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ABSTRACT 

Within the framework of Nikiforov-Uvarov method, we obtained an approximate solution of the 

Schrodinger equation for the Energy Dependent Generalized inverse quadratic Yukawa potential 

model. The bound state energy eigenvalues for was computed for various vibrational and rotational 

quantum numbers. Special cases were considered when the potential parameters were altered, 

resulting into Energy Dependent Kratzer and Kratzer potential, Energy Dependent Kratzer fues 

and Kratzer fues potential, Energy Dependent Inverse quadratic Yukawa and Inverse quadratic 

Yukawa Potential, Energy Dependent Yukawa (screened Coulomb) and Yukawa (screened 

Coulomb) potential, and Energy Dependent  Coulomb and Coulomb potential, respectively. Their 

energy eigenvalues expressions and numerical computations agreed with the already existing 

literatures. 

1. INTRODUCTION 

Wave equations with energy dependent potentials have been in existence for over 80 years. They 

can be seen in relativistic quantum mechanics considering particle in an external electromagnetic 

field. [1-3]. Energy-dependent potential has been studied in nonrelativistic and relativistic quantum 

mechanics [4-10]. Recently, researchers have showed renewed interest in the study of Energy 

Dependent Potential (in both relativistic and non-relativistic regime), some of the study amongst 

others are; [11] studied the Schrödinger equation in D-dimensions for an energy-dependent 

Hamiltonian that linearly depends on energy and quadratic on the relative distance using the 

Nikiforov-Uvarov formalism.[12] showed the influence of the modification of the scalar product, 

found in the problems of the energy-dependent potential, on the physical properties of the 

harmonic oscillator in one dimension. More so, they discussed the effect of this change on the 

thermodynamic properties of the oscillator. [13] solved the Dirac equation for the energy-
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dependent pseudo-harmonic and Mie-type potentials under the pseudospin and spin symmetries 

using the supersymmetry quantum mechanics. [4] solved the Dirac equation for the energy-

dependent Yukawa potential including a tensor interaction term within the framework of the 

pseudospin and spin symmetry limits with arbitrary spin-orbit quantum number using the 

Nikiforov–Uvarov method. Ikot et al. [14] solved the energy dependent Kratzer potential within 

the framework of non-relativistic quantum mechanics. [15] generalized Schrodinger equations that 

include the position-dependent mass was solved for systems featuring energy-dependent 

potentials. [16] studied the Dirac equation for an energy-dependent potential in the presence of 

spin and pseudospin symmetries with arbitrary spin-orbit quantum number κ. [17] also solved the 

Dirac equation for the energy-dependent Coulomb (EDC) potential including a Coulomb-like 

tensor (CLT) potential was studied in the presence of spin and pseudospin symmetries with 

arbitrary spin–orbit quantum number k by [16]. This solution was achieved within the framework 

of the asymptotic iteration method. It is worthy to state here that to the best of our knowledge, no 

one can give a solid answer to the question “what is the most useful form for an Energy Dependent 

Potential(EDP)?” [16]. 

The generalized inverse quadratic Yukawa potential (GIQYP) is a superposition of the inverse 

quadratic Yukawa (IQY) and the Yukawa potential. It is asymptotic to a finite value as 𝑟 →  ∞ 

and becomes infinite at 𝑟 =  0 [18]. This potential has been solved within the framework of the 

Proper Quantisation Rule [19] and Eigenfunction was obtained via the Formula Method[20]. 

The Generalized inverse quadratic Yukawa potential model is of the form [18]       

𝑉(𝑟) = −𝑉0 (1 +
𝑒−𝛼𝑟

𝑟
)
2

         (1a) 

It has been noted that differences do not exist between the behavior of the modified Yukawa 

potential and the inversely quadratic Yukawa potential [21, 22] or the Yukawa potential [23]. Its 

application to diverse areas of physics has been of great interest concern in recent times [24-25].  

In addition, several quantum mechanical models have been studied extensively both in the 

relativistic and non-relativistic terrain by several authors[26-34]. 

The Energy Dependent Generalized inverse quadratic Yukawa potential model is of the form 



𝑉(𝑟, 𝐸𝑛,𝑙) = −
𝐴(1+𝜂𝐸𝑛,𝑙)𝑒

−2𝛼𝑟

𝑟2
−

𝐵(1+𝜂𝐸𝑛,𝑙)𝑒
−𝛼𝑟

𝑟
− (1 + 𝜂𝐸𝑛,𝑙)𝐶    (1b) 

    𝐴 = 𝐶 = 𝑉0 and  𝐵 = 2𝑉0  

The Generalized inverse quadratic Yukawa potential reduces to a constant potential when 𝐴 =

 𝐵 = 0.  

