.

I. INTRODUCTION

Compressible fluid models are the appropriate choice
and useful in describing the dynamics of neutral and
ionized gases when the kinetic effects are negligible
and when incompressibility approximation is inaccurate.
Lots of nice mathematical structures have been exposed
and powerful topological and geometrical tools developed
for hydrodynamics (HD).1,2 However, the study of what
a (controllable) quantity or property of the flow itself in-
fluences or controls the (degree) of the compressibility
of the flow, and then the physical consequences, appears
still much wanted. For example, (in)stability, relaxation
and heating are important topics of laboratory (espe-
cially fusion research) and space-/astro-physical plasma
studies on issues related to compression of flows and/or
with compressible fluid models,3–5 and, among many
other relevant works (e.g., Refs. 6–11), it has been
particularly concluded10 that cross and magnetic helic-
ities can influence the acceleration rate of charged par-
ticles, but the roles of compressibility and helicity have
not been clear enough, due to the possible limitations
of the analytical (Fokker-Plank phenomenology12) and
numerical model (incompressible magnetohydrodynam-
ics — MHD13): Compression is associated to the first-
order Fermi process and the electric-field to the second-
order one, then we can naturally ask whether and how
dynamically (from the first principle) the helicity affects
the compressibility and then the heating, as partially ad-
dressed in Ref. 14 where the internal energy (the work
part of the pressure) is equivalently described by the den-
sity fluctuations with the adiabatic relation used (see be-
low).

Another specific example is that the prediction of in-
verse magnetic helicity cascade was made from the in-
compressible MHD absolute equilibrium analysis,15 key
to modern nonlinear dynamo theory, but the robustness
with respect to the compressibility effect has not been
considered. It is not impossible that compressibility may
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change the picture. For instance, it can be argued14 that
the three-dimensional inverse energy cascade numerically
demonstrated16 (see also Ref. 17) for incompressible ho-
mochiral turbulence with positive definite helicity should
not present in the compressible setting. Indeed, while
most studies of helicities relevant to plasma turbulence
are on transport and dynamo issues, much less atten-
tion has been paid to the direct consequence on the flow
compressibility property, to our best knowledge. Some
numerical simulations7 were performed with the com-
pressible model, thus in a sense confirmed the robust-
ness, but with no consideration or clarification of the
compressibility effect; similarly, the stability analysis17,19

has not been well demonstrated in the compressible situ-
ation, with the longitudinal and transverse modes being
dynamically interacting. It will be more satisfying to
theoretically address the problems with some unity in
the treatment, with consistent conservation laws18. Note
that the notion of ‘flow compressibility’ in this note is
not that defined by ∂ρ/∂p through the state equation,
the latter of a gas is not indicated to be directly changed
when we say “compressibility reduction”: We mean, even
if the state equation is fixed, the strength of the fluctua-
tions of velocity divergence and of density is (relatively)
reduced.

It is indicated14 with the calculation extending that
of Kraichnan 20 by respecting the helicity that the latter
may reduce the HD compressibility (‘fasten the flow’),
and the preliminary numerical analysis21 appears to be
consistent with the indication even reasonably beyond
the postulated conditions for analytical calculations in
Ref. 14. Actually it is possible to show that some recent
numerical result of the Gross-Pitaevskii equation mod-
eling the low-temperature superflow or Bose-Einstein
condensate22 is also consistent with the ‘fastening’ no-
tion. Such statistical mechanics analyses applied to var-
ious fluid models14,15,23,24 however have not been me-
chanically associated with the geometry and/or topology
of the turbulence structures;1,25 for recent advancements,
particularly for the geometry and topology of extended
magnetohydrodynamics (MHD), c.f., Refs. 26 and 27;
and, for two-fluid plasma model (TFPM), see, e.g., Refs.
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28–30), which is the bigger point we also try to make, to-
wards a theory of statistical geometrical fluid mechanics
and a more fundamental approach to the relevant ap-
plied physical issues, such as the cosmic ray acceleration
and flow control (ranging from, say, civil engineering to
fusion).

Related to the united effects of both compressibility
and (magnetic/cross-)helicity in magnetohydrodynam-
ics, there have been many simulations, with, for exam-
ple, the observation of the ‘breakdown’ of cross-helicity
together with the increase of compressibility (conjec-
tured to be the spontaneous generation of magnetosonic
‘structures’)31 when the Hall term dominates the simu-
lated slice of magnetopause boundary layer in the equa-
torial plane, among other different interests,7,32,33 but
deriving the information about the partitions between
the longitudinal and transverse (with respect to the
wavevectors) modes requires extra efforts. The energy
transfer rates in compressible two-fluid plasmas have
been studied,34 but helicities were considered only in
the incompressible limit.35 Thus, we will also go beyond
XMHD to such compressible TFPM11 for a more compre-
hensive understanding of the helicity effects. Note that
recently 3He-rich solar energetic particle events associ-
ated to type III radio bursts and helical jets have been
observed at the Parker Solar Probe and near Earth,36 and
a theory explicitly with electric fields and flow structures
would be attractive.

II. STATISTICAL GEOMETRICAL FLUID MECHANICS

To prepare for later discussions, we first briefly review
the early approach to aeroacoustics of Kraichnan20 which
is recently updated for compressible helical turbulence.14

An ensemble theory is then proposed with the elements
of a chiral base field/flow, an equivalence principle and a
fastening notion for the compressibility reduction by the
corresponding helicities, in accordance with the indica-
tions from the absolute equilibrium results, universally
for various fluid models of neutral and ionized gases.

A. Basic and fundamental statistical analysis in retrospect

Kraichnan20 let u, ρ, η and c represent the velocity,
density, viscosity and velocity of sound in a compressible
flow, with the pressure p given by the adiabatic relation

p = c2ρ and ρ = ρ0e
ζ with an equilibrium ρ0. (1)

In this note, both c and ρ0 are unit (= 1), with appro-
priate choice of scales and units, but sometimes we still
let them present explicitly to be more physically sensible.
The equations of motion then write

∂tζ + ζ,αuα + uα,α = 0, (2)
∂tuλ + uσuλ,σ + c2ζ,λ − ηθλσ,σ = 0, (3)

where θαβ = uα,β + uβ,α − 2
3δ

α
βuσ,σ, (•),γ = ∂(•)/∂xγ .

