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Abstract. In this paper we use a new method to study problems in the

additive number theory (see [1]). With the notion of circle of partition as a set
of points whose weights are natural numbers of a particular subset under an

additive condition we are almost able to prove the binary Goldbach conjecture.

1. Introduction

The Goldbach conjecture dates from 1742 out of the correspondence between
the Swiss mathematician Leonard Euler and the German mathematician Christian
Goldbach. The problem has two folds, namely the binary case and the ternary
case. The binary case ask if every even number ≥ 6 can be written as a sum of two
primes, where as the ternary case ask if every odd number ≥ 7 can be written as
a sum of three prime numbers. The ternary case has, however, been solved quite
recently in the preprint [2] culminating several works. Though the binary problem
remains unsolved as of now there has been substantive progress as well as on its
variants. The first milestone in this direction can be found in (see [6]), where it
is shown that every even number can be written as the sum of at most C primes,
where C is an effectively computable constant. In the early twentieth century, G.H
Hardy and J.E Littlewood assuming the Generalized Riemann hypothesis (see [9]),
showed that the number of even numbers ≤ X and violating the binary Goldbach
conjecture is much less than X

1
2+c, where c is a small positive constant. Jing-run

Chen [4], using the methods of sieve theory, showed that every even number can
either be written as a sum of two prime numbers or a prime number and a number
which is a product of two primes. It also known that almost all even numbers can
be written as the sum of two prime numbers, in the sense that the density of even
numbers representable in this manner is one [8], [7]. It is also known that there
exist a constant K such that every even number can be written as the sum of two
prime numbers and at most K powers of two, where we can take K = 13 [5].
In [1] we have developed a method which we feel might be a valuable resource and a
recipe for studying problems concerning partition of numbers in specified subsets of
N. The method is very elementary in nature and has parallels with configurations
of points on the geometric circle.
Let us suppose that for any n ∈ N we can write n = u+v where u, v ∈M ⊂ N then
the new method associate each of this summands to points on the circle generated
in a certain manner by n > 2 and a line joining any such associated points on the
circle. This geometric correspondence turns out to useful in our development, as
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the results obtained in this setting are then transformed back to results concerning
the partition of integers.

2. The Circle of Partition

Here we repeat the base results of the method of circles of partition developed
in [1].

Definition 2.1. Let n ∈ N and M ⊆ N. We denote with

C(n,M) = {[x] | x, y ∈M, n = x+ y}

the Circle of Partition generated by n with respect to the subset M. We will
abbreviate this in the further text as CoP. We call members of C(n,M) as points
and denote them by [x]. For the special case M = N we denote the CoP shortly as
C(n). We denote with ‖[x]‖ := x the weight of the point [x] and correspondingly
the weight set of points in the CoP C(n,M) as ‖C(n,M)‖. Obviously holds

‖C(n)‖ = {1, 2, . . . , n− 1}.

Definition 2.2. We denote the line L[x],[y] joining the point [x] and [y] as an axis
of the CoP C(n,M) if and only if x + y = n. We say the axis point [y] is an axis
partner of the axis point [x] and vice versa. We do not distinguish between L[x],[y]

and L[y],[x], since it is essentially the the same axis. The point [x] ∈ C(n,M) such
that 2x = n is the center of the CoP. If it exists then we call it as a degenerated
axis L[x] in comparison to the real axes L[x],[y]. We denote the assignment of an
axis L[x],[y] to a CoP C(n,M) as

L[x],[y] ∈̂ C(n,M) which means [x], [y] ∈ C(n,M) with x+ y = n.

Remark 2.3. In the following we consider only real axes. Therefore we abstain from
the attribute real in the sequel.

Proposition 2.4. Each axis is uniquely determined by points [x] ∈ C(n,M).