The study of dimensions plays an important role in many areas of physics and the extension of 

physical problems to higher dimensional space is of great interest. [34] noted that the exact 

solutions of both the relativistic and nonrelativistic wave equation with certain physical potential 

in higher dimensions are remarkably important not only in physics and chemistry, but also in pure 

and applied mathematics. 

The organization of the work is as follows: In the next section, we, the review of the NU In Sect. 

3, this method is applied method obtain the bound state solutions. . In Sect. 4, we obtain numerical 

results while in the final section. In Sect. 5 we discuss some special cases and in Sect. 6, we give 

the concluding remark. 

2. REVIEW OF NIKIFOROV-UVAROV METHOD 

The Nikiforov-Uvarov (NU) method is based on solving the hypergeometric-type second-order 

differential equations by means of the special orthogonal functions [35]. The main equation which 

is closely associated with the method is given in the following form [36-37] 

𝜓′′(𝑠) +
𝜏̃(𝑠)

𝜎(𝑠)
𝜓′(𝑠) + 

𝜎̃(𝑠)

𝜎2(𝑠)
𝜓(𝑠) = 0       (2) 

Where 𝜎(𝑠) and 𝜎̃(𝑠) are polynomials at most second-degree, 𝜏̃(𝑠) is a first-degree polynomial 

and  𝜓(𝑠) is a function of the hypergeometric-type. 

The exact solution of Eq. (2) can be obtained by using the transformation 

  𝜓(𝑠) =  𝜙(𝑠)𝑦(𝑠)          (3) 

This transformation reduces Eq. (2) into a hypergeometric-type equation of the form 

𝜎(𝑠)𝑦′′(𝑠) + 𝜏(𝑠)𝑦′(𝑠) + 𝜆𝑦(𝑠) = 0       (4) 



The function 𝜙(𝑠) can be defined as the logarithm derivative 

𝜙′(𝑠)

𝜙(𝑠)
=  

𝜋(𝑠)

𝜎(𝑠)
           (5) 

where 𝜋(𝑠) =  
1

2
[𝜏(𝑠) − 𝜏̃(𝑠) ]        (5a) 

with 𝜋(𝑠) being at most a first-degree polynomial. The second  𝜓(𝑠)  being 𝑦𝑛(𝑛) in Eq. (3), is 

the hypergeometric function with its polynomial solution given by Rodrigues relation 

𝑦(𝑛)(𝑠) =
𝐵𝑛

𝜌(𝑠)

𝑑𝑛

𝑑𝑠𝑛
[𝜎𝑛𝜌(𝑠)]         (6) 

Here, 𝐵𝑛 is the normalization constant and 𝜌(𝑠) is the weight function which must satisfy the 

condition 

(𝜎(𝑠)𝜌(𝑠))
′
= 𝜎(𝑠)𝜏(𝑠)         (7) 

𝜏(𝑠) =  𝜏̃(𝑠) + 2𝜋(𝑠)          (8) 

It should be noted that the derivative of ( )s  with respect to s  should be negative. The 

eigenfunctions and eigenvalues can be obtained using the definition of the following function 

( )s  and parameter , respectively: 

𝜋(𝑠) =
𝜎′(𝑠)−𝜏̃(𝑠)

2
±√(

𝜎′(𝑠)−𝜏̃(𝑠)

2
)
2

− 𝜎̃(𝑠) + 𝑘𝜎(𝑠)         (9) 

where 𝑘 = 𝜆 − 𝜋′(𝑠)                   (10) 

The value of k  can be obtained by setting the discriminant of the square root in Eq. (9) equal to 

zero. As such, the new eigenvalue equation can be given as 

𝜆𝑛 = −𝑛𝜏′(𝑠) −
𝑛(𝑛−1)

2
𝜎′′(𝑠), 𝑛 = 0,1,2,…        (11) 

3. BOUND STATE SOLUTION WITH ENERGY DEPENDENT GENERALIZED 

INVERSE QUADRATIC YUKAWA POTENTIAL IN D DIMENSION 

The radial Schrodinger equation in 𝐷  dimension can be written as [38-39]: 

[
𝑑2𝑅𝑛𝑙

𝑑𝑟2
−

2𝜇𝑉(𝑟)

ℏ2
−

(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4𝑟2
+

2𝜇𝐸𝑛𝑙

ℏ2
] 𝑅𝑛𝑙(𝑟) = 0     (12) 



where 𝜇 is the reduced mass, 𝐸𝑛𝑙is the energy spectrum,ℏ is the reduced Planck’s constant and 

𝑛 𝑎𝑛𝑑 𝑙 are the radial and orbital angular momentum quantum numbers respectively (or vibration-

rotation quantum number in quantum chemistry). Substituting equation (1) into equation (12) 

gives: 