Working in a cyclic box of dimension 2π with V = [0, 2π)3

and applying Fourier representation for all the dynamical
variables v(r) → v̂(k), say, u(r) =

∑
k û(k) exp{̂ik · r}

with î2 = −1, he constructs a phase space by the real and
imaginary parts of vs and showed that the flow in such a
phase space is incompressible, the Liouville theorem, in
the inviscid case. Kraichnan takes the ‘small-excitation’
approximation for the ideal invariant of total, kinetic plus

internal/potential (
∫ ρ

ρ0

p− p0
ρ2

dρ ≈ c2ζ2

2
for small ζ) (4)

mean energy per unit mass:

E =
⟨u2 + c2ζ2⟩

2
=

∑
k[ûλ(k)û

∗
λ(k) + c2|ζ̂(k)|2]
2

(5)

with ⟨•⟩ = 1
(2π)3

∫
V
•dV . E is not rigorously an ideal

(inviscid) invariant; but Kraichnan used it to approx-
imate the invariant total energy. Galerkin truncation,
say, imposing all modes with k = |k| greater than some
cut-off value K to be zero, is then performed, which does
not change the approximated conservation of energy due
to its being quadratic and diagonal in k.23 Reasoning
with the H-theorem, Kraichnan expects an ensemble of
systems tend towards an absolute statistical equilibrium
state. We remark that even if the Galerkin truncated
absolute equilibria were not fully realizable for various
reasons, they may still be valuable because the other ac-
tors (forcing and damping etc.) in turbulence may actu-
ally help the (quadratic) interactions to mix up the phase
space and thus the hypothesized (partial) thermalization
to the absolute equilibria being still relevant in appropri-
ate turbulence situations.

However, as in the incompressible case23, the helicity

H :=
⟨ω · u⟩

2
, with the vorticity ω = ∇× u, (6)

is also a working ideal barotropic invariant.25

The Helmholtz decomposition theorem can be
‘sharpened’ by further decomposing the transverse
(‘solenoidal’) velocity field into a left-handed and right-
handed chiral modes of sign-definite helicity intensity17

û(k) = û+(k)ĥ+(k) + û−(k)ĥ−(k) + û|(k)k/k, (7)

with îk × ĥs = skĥs (for î2 = −1) and s = ±, and that,

E =
1

2

∑
k

|û+|2 + |û−|2 + |û||2 + c2|ζ̂|2, (8)

H =
1

2

∑
k

k|û+|2 − k|û−|2. (9)

Following Kraichnan’s20 procedure, we obtained with the
canonical distribution ∼ exp{−(αE+βH)} the absolute-
equilibrium modal spectra14

U±
K(k) := ⟨|û±|2⟩ =

1

α± βk
, (10)

Z(k) := ⟨c2|ζ̂|2⟩ = 1

α
= ⟨|û||2⟩ =: U

|
K(k). (11)
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With vanishing β or H, these spectra present equiparti-
tion, just as Lee’s37,38 earlier incompressible result and
that of Kraichnan.20 As remarked in the introductory
discussions, it was observed14 that α in Eq. (11) should
be positive, thus no concentration at large scales for the
homochiral version of Eq. (10) with negative α, and thus
no indication of three-dimensional inverse energy cascade
as that for the incompressible model.16,17,38

For the application of the absolute equilibrium anal-
ysis besides the most conspicuous one of reasoning
the cascade/transfer direction such as that of magnetic
helicity,15 it deserves to digress to highlight the first us-
age by Lee37 himself who remarks:

In the case of a real fluid ... be represented by
a constant energy flow from small wave num-
ber regions to large wave number regions ...
this energy transfer makes it necessary that
the energy spectrum must be quite different
from the equilibrium case ... since this energy
transfer is only between different |k| values,
it is expected that all modes of Fourier com-
ponents of the same |k| values may be still in
energy equipartition.

Thus, he has explained the mechanism for the isotropy
notion which was only ‘hypothesized’ by Kolmogoroff. He
has also predicted energy equipartition between the mag-
netic and kinetic fields for MHD turbulence with neither
magnetic nor cross helicity (see below), and states

Similar arguments also lead to the conclusion
that both magnetic field and velocity field are
isotropic in the Kolmogoroff region.

These conclusions appear inconspicuous, because they
were long hypothesized and used a lot, but obviously
deep and hefty. Similarly, Kraichnan20 has not made a
very pronounced discovery for compressible turbulence,
but his analysis of the connection with real turbulence is
also fundamentally innovative. We know that both Lee’s
and Kraichnan’s spectra can be enriched by including the
constraints of corresponding helicities14,15,23 and can be
refined by applications of helical decomposition,38 which
means that the absolute equilibrium analysis is still call-
ing for keen applications and creative developments, thus
old-fashioned but forever young.

Now, the solenoidal-mode energy becomes larger than
the ‘acoustic’ one in the helical case,

U⊥
K := U+

K + U−
K > Z + U

|
K =: U∼

K . (12)

Comparing the helical and nonhelical cases, the interac-
tions for thermalization with helicity tend to reduce the
energy proportions of Z, U |

K and U∼
K , i.e., lowering the

energy of ‘noise’ (in the aeroacoustic context). Such sta-
tistical dynamical (thermalization) mechanism and con-
sequent property may be expected to persist for turbulent
flows in which the energy damping and injection mecha-
nisms are independent of helicity, but the discussions for

cases with forcing and dissipation, where other effects en-
ter (to assist or resist the mechanism) and other phenom-
ena mingle (to increase or decrease the property), should
of course be careful, as performed in Ref. 14. That is,
Eqs. (10,11,12) and their persistent residual in turbu-
lence mean the reduction by helicity of the compressive,
density and potential/internal-energy modes, thus of the
‘compressibility’ of flows. Or, in other words, the com-
pressible helical turbulence may be ‘fastened’, which is to
be further understood mechanically/geometrically below,
in a sense of statistical geometrical fluid mechanics.