Proof. Let L[x],[y] be an axis of the CoP C(n,M). Suppose as well that L[x],[z] is
also an axis with z 6= y. Then it follows by Definition 2.2 that we must have
n = x + y = x + z and therefore y = z. This cannot be and the claim follows
immediately. �

Corollary 2.5. Each point of a CoP C(n,M) except its center has exactly one axis
partner.

Proof. Let [x] ∈ C(n,M) be a point without an axis partner being not the center
of the CoP. Then holds for every point [y] 6= [x] except the center

x+ y 6= n.

This is a contradiction to the Definition 2.1. Due to Proposition 2.4 the case of
more than one axis partners is impossible. This completes the proof. �
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Notations. We denote by

Nn = {m ∈ N | m ≤ n} (2.1)

the sequence of the first n natural numbers.

3. The Fundamental Theorem and its Conclusions

Theorem 3.1 (Fundamental). Let n, r,m ∈ N, M ⊆ N and C(n,M) be a non-
empty CoP with an axis L[x],[n−x] ∈̂ C(n,M) 1 . The CoP C(n+r,M) is non-empty
if and only if holds x+ r ∈M.

Proof. Since L[x],[n−x] ∈̂ C(n,M), x and n− x are members of M. And due to the
premise also x+ r ∈M. Then holds

n+ r − (x+ r) = n− x ∈M.

Ergo there is an axis

L[x+r],[n+r−(x+r)] = L[x+r],[n−x] ∈̂ C(n+ r,M)

and C(n+ r,M) is non-empty.
If on the other hand C(n,M) is an empty CoP then we look for an arbitrary

non-empty CoP C(n− r,M) with 2 ≤ r ≤ n− 6. Since C(n,M) = ∅ then holds for
any axis point [y] ∈ C(n− r,M) in virtue of the first part of this proof

y + r 6∈M or n− (y + r) = n− r − y 6∈M.

But the last relation is impossible due to

L[y],[n−r−y] ∈̂ C(n− r,M) 6= ∅.

It remains y + r 6∈M. �

Corollary 3.2. Let the requirements of Theorem 3.1 be fulfilled. If the base set
M is an infinite set and there exists a non-empty CoP C(no,M) then there exist
infinitely many positive integers n > no with non-empty CoPs C(n,M).

Proof. Let L[x],[n−x] be an axis of C(no,M). Then is due to Theorem 3.1 also
C(no + r1,M) non-empty with r1 > 0 and if x + r1 ∈ M. From this CoP we can
continue this process with r2 > 0 to the non-empty CoP C(no + r1 + r2,M). Since
the base set is an infinite set this process can be repeated infinitely many. �

Remark 3.3. In the sequal means P the set of only all odd primes.

Lemma 3.4. It is possible to construct all CoPs C(n,P) containing a certain mem-
ber [xo] with n ≥ xo + 3.

1The axis can also be a degenerated axis with x = n− x = n
2

if it exists.
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Proof. We start with the least generator no = xo + 3 of a CoP containing the axis
L[3],[xo] and yo = no−xo. Now we consider the axis L[yo],[no−yo] = L[yo],[xo] ∈̂ C(no,P).
In virtue of Theorem 3.1 holds also

L[y1],[n1−y1] = L[yo+do],[no−yo] ∈̂ C(no + do,P)

and therefore

L[yo+do],[no−yo] = L[y1],[xo] ∈̂ C(n1,P)

with y1 = yo + do and n1 = no + do, if do is the distance to the immediately
subsequent prime after yo. Thus we have found with C(no,P) and C(n1,P) two
CoPs both containing [xo]. Since y1 is the immediately subsequent prime after yo
there is no CoP C(n,P) with no < n < n1 containing [xo] because there is no axis
L[xo],[y] ∈̂ C(n,P) between

L[xo],[yo] ∈̂ C(no,P) and L[xo],[y1] ∈̂ C(n1,P).