[
𝑑2𝑅𝑛𝑙

𝑑𝑟2
−

2𝜇

ℏ2
(−𝑉0 (1 +

𝑒−𝛼𝑟

𝑟
)
2

(1 + 𝜂𝐸𝑛,𝑙)) −
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4𝑟2
+

2𝜇𝐸𝑛𝑙

ℏ2
] 𝑅𝑛𝑙(𝑟) = 0  (13) 

Simplifying further equation 13 becomes; 

[
𝑑2

𝑑𝑟2
−  

2𝜇

ℏ2
 (−

𝐴(1+𝜂𝐸𝑛,𝑙)𝑒
−2𝛼𝑟

𝑟2
−

𝐵(1+𝜂𝐸𝑛,𝑙)𝑒
−𝛼𝑟

𝑟
− (1 + 𝜂𝐸𝑛,𝑙)𝐶) −

(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4𝑟2
+

2𝜇𝐸𝑛𝑙

ℏ2
] 𝑅𝑛𝑙 = 0   (15) 

Employing the Pekeris type approximation scheme [40], which is given by   

1

𝑟2
=

4𝛼2𝑒−2𝛼𝑟

(1−𝑞𝑒−2𝛼𝑟)2
  and 

1

𝑟
=

2𝛼𝑒−𝛼𝑟

(1−𝑞𝑒−2𝛼𝑟)
        (14) 

equation 14 becomes; 

𝑑2𝑅𝑛ℓ(𝑟)

𝑑𝑟2
+

1

(1−𝑒−2𝛼𝑟)2
[
2𝜇(𝐸𝑛𝑙+𝐶(1+𝜂𝐸𝑛,𝑙))

ℏ2
(1 − 𝑒−2𝛼𝑟)2  +

4𝜇𝐵𝛼(1+𝜂𝐸𝑛,𝑙)𝑒
−2𝛼𝑟

ℏ2
(1 − 𝑒−2𝛼𝑟) +

 
8𝜇𝐴𝛼2(1+𝜂𝐸𝑛,𝑙)𝑒

−4𝛼𝑟

ℏ2
−

(𝐷+2ℓ−1)(𝐷+2ℓ−3)4𝛼2𝑒−2𝛼𝑟

4
] 𝑅𝑛ℓ(𝑟)     (16) 

Eq. (16) can be simplified into the form and introducing the following dimensionless abbreviations 

{
  
 

  
 −𝜀𝑛 =

𝜇(𝐸𝑛𝑙+𝐶(1+𝜂𝐸𝑛,𝑙))

2ℏ2𝛼2

𝛽 =
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2

𝜒 =
𝜇𝐵(1+𝜂𝐸𝑛,𝑙)

ℏ2𝛼

𝛾 =
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4 }
  
 

  
 

         (17) 

And using the transformation 𝑠 = 𝑒−2𝛼 𝑟  so as to enable us apply the NU method as a solution of 

the hypergeometric type  



𝑑2𝑅𝑛ℓ(𝑟)

𝑑𝑟2
= 4𝛼2𝑠2

𝑑2𝑅𝑛ℓ(𝑠)

𝑑𝑠2
+  4𝛼2𝑠

𝑑𝑅𝑛 ℓ(𝑠)

𝑑𝑠
       (18) 

𝑑2𝑅𝑛ℓ(𝑠)

𝑑𝑠2
+

1−𝑞𝑠

𝑠(1−𝑞𝑠)

𝑑𝑅𝑛ℓ(𝑠)

𝑑𝑠
+

1

𝑠2(1−𝑞s)2
[−𝑠2(𝜀𝑛 − 𝛽 + 𝜒) + 𝑠(2𝜀𝑛 + 𝜒 − 𝛾) − 𝜀𝑛]𝑅𝑛ℓ(𝑠) = 0 (19) 

Comparing Eq. (19) and Eq. (2), we have the following parameters 

 

{

𝜏̃(𝑠) = 1 − 𝑠
𝜎(𝑠) = 𝑠(1 − 𝑠)

𝜎̃(𝑠) = −𝑠2(𝜀𝑛 − 𝛽 + 𝜒) + 𝑠(2𝜀𝑛 + 𝜒 − 𝛾) − 𝜀𝑛

}     (20) 

Substituting these polynomials into Eq. (9), we get ( )s  to be 

𝜋(𝑠) = −
𝑞𝑠

2
± √(𝑎 − 𝑘)𝑠2 + (𝑏 + 𝑘)𝑠 + 𝑐       (21) 

where 

{
𝑎 =

1

4
+ 𝜀𝑛 − 𝛽 + 𝜒

𝑏 = −(2𝜀𝑛 + 𝜒 − 𝛾)
𝑐 = 𝜀𝑛

}         (22) 