Other thermalization residues, such as that related
to the “strong acoustic equilibrium”, i.e., the equiparti-
tion between the dilatational/compressive mode and den-
sity mode — also the pressure-potential/internal-energy
mode for the particular model analyzed here — as pre-
sented in the above spectra, helical or not, can also be
accordingly discussed;14 and, still more are to be dis-
covered with appropriate combination of tradition and
innovation.39

While the approach outlined in the above indeed helps
us thinking coherently, instead of being in a panic, when
confronted with a turbulence, the prediction such as that
from Eq. (12) for real turbulence is, strictly speaking, a
heuristic; thus, further or complementary investigations
must be performed as follows.

B. Chiral base flow/field, mean rotation and guiding
fields, and, the equivalence principle of helical turbulence

Central to the rotating HD is the Taylor-Proudman ef-
fect (TPE) which, for an incompressible flow (e.g., Chan-
drasekhar 40), states the asymptotic incompressible and
two-dimensional (2D) ‘horizontal’ velocity field uh in the
rotating plane, thus also 2D ‘vertical’ component uv with
the incompressible uh + uv. If the flow is compressible,
uv is three-dimensional (3D), as can be shown by extend-
ing straightforwardly the standard ‘dominant-balance-
fashion’ proofs, analytically or geometrically, as given in
Ref. 41 (see also Appendix A for the relevant remark
of the compressible MHD analogue), the latter being
adopted below to the chiral base flow, to be introduced,
to demonstrate the picture of our ‘fastening’ notion.
Thus, the compressible Taylor-Proudman limit results
in a two-component-two-dimensional coupled with one-
component-three-dimensional (2C2Dcw1C3D) u whose
spatial gradient matrix is uniformly of the real Schur
form or real Schur flow (RSF: c.f. Ref. 42 and references
therein, as well as Ref. 43 for applications of local RSF in
distinguishing shear and rotation). The component uh

however can be dilatational in the horizontal plane for
a general RSF which can also have nonvanishing helicity
(‘helical’).

Fig. 1 is for a helical RSF, termed the (giant/global)
chiral base flow/field [(g)CBF]: as we will see, a helical
RSF may be used for the (infinitesimal) neighbourhood
of a point or for some finite spatial region, or even the
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FIG. 1. The geometry of chiral base flow/field: Closed lines
are the (projected) horizontal vorticity or velocity streamlines,
perpendicular to which are the straight vertical ones. Screws
denoted by u (and a) are the helical streamlines of velocity
(and the vector potential of magnetic field b = ∇ × a) on
some vertical cylindrical surfaces. The velocity and vorticity
streamlines, knotted (as symbolized by a trefoil knot) or not,
may be closed at the boundary (periodic or at infinity) of or
inside the domain. Sketched are only some simple configu-
rations which typically represent the fastening scenario with
the ‘ropes’ and ‘screws’ of the streamlines. The black and
purple circles, enriching the fastening scenario, can be (the
projections of) either velocity or vorticity lines, thus no nota-
tion explicitly assigned, and extra fields of MHD, as already
partly described, are also presented for the case with aligned
Ω and B (Appendix A). The right panel adapts the schematic
diagram for the vorticity structure from Ref. 42.

whole domain, thus needing or not the prefix ‘(g)’ before
‘CBF’ depends on the situation; and, sometimes ‘(g)’ can
be neglected without confusion when the situation is self-
evident. Such CBF has uniformly, in the sub-region or
whole domain, ∂zuh = 0, i.e., ∂zux = ∂zuy = 0 with the
z-axis chosen to be the vertical one, thus the decompo-
sition of the vorticity ω = ∇×u presents the horizontal
component

ωh = (∂yuz,−∂xuz, 0) = ∇× uv (13)
lying in the x-y plane (loops with arrows) and the vertical
component

ωv = (0, 0, ∂xuy − ∂yux) = ∇× uh (14)
along the z axis (straight lines with arrows). Neither ∇·u
nor ∂zuz is required to vanish, but in the barotropic case,
both ωv and ωh are still ideally frozen-in to the flow as
a straightforward generalisation to the barotropic case is
possible from the incompressible case of Ref. 42 (whose
Fig. 1 is thus reproduced here in the right panel) with the
invariant average (over the volume V) helicity density, or
simply the helicity

H =
1

V

∫
ωv · uvd

3r, (15)

holding when there is no boundary contribution from in-
tegration by parts. Now, for given H, we introduce such
‘mean rotation’ rate Ω along the vertical direction that,
for the relative velocity

u′ = u−Ω× r = (ux + yΩ, uy − xΩ, uz)

[thus x′ = x+ yΩt, y′ = y− xΩt and z′ = z], the helicity
of ω′ = ∇× u′ vanishes, i.e.,

H′ =
1

2V

∫
ω′ · u′d3r = 0,

with Ω determined, from

ω ·u−ω′ ·u′ = Ω·[2u′+(r×ω′)] = Ω·[2u+(r×ω)] (16)

for general u and Eqs. (13,14) for CBF, by

H = Ω ·
∫
[2uv + r × (∇× uv)]d

3r

2V
. (17)

Our strategy is to reduce the relevant H effect on u =
u′+Ω×r to the Ω effect on the relative motion with no
helicity via “boost” to the rotating frame, for the CBF
such chosen, as generically existing in turbulence, that
the Ω is well-defined, with the integration in Eq. (17)
non-vanishing, say. The requirement of ‘slow’ relative
motion by Taylor,44 or the equivalent statement of ‘fast’
rotation, may be partly relaxed: For example, we can
add arbitrarily a gradient of potential ∇φ′ to u′ in Eq.
(19) below. The relative motion also forms a CBF, with

∇ · u′ = ∇ · u; ∂z′u′ = ∂zu, (18)

thus (13,14) for ω′.
In the CBF, for any material circuit c(t) with horizon-

tal projection area A(t) =
∮
c(t)

xdy−ydx, the circulation∮
c(t)

u · dr =

∮
c(t)

u′ · dr + 2ΩA (19)

is invariant, if the pressure term does not contribute (as
in the barotropic case). If