By virtue of Corollary 3.2 we can repeat this procedure with y1, y2, . . ., d1, d2, . . .
and n1, n2, . . . infinitely many often and obtain a chain of axes

L[yo],[xo],L[y1],[xo],L[y2],[xo], . . .L[ys],[xo], . . .

of the chain of all CoPs

C(no,P), C(n1,P), C(n2,P), . . . C(ns,P), . . .

containing all the fixed point [xo]. �

By virtue of Lemma 3.4 let

Gx := {n ∈ 2N | [x] ∈ C(n,P)}, x ∈ P (3.1)

be the set of the generators of all CoPs containing the point [x] and

Gx(n) := {m ∈ Gx | m ≤ n} (3.2)

the set of such generators not greater than n. Further let be

G(n) :=
⋃

p ∈ P
3 ≤ p ≤ n− 3

Gp(n). (3.3)

Corollary 3.5. From Proposition 3.6 and (3.2) follows immediately

|Gp(n)| = π(n)− π(p).

Proposition 3.6. For all p ∈ P holds

Gp = P + {p} and Gp(n) = Pn + {p}
where Pn = P ∩ Nn.

Proof. Since [p] ∈ C(n,P) also holds [n− p] ∈ C(n,P) and hence n− p ∈ P and

Gp = {n ∈ 2N | n− p ∈ P}
= {q + p | q ∈ P}
= P + {p}.

It follows obviously that Gp(n) = Pn + {p}. �
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Lemma 3.7 (Main Lemma). Let Gx(2n) by virtue of (3.2) be the generator set of
CoPs containing the point [x] such that their generators are not greater than 2n by
n ∈ N | n ≥ 3. Then contains G(2n) as defined in (3.3) all even numbers between
6 and 2n inclusively.

Proof. (under construction) At first we prove that the following statement is equiv-
alent to the claim

∀n ∈ 2N | 6 ≤ n ≤ 2n holds C(n,P) 6= ∅. (3.4)

Let be

ω(n, p) =

{
0 for p > n− 3 ∨ n− p 6∈ P
1 for n− p ∈ P.

(3.5)

Then is obviously

‖C(n,P)‖ = {p ∈ P | 3 ≤ p ≤ n− 3, ω(n, p) > 0}
and for n ∈ N

Gp(2n) = {m ∈ 2N | 6 ≤ m ≤ 2n, ω(m, p) > 0}.
It follows that if C(2n,P) = ∅ then holds

ω(2n, p) = 0 for 3 ≤ p ≤ 2n− 3

and reversely. And this means that the sets Gp(2n) contain for no p the generator
2n and reversely that if C(2n,P) 6= ∅ then 2n belongs to at least one set Gp. The
equivalence between (3.4) and the claim of this lemma is demonstrated.

Now we assume that for the even number 2no holds that G(2no) contains all
even numbers between 6 and 2no − 2 except 2no. This would mean that holds
C(2no,P) = ∅ and C(n,P) 6= ∅ for even 6 ≤ n ≤ 2no − 2.
. . . (In future here is to do some efforts in order to replace this placeholder.)
Because there is a prime po and an even number do such that po − do is also prime
and it holds

[po − do] ∈ C(2no − do,P)

then holds in virtue of Theorem 3.1 that there is an axis

L[po],[2no−po] ∈̂ C(2no,P).

But this contradicts the assumption that C(2no,P) = ∅. Hence 2no is member of

G(2no) = {6, 8, . . . , 2no − 2, 2no} = 2Nno
\ {2, 4}

and the CoP C(2no,P) is non-empty. �

Since we have not made any restriction on the even number 2no this statement
is valid for all even numbers. Empirical calculations by the authors are resulted in
confirmation of this statement for even generators until more than 2 · 108.

Corollary 3.8. From Lemma 3.7 follows by n→∞
G(n) −→ 2N \ {2, 4}.

This means that there are no empty CoPs with the base set P for all even
generators ≥ 6 and proves the following Theorem.

Theorem 3.9 (Binary Goldbach Conjecture). For all even numbers ≥ 6 there
exists at least one representation as sum of two primes.
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