 

To find the constant ,k  the discriminant of the expression under the square root of Eq. (21) must 

be equal to zero. As such, we have that 

𝑘±= −(𝜒 − 𝛾) ± 2√𝜀𝑛 (
1

4
− 𝛽 + 𝛾)        (23)  

Substituting Eq. (23) into Eq. (21) yields 

𝜋(𝑠) = −
𝑠

2
± [(√𝜀𝑛 +√(

1

4
− 𝛽 + 𝛾)) 𝑠 − √𝜀𝑛]      (24)  

From the knowledge of NU method, we choose the expression ( )s 
which the function ( )s  has 

a negative derivative. This is given by 



𝑘− = −(𝜒 − 𝛾) − 2√𝜀𝑛 (
1

4
− 𝛽 + 𝛾)        (25) 

with ( )s  being obtained as 

𝜏(𝑠) = 1 − 2𝑠 − 2 [(√(
1

4
− 𝛽 + 𝛾) + √𝜀𝑛)𝑠 − √𝜀𝑛]     (26) 

Referring to Eq. (10), we define the constant   as 

𝜆 = −
1

2
− (√(

1

4
− 𝛽 + 𝛾) + √𝜀𝑛) + (𝛾 − 𝜒) − 2√𝜀𝑛 (

1

4
− 𝛽 + 𝛾)                         (27) 

Substituting Eq. (27) into Eq. (11) and carrying out simple algebra, where  

𝜏′(𝑠) = −2(1 + (√(
1

4
− 𝛽 + 𝛾) + √𝜀𝑛)) < 0      (28) 

and 

𝜎′′(𝑠) = −2                     (29) 

We have  

𝜀𝑛 =
1

4
[
(𝑛+

1

2
+√

1

4
−𝛽+𝛾)

2

+𝛽−𝜒

((𝑛+
1

2
+√

1

4
−𝛽+𝛾))

]

2

                (30) 

Substituting Eqs. (17) into Eq. (30) yields the energy eigenvalue equation of the Energy Dependent 

Generalized Inverse Quadratic Yukawa Potential in 𝐷 dimension  in the form 

 

𝐸𝑛 ℓ = −𝐶(1 + 𝜂𝐸𝑛,𝑙) −
ℏ2𝛼2

2𝜇

[
 
 
 
 
 
(𝑛+

1

2
+√

1

4
− 
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2

+
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2
−
𝜇𝐵(1+𝜂𝐸𝑛,𝑙)

ℏ2𝛼

(𝑛+
1

2
+√

1

4
− 
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

]
 
 
 
 
 
2

 

  (31)  



The corresponding wave functions can be evaluated by substituting ( ) ( )s and s 
 from Eq. (24) 

and Eq. (20) respectively into Eq. (5) and solving the first order differential equation. This gives 

𝛷(𝑠) = 𝑠√𝜀𝑛(1 − 𝑠)
1

2
+√

1

4
−𝛽+𝛾

        (32) 

The weight function ( )s  from Eq. (7) can be obtained as 

𝜌(𝑠) = 𝑠2√𝜀𝑛(1 − 𝑠)
2√

1

4
−𝛽+𝛾

         (33) 

From the Rodrigues relation of Eq. (6), we obtain  

𝑦𝑛(𝑠) ≡ 𝑁𝑛,𝑙𝑃𝑛

(2√𝜀𝑛,   2√
1

4
−𝛽+𝛾)

(1 − 2𝑠)      (34) 

where  ,

nP
 

 is the Jacobi Polynomial. 

 Substituting 𝛷(𝑠)  𝑎𝑛𝑑  𝑦𝑛(𝑠) from Eq. (32) and Eq. (34) respectively into Eq. (3), we obtain 

𝜓𝑛(𝑠) = 𝑁𝑛,𝑙  𝑠
√𝜀𝑛(1 − 𝑠)

1

2
+√

1

4
−𝛽+𝛾

𝑃𝑛

(2√𝜀𝑛,   2√
1

4
−𝛽+𝛾)

(1 − 2𝑠)   (35) 

4. Special Cases (Deductions from Eq. (31)) 

In this section, we take some adjustments of constants in Eq. (1a and b) to have the following 

cases: 

 Kratzer Potential 

If 𝛼 → 0 and if set 𝐴 = −𝑉1, 𝐵 = 2𝑉1 and 𝐶 = −𝑉1Equation 1c reduces to  

𝑉(𝑟) =
𝐴(1+𝜂𝐸𝑛,𝑙)

𝑟2
−

𝐵(1+𝜂𝐸𝑛,𝑙)

𝑟
+ 𝐶(1 + 𝜂𝐸𝑛,𝑙)     (36) 