∮
c
u′ · dr varies compara-

tively slowly, A changes little, which is the geometrical
argument to prove the TPE by Taylor 44 for the two-
dimensionalization of incompressible rotating flows. We
now take the (projected) circuits in the compressible CBF
to be any of the velocity streamlines screwing on the
cylindrical surfaces and probably closing at infinity or
at the periodic boundary with finite circulation in the
stream-screw scenario,45 or, to be any of the horizontal
vorticity loops binding the vertical ones in the vortex-knot
scenario,25 both caricatured clearly in Fig. 1: A chang-
ing little geometrically demonstrates that the screws and
knots “fasten” the gas. Indeed, A → 0 ∀ c(t) results in

∂zuh → 0 and ∇h · uh := ∂xux + ∂yuy → 0, (20)
but with no explicit constraint on ∂zuz. (21)

The latter half of Eq. (20) implies that the horizontal
compressibility ∇h · uh may be reduced by (finite) ro-
tation, even for a time-dependent flow (Ref. 41, with
analogues for plasma flows and extensions for flows of di-
mensions d > 3). ∂zuz is not supposed to alter so much
as to fully compensate the divergence loss of the horizon-
tal flow; and, if the original large compression/expansion
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lies in the space perpendicular to the rotating plane,
enormous reduction of compressibility (thus the heating
rate10) may result.

H ̸= 0 is thus transformed to the rotation, through
Eq. (17), responsible for ‘fastening’ the above CBF with
TPE. In many discussions with a background rotation
Ω0 (e.g., Pouquet & Mininni 46), replacing the Ω in the
right hand side of Eq. (16) whose spatial integral van-
ishes, whatever the value of Ω0 does not change the helic-
ity, which suggests we should avoid the index ‘0’ in the
CBF Ω (and similarly B). The persistence or residue
of the effects of such a mechanism may actually be the
cornerstone of the helicity fastening principle of turbu-
lence: The flows present disorder, and the (g)CBF(-like)
structures may ‘emerge coherently’ (c.f., the remark on
coarse-graining below for this last phrase). Thus, with
the ubiquity of CBF (see below), a CBF ensemble is sup-
posed to be capable of representing the specific statistics
of the turbulence in terms of energy and helicity spectra.
Such a scenario may be viewed as the first step towards
an equivalence principle of chiral turbulence ensemble,
the possibility of which was speculated (42, footnote 6)
from the genericity of the 2C2Dcw1C3D structure re-
lated to the fact that the gradient of a vector field is
of real Schur form up to a local orthogonal transforma-
tion acting as an (improper) rotation, an element in the
so-called O(3) transformation group (c.f., Ref. 42 and
references therein.) Vanishing or any particular value
(from Galilean transformation) of local helicity density
should in general happen in isolated locations, with local
2C2Dcw1C3D structures being ubiquitously helical, thus
local CBFs. [Thus, as a side note, we remark that, for
the local dynamics, if the local CBF structures could be
treated reasonably isolated (a big ‘if’) and if the above
transformation via boost to the rotating frame is not for
a virtual, merely for simply picturing some more complex
scenario effectively, but actual realization, the horizontal
compressibility in the local real Schur frame would be sta-
tistically smaller than the vertical one. More definitely,
choosing for instance the variance as a meaningful sta-
tistical measure, we would expect, under the conditions
stated,

⟨|∂U/∂X|2⟩+ ⟨|∂V/∂Y )|2⟩)/2 < ⟨|∂W/∂Z|2⟩,

where X and Y are the horizontal coordinates of the local
real Schur frame and Z the vertical one, and, U , V and
W the corresponding velocity components.]

The idea of CBF “ensemble” is related to the ‘ran-
domness’ (varying in space and time) in the properties
of the CBFs and O(3) transformation elements, even for
a single isotropic turbulent flow. How coherent (g)CBFs
emerge and form an equivalent chiral ensemble requires
extra physical considerations (see below). The reduc-
tion to the CBFs’ mean rotations, rather than the mean
velocities analogous to Eq. (17), is due to the consid-
eration of nonrelativistic Galilean invariance. For he-
licity dynamics, the boost to rotating frame is nontriv-
ial, while the Galilean transformation is trivialized by

the Newtonian mechanics. This is akin but can be dif-
ferent to the situation where Kraichnan introduced the
random Galilean transformation, which “is constant in
space and time and has a Gaussian and isotropic distri-
bution over an ensemble of realizations”,47 while address-
ing the large-scale convection/sweeping issue (see also
Frisch48 and references therein for plenty of discussions
of random Galilean invariance). The randomness of the
Galilean transformation, with the velocity determined by
an equation analogous to Eq. (17) as mentioned in the
above, mainly lies in that of the formation and property
of ‘coarse-grained’ (see below for more definite meaning)
CBF itself, thus could also appropriately depend on space
and time. One however might be concerned by the ran-
domness associated with the scenario that the turbulent
fields might even be (multi-)fractal in the inertial range
or at infinite Reynolds number (see, e.g., Frisch48), thus
presumably with asymptotically broken invariance laws
(particularly here, the Kelvin theorem and its analogues:
c.f., Ref. 49 and references therein) that would strictly
hold in the ideal flows. Such a consideration does not
challenge the relevance of our discussions, because, for
instance, in the previous discussions, we can take the ma-
terial circuits to be initially nice (smooth or sufficiently
“regular” to ensure the applicability of the Kelvin theo-
rem in the Taylor-Proudman effect argument), guaran-
teeing the relevance of the physics derived from the in-
variance laws with the necessity of space-time transition
intervals to possibly reach an asymptotic deteriorating
rough/singular state. Also, the 2C2Dcw1C3D property
should hold locally almost everywhere, since possible the
singular point set (where the solution is “weak”) must be
of dimension less than 3, in the sense that the 3-space vol-
ume is zero (otherwise would result in infinite dissipation
rate), at each time. In the multi-field case, such as MHD
and beyond, the gradients of different fields require their
own (improper) rotations to reach the real Schur form,
thus we may say that the structures at different loca-
tions r are ‘similar’ up to O(3) × O(3) × ... with each
rotation of each field depending on the location, a kind
of ‘gauge similar structure’. Extending the above HD
discussions to plasma fluids, with the analogues of the
TPE,41 is straightforward, as already indicated in Fig. 1
for the case of aligned mean magnetic field B (for MHD:
otherwise, for XMHD and TFPM, the mean field corre-
sponding to the would-be ideally fronzen flux associated
to the invariant generalized helicity); see Appendix A for
a brief summary of the extension.