Equation(31) becomes the energy dependent Kratzer Potential in 𝐷 dimesnsions; 

𝐸𝑛 ℓ = 𝐶(1 + 𝜂𝐸𝑛,𝑙) −
 𝜇 𝐵2(1+𝜂𝐸𝑛,𝑙)

2

2ℏ2(𝑛+
1

2
+√

1

4
+ 
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2   (37)  



If we set 𝜂 = 0, the energy equation reduces to energy equation for Kratzer potential in 𝐷 

dimesnsions; 

𝐸𝑛 ℓ = 𝐶 −
𝜇𝐵2

2ℏ2(𝑛+
1

2
+√

1

4
+ 
2𝜇𝐴

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2                (38) 

Comments; Equation(38) is the Energy eigenvalue equation for the Kratzer potential in 𝐷 

dimensions. If  𝐷 = 3  reduces to energy equation for Kratzer potential in 3D, Eq. (45) is very 

consistent with the result obtained in Eq. (125) of Ref.[37]    

 Inversely Quadratic Yukawa Potential 

If   𝐵 = 𝐶 = 0 the potential (Equation 1a) reduces to the Inverse Quadratic Yukawa 

Potential[41]. 

𝑉(𝑟) = −
𝐴(1+𝜂𝐸𝑛,𝑙)𝑒

−2𝛼𝑟

𝑟2
         (39) 

𝐸𝑛 ℓ = −
ℏ2𝛼2

2𝜇

[
 
 
 
 
 
(𝑛+

1

2
+√

1

4
− 
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2

+
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2

(𝑛+
1

2
+√

1

4
− 
2𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

]
 
 
 
 
 
2

    (40) 

If we set 𝜂 = 0, the energy equation reduces to energy equation for Inverse Quadratic Yukawa 

Potential  in 𝐷 dimesnsions; 

𝐸𝑛 ℓ = −
ℏ2𝛼2

2𝜇
[
(𝑛+

1

2
+√

1

4
− 
2𝜇𝐴

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2

+
2𝜇𝐴

ℏ2

(𝑛+
1

2
+√

1

4
− 
2𝜇𝐴

ℏ2
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

]

2

                (41) 

Comments; Equation (41) is the energy equation for the Inverse Quadratic Yukawa Potential in  

𝐷 Dimensions. If   𝐷 = 3 , equation (41) reduces to the energy equation in 3D, which is identical 

to the results in; Eq. (37) of ref. [42], Eq.(18) of ref.[43] and Eq.(47) of ref.[44]. 

 Yukawa Potential 



If   and 𝐴 = 𝐶 = 0 the potential (Equation 1c) reduces to the Yukawa Potential[4]. [4] solved the 

Dirac equation for the energy-dependent Yukawa potential including a tensor interaction term 

within the framework of the pseudospin and spin symmetry limits with arbitrary spin-orbit 

quantum number. The limiting cases of the model was reduced to the energy-dependent Yukawa 

and Coulomb potentials, respectively. 

𝑉(𝑟) = −
𝐵(1+𝜂𝐸𝑛,𝑙)𝑒

−𝛼𝑟

𝑟
         (42) 

𝐸𝑛 ℓ = −
ℏ2𝛼2

2𝜇
[
(𝑛+

1

2
+√

1

4
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2

−
𝜇𝐵(1+𝜂𝐸𝑛,𝑙)

ℏ2𝛼

(𝑛+
1

2
+√

1

4
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

]

2

     (43) 

If we set 𝜂 = 0, the energy equation reduces to energy equation for Yukawa Potential  in 𝐷 

Dimensions;  

𝐸𝑛 ℓ = −
ℏ2𝛼2

2𝜇
[
(𝑛+

1

2
+√

1

4
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2

−
𝜇𝐵

ℏ2𝛼

(𝑛+
1

2
+√

1

4
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

]

2

      (44) 

Comments; Eq.(44) is the energy eigenvalue equation for the Yukawa potential in 𝐷 dimensions. 

If 𝐷 = 3, eq. (44) becomes identical with eqs.(87) and (15) reported in ref.[45] and [46] 

respectively. 

 Kratzer-Feus Potential 

if we set 𝐶 = 0, 𝛼 → 0 , eq.(1c) reduces to the  Coulomb plus Inverse-Square Potential[47-48] 

𝑉(𝑟) = −
𝐵

𝑟
+

𝐴

𝑟2
          (45) 

    𝐴 = 𝐶 = −𝑉1 and  𝐵 = 2𝑉1  

𝐸𝑛 ℓ = −
 2𝜇𝐵2(1+𝜂𝐸𝑛,𝑙)

2

ℏ2(2𝑛+1+√ 
8𝜇𝐴(1+𝜂𝐸𝑛,𝑙)

ℏ2
+(𝐷+2ℓ−1)2)

       (46) 

If we set 𝜂 = 0, the energy equation reduces to energy equation for Kratzer-Fues Potential  in 𝐷 

dimesnsions; 



𝐸𝑛 ℓ =
−2𝜇𝐵2

ℏ2(2𝑛+1+√ 
8𝜇𝐴

ℏ2
+(𝐷+2ℓ−2)2)

2        (47) 

Comments; Eq. (47) is also known as the Kratzer-Feus potential, this potential was studied by ref 

[48] in arbitrary dimensions. If we set ℏ = 𝜇 = 1,eq. (47) fully agrees with the result reported in 

eq. (28) of ref. [48]. Eq. (37) is also consistent with the result obtained in Eq. (15) of Ref [47].  

 Coulomb Potential 

If 𝐴 = 𝐶 = 0, 𝛼 → 0 the potential (Equation 1c) reduces to the Coulomb Potential[34] 

𝑉(𝑟) = −
𝐵

𝑟
           (48) 

𝐸𝑛 ℓ = −
 𝜇𝐵2(1+𝜂𝐸𝑛,𝑙)

2

2ℏ2(𝑛+
1

2
+√

1

4
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2       (49) 

If we set 𝜂 = 0, the energy equation reduces to energy equation for Coulomb Potential  in 𝐷 

dimesnsions; 

𝐸𝑛 ℓ = −
 𝜇𝐵2

2ℏ2(𝑛+
1

2
+√

1

4
+
(𝐷+2ℓ−1)(𝐷+2ℓ−3)

4
)

2       (50) 

Comments; Eq.(50)  is the energy equation  for Coulomb potential in 𝐷 Dimensions.  This result 

is consistent with the result obtained in Eq. (7.14) of Ref. [34]. 

5. DISCUSSION  

In our study, the energy eigenvalues of the Energy Dependent Generalized Inverse Quadratic 

Yukawa Potential (EDGIQYP) model were computed using Eq. (31), for different  values of the 

energy slope parameters given(𝜂) which are presented in Table 1-4 in 3D. When  𝜂 = 0 , the 

energy equation(31) reduces to the Energy for Generalized Inverse Quadratic Yukawa Potential 

(EDGIQYP) model, and the corresponding numerical eigenvalues presented in Tables1-4 for 𝜂 =

0 agrees perfectly with the result presented in Table 1 of ref.[18] in the absence of the energy 

dependence.  

We have plotted the shape of the Energy Dependent Generalized Inverse Quadratic Yukawa 

Potential (EDGIQYP) model in Figs. 1-2. This figure gives an insight into the behaviour of the 

potential. Also, the variation of the energy eigenvalues with different parameters such as 

Dimensions (𝐷) , coupling strength 𝑉0  and particle mass ( 𝜇) are shown in Figs. 7 – 12 



respectively, for various values of n and . In these figures, there is a decrease in energy 

eigenvalues as the potential strength increases (quasi asymptotic) in the ground state energy 

level.There was an increase in energy as dimensions’ increases for both the the ground state and 

first excite energy levels respectively. It’s evident also that as the energy slope parameter 

(for 𝜂 ≥ 0) increases the energy values increase too.  

In Figs. 3 and 4, The variation of the ground state (𝑛 =  0) energy level and first excited state 

(𝑛 =  1 state for various  values of the energy slope parameter(𝜂) as a function of 𝑙 were plotted. 

We choose 𝑉0 = 0.5 , and 𝛼 = 0.001 in 3𝐷. It was observed  that as the rotational quantum number 

increases the energy increases for various values of 𝜂. In Figs. 5 and 6, the variation of the ground 

state (𝑛 =  0)  and first excited state (𝑛 =  1 states energy level for the different values of the 

energy slope parameter( for 𝜂 ≤ 0) as a function of 𝑙. We choose 𝑉0 = 0.5 , and 𝛼 = 0.001 in 

3𝐷. In the first excited it is observed that the energy becomes more negative (more attractive) for 

increasing 𝜂 and 𝑙. In the ground state, there existed an irregular behaviour as some points broke 

off due to the presence complex values which are unacceptable for bound state solutions. 