Constructing from the CBFs the solutions of turbu-
lence with some equivalence principle for particular pur-
poses is possible, but the substantiation is beyond the
analysis interest of this note. It is not the current pur-
pose to use phenomenological model for some quantita-
tive values, but such an objective is encouraged by the
universality and genericity of CBF structures remarked
in the above. For example, for isotropic turbulence, a
crude rudimentary model ensemble can be constituted by
(statistically50) identical CBFs equally distributed along
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all directions, each CBF characterized by the energy and
helicity spectra, and the turbulence to be an ‘ideal gas’ of
CBFs. That is, such a turbulence model can be accurate
at the level of energy and helicity. The underlying ‘equiv-
alence principle’ hypothesis here is that ‘gauge similarity’
of local real Schur field structures can be effectively re-
placed by (statistical) ‘gauge identity’ or much stronger
similarity (allowing still other possible freedoms of dif-
ferences that we are not interested in here) of (g)CBFs,
together with the removal of the interactions.

To be more definite and clear, we may write down
the following equivalence principles, roughly resembling
those of general relativity (GR),51 though the analogy is
not close: our purpose is for bridging the ‘fastened’ prop-
erty of the locally ubiquitous helical real Schur flow/field
structure, CBF, with that of the globally helical turbu-
lence, not for the geometrization of some force field (in
the local transformation, which indeed geometrizes the
flow dynamics but is not our current interest,52 between
the laboratory and the local real-Schur coordinates) as
the gravitation field in GR. Thus, a weak equivalence
principle is proposed with the statement that the statis-
tical properties at the level of energy and helicity (spectra)
of a turbulence can be represented by the CBFs with the
same energy and helicity as those of the former. And, a
stronger equivalence principle would be that other tur-
bulence statistics that we are interested in, besides the
energy and helicity, can also be represented by the CBFs.
We do not expect a strongly universal equivalence princi-
ple, but rather the dependence on different purposes. We
need only the weak one in this note, and further details of
the distributions for, say, an isotropic turbulence, can be
equipped with isotropic distribution of the orientation of
CBFs and identical amplitudes of the energy and helicity
spectra, sufficing for a kinetic description at such a level.

The phenomenology of the specific simple (minimal)
CBF ensemble theory for compressible helical turbulence
outlined in the above is dynamically favorable: For ho-
mogeneous turbulence, even though the local helicity
density ω · u varies over positive and negative values,
each effective CBF may be understood to be some kind of
“coarse-graining” (not necessarily simply over local spa-
tial domain, but could be over some phase space of some
parameters) of the original field with minute variations
of the helicity densities around the global value H, thus
it is reasonable to assume an ensemble of such CBFs for
our statistical geometrical fluid mechanics. For clarifi-
cation, we reiterate that “coarse-graining” here merely
means a way to extract or present the effective CBFs
from the self-organization transforming the ‘gauge sim-
ilarity’ to ‘gauge identity’; thus, it could be simple lo-
cal spatial averaging or filtering, modeling the possible
scenario of particular local CBFs of opposite signs of he-
licities grouping together to form gCBFs of helicity H
but could also be other operations in some phase space
to parameterize the self-organizing structures. For ex-
ample, it may be possible to group the Fourier modes
in such a way that each sub-set forms a CBF, and all

these CBFs are of helicity close to H and of weak mu-
tual interactions. A corresponding systematic approach
would be to design an appropriate CBF (of helicity H)
representation/decomposition technique for the (helical)
field. It is not impossible to go even further to describe
nonhomogeneous turbulence with some model of CBF
dynamics. Complexification of the ensemble to be more
realistic may also be made by enriching the distribution
of the properties of the CBFs and their interactions.

C. Plasma statistics and geometries within and beyond
compressible XMHD

The essential Fourier-mode-interaction and mechani-
cal/geometrical arguments for the fastening notion in the
last two sub-sections do not completely exclude the rel-
evance with laminar flows (such as the stability prob-
lem) but should be more effective in turbulence where
the interactions and CBFs are more active. And, with
the fluid mechanical/geometry, it is not surprising that
the fastening effect may work21,22 reasonably beyond the
very restrictive conditions assumed for the statistical cal-
culations for HD.14,20 Some relevant geometry of plasma
fluids having already been remarked, especially in the
Appendix A, we proceed to offer further statistical re-
sults and extra geometrical insights.

1. Compressible XMHD

Besides Eqs. (1,2), the XMHD equations in Alfvénic
units read

∂tu = −∇
[
Π+ u2/2 + (de∇× b)2/(2ρ2)

]
+

+u× (∇× u) + (∇× b)× b̈/ρ, (22)

∂tb̈ = ∇×
(
u× b̈

)
− di∇×

[
(∇× b)× b̈/ρ

]
+

+d2e∇× [(∇× b)× (∇× u) /ρ] ,(23)

with di and de being the ion and electron skin depths, Π
the enthalpy, and, for notational convenience,

b̈ := b+ d2e∇× (∇× b), ∇× ä = b̈. (24)

The Hamiltonian structure, the geometrical formula-
tion with two Lie-carried flux objects and topological
aspect connected to the Chern-Simons theory, all of
which unify different reduced models (such as the classi-
cal single-flow MHD, electron MHD, inertial MHD and
Hall MHD) within this framework, have been nicely re-
viewed in Ref. 24 where the incompressible absolute equi-
libria have been calculated as well. Here we focus on the
reduction of compressibility, i.e., the fastening notion.

We can check that Kraichnan’s examination of the
system and the final computation of absolute equilib-
rium analysis for HD, briefed in Sec. II A, apply also
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to XMHD, mutatis mutandis: We still have Eq. (4) for
the internal energy but should

add ⟨b2 + d2e(∇× b)2⟩
2

=
∑
k,s

ˆ̈
bsk

2(1 + d2ek
2)

to E (25)

in Eq. (8) for the (approximate) XMHD energy (with
ρ0 = 1). And, corresponding to Eq. (9), there are two
indeally invariant XMHD helicities, HM := ⟨ä · b̈+ d2eω ·
u⟩/2 and HC := ⟨2u · b̈+ diω · u⟩/2, thus

HM =
1

2

∑
k,s

(skd2e|ûs|2 + s|ˆ̈bs|2/k), (26)

HC =
1

2

∑
k,s

(ûs∗ˆ̈bs + c.c.+ skdi|ûs|2). (27)

From the canonical distribution ∼ exp{−(αE+βMHM +
βCHC)}, we have, besides the same Eq. (11) for density
and parallel/compressive modes,

U±
K(k) =

1

α± k(βMd2e + βCdi)−
β2
C

α
1+k2d2e

± βM
k

, (28)

Comparing Eqs. (28) and (11), we see, mostly easily by
letting βM = 0 but βC ̸= 0, or the other way round, the
increase of the proportion occupied by the vortical en-
ergy U⊥

K(k) in the total energy defined in the same way
by relation (12), or, in turn, the relative reduction of
the flow compressibility. Small-scale physics enter with
the di and de terms accompanied with k factors, indi-
cating the dependence of scales relative to the ion and
electron skin depths, di and de. We focus on the univer-
sal statistical energy-partition (between solenoidal and
compressibility-relevant modes) perperty and will not
delve into the sub-ion details (see, e.g., Ref. 53–56 for
relevant incompressible-case remarks on the reductions
to models such as Hall MHD, among others, and next
section on the simpler compressible MHD which is more
convenient for detailed discussions).

2. Compressible MHD

We now turn to the MHD equations which, besides
Eqs. (1,2), may be formally viewed as the limit of de → 0
and di → 0 from XMHD

∂tb−∇× (u× b) = 0, (29)

∂tu+ u · ∇u+ c2∇ζ +
∇× b× b

ρ0 exp{ζ}
= 0. (30)

Now the ideally invariant energy E , magnetic helicity HM

and the cross helicity HC are simply the limits of de → 0
and di → 0 from those of XMHD the latter two of which
are chosen particularly for such reductions in Ref. 24
from all the linear combinations of them. Accordingly,
the MHD absolute equilibrium modal spectra are reduced

from those of XMHD; for example, besides the same Eq.
(11) measuring the flow compressibility, we have

U±
K(k) := ⟨|û±|2⟩ =

4(αk ± βM )

(4α2 − βC
2)k ± 4αβM

, (31)

U±
M (k) := ⟨|b̂±|2⟩ =

4(αk)

(4α2 − βC
2)k ± 4αβM

, (32)

Since the incompressible-MHD result of Frisch et al.15

currently a main theoretical argument for dynamo and
precisely recovered in the above, is so familiar in the
field, we may need to mention that our result is new in
the sense that it is derived from the compressible MHD.
When, βM = βC = 0 for vanishing magnetic and cross he-
licities, we also recover Lee’s37 equipartition result. And,
the relatively simpler structure makes it appropriate to
discuss the helicity-effect result a bit more detailly and
extensively (touching some dynamo theory, besides the
fastening notion) as follows.

If βC = 0 (thus HC = 0), but βM ̸= 0 (thus HM ̸= 0),
we have (with obviously α > 0 for realizability of the
energies)

UM := U+
M + U−

M =
2

α± β2
M

αk

>
2

α
= U∼ = U⊥

K , (33)

indicating that the energy partition is favoring the mag-
netic, but not the kinetic vortical energy U⊥

K nor the
compressibility relevant energy U∼ (as the sum of the
parallel and density/potential energies), i.e., against all
the kinetic and potential energies, especially at small k:
The dynamo in such compressible case may be easier with
more ‘preys’.

When HC ̸= 0 (thus βC ̸= 0),

U±
K > U

|
K = Z = 1/α > 0, thus U⊥

K > U∼ (34)

even for βM = 0 with then U±
M = U±

K . Eq. (32) shows
cross-helicity also favors the partition to the magnetic en-
ergy. Since both magnetic and solenoidal kinetic modes
are strengthened, the only possibility is the reduction of
the compressive and density modes, in the fraction sense
or with fixed total energy (for normalization), say. The
remark on Ref. 31 in the introductory discussion should
not be taken as a clear evidence for this so far, and a
more careful check is wanted. Comparing the results with
vanishing and non-vanishing βM , we can infer that the
cross-helicity effect should be more pronounced in the
case without magnetic helicity, as the larger fraction of
the ‘dynamo’ effect of the latter is screened out.

Both the above two cases agree with the
compressibility-reduction/fastening notion. If the
kinetic and magnetic energy injections are different
when examining, say, the MHD cross-helicity ef-
fect, other effects may enter, requiring appropriate
normalizations for comparisons.

As emphasized in Ref. 55 within the incompressible
XMHD framework concening the nonlinear dynamical
chirality and the linear helical waves (see also Ref. 38
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for relevant remarks in the context of TFPM), confu-
sion with the dynamics of linear waves (Alfvénic, fast
and slow) should be avoided, but a prediction of non-
locally and nonlinearly reducing also the turbulent mag-
netoaeroacoustic ‘noise’, extended beyond the aeroacous-
tic noise discussed in Ref. 14, may be reasonable. Eqs.
(31,32) also indicate higher efficacy of cross-helicity at
larger-k regime where the dissipation of turbulence at
very large k however may enter to reduce or enhance
such nonlinear effect. The careful remarks in Ref. 14 for
turbulence (decay and others) in principle should still ap-
ply, though the very preliminary indirect and direct nu-
merical results21,22 do verified the explicitly visible per-
sistence of the above mode-interaction effects. Concern-
ing the energy of the electric field given by Ohm’s law
E = −v×b, it appears that we can not have clear simple
spectral formulae for use to conclude the helicity effect
(but see remarks below on the two-fluid model).