6. CONCLUSION 

In this study, the approximate bound state solutions of the Schrodinger equation with Energy 

Dependent Generalized Inverse Quadratic Yukawa Potential (EDGIQYP) model was obtained, via 

the Nikiforov-Uvarov method. The energy eigenvalues of was computed and special cases 

considered. Our results were consistent with the results in available literature. The shape of the 

potential model was plotted and this gives a better understanding to the behaviour of the potential 

model. The variation of the combined energy eigenvalue with the potential parameters 
(𝐷, 𝑉0  and 𝜇) were also plotted. It was discovered that the energy eigenvalues decrease as the 

various potential strength (𝑉0) increase in the ground state. The present study can be extended to 

scrutinize the thermodynamic properties of energy dependent systems [49-50]. 
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Table 1. The bound state energy levels (in units of fm−1) of the GIQYP for various values of 

𝑛, 𝑙 and for ℏ = 𝜇 = 1, 𝑉0 = 0.5 𝑎𝑛𝑑 𝛼 = 0.001 

𝑛 𝑙 

𝐸𝑛𝑙 

𝜂 = 0 

𝐸𝑛𝑙 

𝜂 = 0.3 

𝐸𝑛𝑙 

𝜂 = 0.4 

0 1 -0.68960354 -0.540881135 -0.506890535 

1 1 -0.571807619 -0.478344718 -0.45428128 

2 1 -0.537127791 -0.45790939 -0.436746066 

3 1 -0.522410094 -0.44889584 -0.428947535 

0 2 -0.563050854 -0.474126328 -0.450862611 

1 2 -0.53372401 -0.456181624 -0.435330535 

2 2 -0.520749321 -0.448032007 -0.42823602 

3 2 -0.513895979 -0.443670831 -0.424428249 

0 3 -0.532601875 -0.455583817 -0.434834803 

1 3 -0.520190696 -0.447728815 -0.427983558 

2 3 -0.513578774 -0.4434969 -0.424283086 

3 3 -0.509646332 -0.440963924 -0.422065022 

0 4 -0.519902567 -0.44757064 -0.427851451 

1 4 -0.513414329 -0.443405797 -0.424206841 

2 4 -0.509543853 -0.440906841 -0.422017192 

3 4 -0.507053026 -0.439293102 -0.42060214 

 

 

 

 

 

 

 



Table 2. The bound state energy levels (in units of fm−1) of the GIQYP for various values of 

𝑛, 𝑙 and for ℏ = 𝜇 = 1, 𝑉0 = 0.5 𝑎𝑛𝑑 𝛼 = 0.01 

𝑛 𝑙 

𝐸𝑛𝑙  

𝜂 = 0 

𝐸𝑛𝑙 

𝜂 = 0.3 

𝐸𝑛𝑙 

𝜂 = 0.4 

0 1 -0.677413346 -0.533276163 -0.500165487 

1 1 -0.561940037 -0.471450998 -0.448062163 

2 1 -0.528190997 -0.451485229 -0.430921372 

3 1 -0.514145048 -0.442922673 -0.423531854 

0 2 -0.55338674 -0.467294042 -0.444686873 

1 2 -0.524911823 -0.449816583 -0.429554613 

2 2 -0.512594774 -0.442124652 -0.422877789 

3 2 -0.506388292 -0.438268817 -0.419543693 

0 3 -0.523833592 -0.449241354 -0.42907784 

1 3 -0.512076165 -0.441846493 -0.422647408 

2 3 -0.506112992 -0.43812357 -0.419424336 

3 3 -0.502880256 -0.43616801 -0.417753812 

0 4 -0.511809303 -0.441701803 -0.42252723 

1 4 -0.505970901 -0.438047907 -0.41936201 

2 4 -0.502802325 -0.43612858 -0.41772203 

3 4 -0.501087669 -0.435171326 -0.416932685 

 

 

 

 

 

 

 



Table 3. The bound state energy levels (in units of fm−1) of the GIQYP for various values of 

𝑛, 𝑙 and for ℏ = 𝜇 = 1, 𝑉0 = 1 𝑎𝑛𝑑 𝛼 = 0.001 

𝑛 𝑙 

𝐸𝑛𝑙  

𝜂 = 0 

𝐸𝑛𝑙 

𝜂 = 0.3 

𝐸𝑛𝑙 

𝜂 = 0.4 

0 1 -2.9940045 -1.095985476 -0.953730354 

1 1 -1.4970045 -0.909932541 -0.820368029 

2 1 -1.2197845 -0.843534551 -0.771214559 

3 1 -1.122760125 -0.814219641 -0.749065228 

0 2 -1.302201872 -0.883072695 -0.80268238 

1 2 -1.155363939 -0.831952923 -0.763421879 

2 2 -1.093938232 -0.808367119 -0.745076568 

3 2 -1.062548532 -0.795710385 -0.735161319 

0 3 -1.143685817 -0.828799823 -0.761180195 

1 3 -1.088310737 -0.806742392 -0.743910796 

2 3 -1.059418944 -0.794772607 -0.73448474 

3 3 -1.042468019 -0.787587976 -0.728806789 

0 4 -1.085664968 -0.805938767 -0.743328245 

1 4 -1.057929862 -0.794305782 -0.734144741 

2 4 -1.041548733 -0.787294122 -0.728592128 

3 4 -1.031076397 -0.782753693 -0.724989228 

 