3. Compressible TFPM

In Eqs. (1,2), all the variables are indexed with
‘e(lectron)’ and ‘i(on)’ respectively for the two fluids,
thus it would not be appropriate for the acoustic ve-
locities and densities of them to be assigned with unit
normalization value (but the speed of light c here can
be!) That is, for χ = ‘e’ or ‘i’,

pχ = c2χρχ and ρχ = ρχ0e
ζχ , (35)

∂tζχ + ζχ,αuχα + uχα,α = 0. (36)
Similarly are the momentum equations, in which the elec-
tric and Lorentz force present: The inviscid version of Eq.
(3) includes additionally

ρχqχ
mχ

(E + uχ × b), (37)

where E is the electric field and m the mass, q the electric
charge. The Maxwell equation system (see below) instead
of whatever (generalized) Ohm’s law is directly coupled.
This is the most comprehensive model for us to study the
universality of the fastening effect of helicity in plasmas,
which however does not indicate that it is complete (as
will be remarked concerning the relativistic effect.)

a. Statistics We can check that all the considera-
tions for the absolute-equilibrium analysis presented in
Sec. II A assure it eligible to formally carry out the
corresponding calculations. Now the hypothesized ab-
solute equilibria are given by the canonical distributions
∼ exp{−(αE+βeHe+βiHi)} with the constraints of the
(approximate) invariant energy

E = ⟨E2 + b2 +
∑
χ

(ρ0χu
2
χ + c2χζ

2
χ)⟩/2 (38)

and the self-helicities, defined by the canonical momenta
Pχ := mχuχ + qχa,

Hχ := ⟨∇ × Pχ · Pχ⟩/2⟩ for χ = i and e, (39)

which can be represented, similar to Eqs. (8,9), in the
Fourier space with the Helmholtz and helical decomposi-
tions, resulting in, among others, the equipartitioned

Zχ(k) := ⟨c2χ|ζ̂χ|2⟩ =
1

α
= ⟨ρ0χ|ûχ||2⟩ =: U

|
χK(k), (40)

⟨|Ê|2⟩ = 1

α
or the finner ⟨|Ê±|2⟩ = ⟨|Ê||2⟩ =

1

α
. (41)

Note that the two relations in Eq. (41) should be used
exclusively, not simultaneously, and they do not contra-
dict: It is only that the relation between α and the global
invariants Eqs. (38,39) are quantitatively different for
the two relations.

We have resisted writing in detail all the solenoidal-
modal spectra (see Ref. 38 for results of the incompress-
ible two-fluid model), because the above equations in the
fashion similar to those in other one-fluid models should
be sufficient enough to indicate (and is easy, though te-
dious, to check) the solenoidal modes of magnetic and ve-
locity fields be relatively enhanced by the self-helicities,
or the compressive and density/internal-energy modes of
the two fluids be reduced, just like the neutral gas flows
discussed in Sec. II A. What is particularly new is that
the electric field fluctuations are also implied in the sim-
ilar way to be relatively reduced. Of course, the definite
effects in realistic situations (such as the cosmic ray ac-
celeration) should be treated more carefully with now
in the dynamics more working actors whose times scales
determine the physical relevance. What our somewhat
abstract analysis is merely to indicate the possibility and
the fundamental mechanism.

b. Geometry The geometrical scenario exposed in
Sec. II B and Appendix A for helicity reducing flow com-
pressibility associated to the Taylor-Proudman theorem
and its analog appears generic and obviously suitable,
with appropriate extensions, for more complex fluids, in-
cluding the XMHD and two-fluid plasmas. There how-
ever appears to be no such or other direct geometrical
mechanism responsible for the reduction of electric field
fluctuations by the self-helicity, which, if indeed, requires
us to make connection to the compressibility (reduction).
The explicitly E-related Maxwell equation with clear ge-
ometrical picture is the Gauss law, besides ∇ · b = 0,

∇ ·E =
∑
χ

qχ
mχ

ρχ or Ê| = −î
∑
χ

qχ
mχk|

ρ̂χ, (42)

stating (with unit electric dielectric coefficient in the ap-
propriate units and scales) that the electric displacement
flux out of a surface enclosing a volume is the sum of
the linear combination of masses (interpreted from the
particle number densities for computing the total charge
densities). If the density fluctuations of the two fluids
are (approximately) independent, as is the case for the
absolute-equilibrium ensemble, it is directly seen that the
variance of E| is accordingly also the linear combination
of those of the former. In other words, the fastening effect
on the density fluctuations, i.e., the geometrical confine-
ment on mass variation, presents directly in E|, and the
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nonlinear two-fluid dynamics tend to equi-partitionize
such an effect through the thermalization process. This
way, the fastening scenario presented in Sec. II A (now
generalized to TFPM) is then understood to be working
also on the electric field.

The neutrality condition ∇·E = 0 follows the infinite-
speed-of-light approximation in XMHD and its reduc-
tions; thus, the above understanding could reveal in such
models, only if those (generalized) Ohm’s laws some-
how reflect the mechanism. And, we can derive, from
Faraday’s and Ampere’s laws, the equations for b and
E with acoustic/wave operators on the left hand sides
and other “source” terms (which are not independent on
the left-hand-side variables, but just follow Lighthill’s57

‘acoustic-analogy’ terminology) on the right-hand sides,
as well as similar ones for the densities, ρχ, with now
the ‘Lighthill stress tensor’ being more complicated in-
volving extra electromagnetic fields. Lighthill’s acoustic
analogy has become the major approach to aeroacoustic
problems, but the turbulence noise issues are nonlinear
and so subtle, both theoretically and numerically, that
they are in general not trivially trackable by such (quasi-
)linear approach.58–61 Indeed, preliminary analysis ap-
pears to indicate that our helicity-fastening-effect result
is not directly obtainable from such an acoustic analogy
approach, details of which however is not the focus of
this note and will be communicated elsewhere.

III. FURTHER DISCUSSIONS

The background guiding field B0 in MHD removes
HM , but not HC , from the conservation laws.6,62 The rel-
evance of magnetic helicity in the presence of B0 depends
on how approximately HM is preserved or the time scale
of the term involving B0 that breaks the HM invariance,
which in a sense emphasizes the cross-helicity effect. It
is then reasonable to expect applications in much more
complex realistic situations, with all the caveats relevant
to the assumptions and approximations, and, other sub-
tleties such as the anisotropy issue, kept in mind. Actu-
ally, even when a solid-body rotation Ω0 presents with
σB0 = Ω0 and a real number σ ̸= 0, a ‘parallel helic-
ity’ HP = HC − σHM is invariant,62 which makes Eqs.
(31,32) and others, with βM = −σβC and βC replaced
by βP , still relevant and similar HP fastening effect fa-
vorable:

Q±
M (k) := ±1

k
U±
M (k) =

±4α

(4α2 − βP
2)k ∓ 4σαβP

, (43)

for the modal spectral density of each chiral sector of
magnetic helicity, indicates a possible dynamo due to
HP , in a way argued by Frisch et al. 15 and Pouquet et
al. 63 for the magnetic helicity inverse cascade (c.f., Ref.
38 for the correspondingly updated discussion with such
chirally decomposed finer structures). And, this dynamo
will also take energy from the compression and density

(or pressure) modes to fasten the flow. Similar discus-
sions apply to XMHD and the two-fluid model. Note
that the background fields introduce linear terms, thus
waves, but no change to the structures of the original
quadratic convolutions of the modes, thus the dynamical
properties of the latter are still all there; so, the back-
ground fields, just like the internal damping effects, add
complexities but do not completely sweep the physical
results discussed in the last sections out.

The screws work better than nails in joining, say, two
plates, and the well winded or knotted ropes bind things
better than arbitrary tangles. Fluids seem to be more
tameless to be fixed as solids. However, our analyses
show that the flow actually may be similarly subject
to the notion of “tightened up” by the helicity, in the
sense of bearing less proportions of compressibility rel-
evant fluctuations such as the compressive, density and
internal-energy modes, which can be associated via boost
to a rotating frame to the mechanics or geometry in the
TPE, with a scenario resembling the situation for solids.
The magnetic field, proportional to the gyrofrequency of
charged particles, can be regarded as a kind of macro-
scopic vorticity of the microscopic gyromotions, allowing
a unified view of all kinds of helicities for the multidisci-
plinary universal law of ‘fastening the gases’. Even more
systematic quantification of such a fastening notion, par-
ticularly the specific equivalence principle concerning the
CBF ensemble, would be promising for understanding
various relevant issues.

Ideal conservations of circulations and helicities also
present in the relativistic flows,64 however, the reduction
to rotation might not be complete for lack of the Galilean
invariance (Sec. II B), indicating the requirement of more
general considerations for a fundamental relativistic sta-
tistical geometrical fluid mechanics. This is important
also in practical usage, because, though many flow noise
or stability problems in civil engineering, rapid public
transportation and car transportation, and, aeronautics,
say, are well nonrelativistic, others, in particular of plas-
mas flows, in controlled fusion or astrophysics or space
physics (such as the cosmic ray and solar physics prob-
lems mentioned in Sec. I) require considering the (ex-
tremely) relativistic effects. The other promising branch
for extension and/or deeper exploration of the relevant
ideas is the quantum flow where other aspects of helicity
may be revealed by the (macroscopic) quantum effects,
as also partly indicated in the introductory discussions
and anticipated from the relevant analyses of neutral su-
perfluids and superfluid plasmas,67,68 being obviously of
high-tec industry and astrophysical (neutron stars, say)
applications as well.
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Appendix A: Magnetic helicity, relative vector potential and
mean magnetic field

First, we extend the analogue of TPE for MHD with
a strong background uniform magnetic field B to the
compressible case. In the incompressible case, Chan-
drasekhar 40 presented it in the ‘popular’ way (completely
abandoning the geometrical argument of Taylor 44), with-
out invoking the geometry of the Alfvén theorem as the
analogue of the Helmholtz-Kelvin theorems, with the re-
sult that (B ·∇)u = 0: for B lying in the z axis, ∂zu = 0.
Now, for the compressible but the barotropic case, with
a (and a′) in the Alfvén theorem∮

c(t)

a · dr =

∫
∂−1c(t)

b · ds = const. (A1)

replaced with u (and u′) in Eq. (19), and B with Ω
there, the same geometrical argument of Taylor 44 , with
A := (∇×)−1(2B) = (−yB, xB, 0) + ∇φ whose gradi-
ent of potential φ does not contribute to the loop in-
tegral, leads to the same compressible TPE formula as
in Eq. (20). Alternatively, in the analysis of Chan-
drasekhar 40 , an extra term B(∇ · u) transforms his Eq.
(83) to our Eq. (20). Actually, the treatment in terms of
differential forms,41 extending TPE to compressible and
higher-dimensional cases with the geometric notion, car-
ries over to the magnetic field corresponding to a 2-form
B = dA (thus the projected area in Taylor’s argument
naturally emerges). The emphasis here however is the
geometrization of the fastening notion with such geomet-
rical ‘screws’ and ‘ropes’ in the TPE mechanism:—

Now for the magnetic case, with the two-
dimensionality of the horizontal potential ∂zah = 0 and
the CBFs assumed to have the properties similar to
those in Sec. II, we can introduce B, from nonvanishing
magnetic helicity HM , as Ω in Eq. (17). Thus, the
above analogue of compressible TPE indeed geometrizes
the fastening effect of HM for such a CBF. Ω shall
not be aligned with B when we have the original
cross-helicity non-vanishing but want to make that of
the relative fields (u′ and b′) vanish. Alfvén’s theorem
again provides the geometrization of the fastening effect
with the compressible TPE and its analogue. We note
that in our CBF turbulence ensemble, the CBFs should
correspond to the dynamically important transient state

of the relaxation, the end of which, however, points to
(anti-)alignment between u and b (Alfvénicity). The
two states are different, though the (local) relaxation
can be fast65 and a mixture of them may appear in
various complex realistic situations (e.g., Ref. 66 for a
review in space science).

Just to reiterate, we have transformed the helicity-
effects (with or without B0 and/or Ω0: Sec. III) to pure
B-and/or-Ω-effect one. The generalizations of the above
discussions to CBFs of XMHD, or even two-fluid model,
are straightforward, with u and b replaced by the two
generalized momentums, whose curls (generalized vortic-
ities) are ideally frozen-in to two flows.
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