 

 

 

 

 

 



Table 4. The bound state energy levels (in units of fm−1) of the GIQYP for various values of 

𝑛, 𝑙 and for ℏ = 𝜇 = 1, 𝑉0 = 1 𝑎𝑛𝑑 𝛼 = 0.01 

𝑛 𝑙 

𝐸𝑛𝑙 

𝜂 = 0 

𝐸𝑛𝑙 

𝜂 = 0.3 

𝐸𝑛𝑙 

𝜂 = 0.4 

0 1 -2.940450000 -1.085469075 -0.945254024 

1 1 -1.470450000 -0.899255077 -0.811503393 

2 1 -1.198450000 -0.833117822 -0.762452911 

3 1 -1.103512500 -0.804156172 -0.740561286 

0 2 -1.279268339 -0.872291081 -0.793693742 

1 2 -1.135367365 -0.821569833 -0.754665745 

2 2 -1.075445609 -0.798394601 -0.73663523 

3 2 -1.045120125 -0.786188347 -0.727102695 

0 3 -1.123949057 -0.818442092 -0.752437387 

1 3 -1.069983263 -0.796805959 -0.735495805 

2 3 -1.042124745 -0.785295278 -0.726461699 

3 3 -1.026091933 -0.778625634 -0.721241813 

0 4 -1.067417989 -0.796021807 -0.734927697 

1 4 -1.040702385 -0.784852132 -0.726140704 

2 4 -1.025236123 -0.778359523 -0.721050146 

3 4 -1.015671687 -0.774402898 -0.717976939 

 

 

 

 

 

 



 

Figure 1: The variation of the Potential energy for various  values of the energy (𝐸𝑛𝑙) as a function 

of 𝑟. We choose 𝑉0 = 0.5 ,𝜂 = 0.3 and 𝛼 = 0.001. 

 

 

Figure 2: The variation of the Potential energy for various  values of the energy slope parameter 
(𝜂) as a function (𝑟). We choose 𝑉0 = 0.5 ,𝐸𝑛𝑙 = 0.1 and 𝛼 = 0.001. 



 

Figure 3: The variation of the ground state (𝑛 =  0) energy level for various  values of the energy 

slope parameter(𝜂) as a function of 𝑙. We choose 𝑉0 = 0.5 , and 𝛼 = 0.001 in 3𝐷. 

 

 

Figure 4: The variation of the first excited state (𝑛 =  1) energy level for various  values of the 

energy slope parameter(𝜂) as a function of 𝑙. We choose 𝑉0 = 0.5 , and 𝛼 = 0.001 in 3𝐷. 



 

Figure 5: The variation of the ground state (𝑛 =  0) energy level for various values of the energy 

slope parameter(𝜂 ≤ 0) as a function of 𝑙. We choose 𝑉0 = 0.5 , and 𝛼 = 0.001 in 3𝐷. 

 

 

Figure 6: The variation of the first excited state (𝑛 =  1) energy level for various values of the 

energy slope parameter(𝜂 ≤ 0) as a function of 𝑙. We choose 𝑉0 = 0.5 , and 𝛼 = 0.001 in 3𝐷. 



 

Figure 7: The variation of the ground state (𝑛 =  0) energy level for values of the energy slope 

parameter(𝜂) as a function of 𝐷. We choose  𝑙 = 1 , 𝑉0 = 0.5 , and = 0.001 . 

 

Figure 8: The variation of the First excited state (𝑛 =  1) energy level for values of the energy 

slope parameter(𝜂) as a function of 𝐷. We choose  𝑙 = 1 , 𝑉0 = 0.5 , and 𝛼 = 0.001  

 



 

Figure 9: The variation of the ground state (𝑛 =  0) energy level for various values of the 

Rotational Quantum Number(𝑙) as a function of 𝑉0. We choose = 0.3 , and 𝛼 = 0.001 in 3𝐷. 

 

Figure 10: The variation of the First excited state (𝑛 =  1) energy level for various values of the 

Rotational Quantum Number(𝑙) as a function of 𝑉0. We choose = 0.3 , and 𝛼 = 0.001 in 3𝐷. 

 



 

Figure 11: The variation of the ground state (𝑛 =  0) energy level for various values of the 

Rotational Quantum Number(𝑙) as a function of 𝜇. We choose = 0.3 , 𝑉0 = 0.5 and 𝛼 = 0.001 in 

3𝐷. 

 

Figure 12: The variation of the First excited state (𝑛 =  1) energy level for various values of the 

Rotational Quantum Number(𝑙) as a function of 𝜇. We choose = 0.3 , 𝑉0 = 0.5 and 𝛼 = 0.001 

in 3𝐷 


