Deceasing of Gravitational Mass of the Magnesium subjected to an Alternating Magnetic Field of Extremely Low Frequency.

Fran De Aquino
Professor Emeritus of Physics, Maranhao State University, UEMA.
Titular Researcher (R) of National Institute for Space Research, INPE
Copyright © 2021 by Fran De Aquino. All Rights Reserved.
www frandeaquino.org
deaquino@eloonet.com.br

Here we propose a very simple experiment in order to check the decreasing of Gravitational Mass of the Magnesium subjected to an Alternating Magnetic Field of Extremely Low Frequency.

Key words: Gravitational Mass, Magnetic Field of Extremely Low Frequency, Magnesium.

INTRODUCTION

In this paper it is proposed a very simple experimental set-up in order to check the decreasing of Gravitational Mass of the Magnesium (Mg) subjected to an Alternating Magnetic Field of Extremely Low Frequency.

THEORY

In a previous paper [1] we shown that there is a correlation between the gravitational mass, \(m_g \), and the rest inertial mass \(m_{i0} \), which is given by

\[
\chi = \frac{m_g}{m_{i0}} = \left(1 - 2 \left[\sqrt{1 + \left(\frac{\Delta p}{m_{i0}} \right)^2} - 1 \right] \right)
\]

where \(\Delta p \) is the variation in the particle’s kinetic momentum; \(U \) is the electromagnetic energy absorbed or emitted by the particle; \(n_r \) is the index of refraction of the particle; \(W \) is the density of energy on the particle \((J/kg) \); \(\rho \) is the matter density \((kg/m^3) \) and \(c \) is the speed of light.

The instantaneous values of the density of electromagnetic energy in an electromagnetic field can be deduced from Maxwell’s equations and has the following expression

\[
W = \frac{1}{2} E^2 + \frac{1}{2} \mu H^2
\]

where \(E = E_m \sin \omega t \) and \(H = H \sin \omega t \) are the instantaneous values of the electric field and the magnetic field respectively.

It is known that \(B = \mu H \), \(E/B = \omega / k_r \) [2] and

\[
v = \frac{dz}{dt} = \frac{\omega}{k_r} = \frac{c}{\sqrt{\varepsilon_r \mu_r \left(1 + (\sigma / \omega \varepsilon_0)^2 \right)^2 + 1}}
\]

where \(k_r \) is the real part of the propagation vector \(k \) (also called phase constant); \(k = [k_r + ik_i] \); \(\varepsilon_r \), \(\mu_r \) and \(\sigma \) are the electromagnetic characteristics of the medium in which the incident (or emitted) radiation is propagating \(\varepsilon_r = \varepsilon_r \varepsilon_0 \); \(\varepsilon_0 = 8.854 \times 10^{-12} F/m \); \(\mu = \mu_r \mu_0 \) where \(\mu_0 = 4\pi \times 10^{-7} H/m \); \(\sigma \) is the electrical conductivity in S/m. From Eq. (3), we see that the index of refraction \(n_r = c/v \) is given by

\[
n_r = \frac{c}{v} = \frac{\varepsilon_r \mu_r}{2} \left(1 + (\sigma / \omega \varepsilon_0)^2 \right)^2 + 1
\]

Equation (3) shows that \(\omega / k_r = v \). Thus, \(E/B = \omega/k_r \), i.e.,

\[
E = \nu B = \nu B
\]

Then, Eq. (2) can be rewritten as follows

\[
W = \frac{1}{2} E^2 + \frac{1}{2} \mu H^2
\]

For \(\sigma >> \omega \varepsilon \), Eq. (3) gives

\[
\frac{c^2}{v^2} = \frac{\mu \sigma}{2 \omega} c^2
\]

Substitution of Eqs. (6) and (5) into Eq. (1) gives
Note that if \(H = H_m \sin \omega t \). Then, the average value for \(H^2 \) is equal to \(\frac{1}{2} H_m^2 \) because \(H \) varies sinusoidally \((H_m \) is the maximum value for \(H \)). On the other hand, we have \(H_{\text{rms}} = H_m \sqrt{2} \). Consequently, we can change \(H^4 \) by \(H_{\text{rms}}^4 \), and the Eq. (8) can be rewritten as follows

\[
\chi = \frac{m_g}{m_{\text{ref}}} = \left\{1 - 2 \left[\sqrt{1 + \left(\frac{\mu^4 \sigma}{4\pi \mu \rho^2 c^3} \right) H_{\text{rms}}^4} - 1 \right] \right\}
\]

(8)

\[
\chi = \frac{m_g}{m_{\text{ref}}} = \left\{1 - 2 \left[\sqrt{1 + \left(\frac{\sigma}{4\pi f \mu \rho^2 c^3} \right) B_{\text{rms}}^4} - 1 \right] \right\}
\]

(9)

SUGGESTED EXPERIMENT

Let us now consider an experiment where the light metal \textit{Magnesium} (Mg), whose characteristics are given by: \(\sigma = 2.2 \times 10^7 \text{ S/m} \); \(\rho = 1738 \text{ kg/m}^3 \), is subjected to an alternating magnetic field \(B_{\text{rms}} \) with Extra-low frequency, \(f \). According to Eq. (9), we have that

\[
\chi = \frac{m_g}{m_{\text{ref}}} = \left\{1 - 2 \left[\sqrt{1 + \left(\frac{5.1 \times 10^{-12} B_{\text{rms}}^4}{f} \right)} - 1 \right] \right\}
\]

(10)

For \(f = 0.1 \text{ Hz} \) Eq. (10) gives

\[
\chi = \frac{m_g}{m_{\text{ref}}} = \left\{1 - 2 \left[\sqrt{1 + 5.1 \times 10^{-11} B_{\text{rms}}^4} - 1 \right] \right\}
\]

(11)

For \(B_{\text{rms}} = 500 \text{ T} \) Eq. (11) gives

\[
\chi = -1.1
\]

(12)

Thus, we get

\[P_{(\chi)} = m_g(\chi g) = \chi m_{\text{ref}}(\chi g) = -1.1 m_{\text{ref}}(\chi g) \]

(13)
APPENDIX A: How the Inertial Properties of a Spacecraft can be strongly reduced.

Consider the schematic diagram of a spacecraft shown in Fig. 1. At the center of the spacecraft there is a Magnesium Core, subjected to an alternating magnetic field B_{rms} with Extra-low frequency, f. According to Eq. (10), the gravitational mass of the Magnesium core, m_{gC}, is expressed by the following equation:

$$m_{gC} = \left[1 - 2 \left(1 + \frac{5.1 \times 10^{-12} B_{rms}^4}{f} \right)^{-1} \right] m_{0C}$$ \hspace{1cm} (A1)

In the equation (A1), m_{0C} is the rest inertial mass of the Magnesium Core.

Magnesium Core, subjected to an alternating magnetic field, B_{rms}, of Extra-low frequency, f.

![Fig.1 – Schematic diagram of an Ellipsoidal Spacecraft](image)

Then, the total gravitational mass of the spacecraft, $M_{gS(total)}$, can be expressed by means of the following expression:

$$M_{gS(total)} = M_{gS} + m_{gC}$$ \hspace{1cm} (A2)

where M_{gS} is the total gravitational mass of the spacecraft without the gravitational mass of the Magnesium core. Assuming that density of external electromagnetic energy in M_{gS} is negligible, then we can write that $M_{gS} \approx M_{r0S}$, where M_{r0S} is the rest inertial mass of the spacecraft (without the Magnesium core). Thus, Eq. (A2) can be rewritten as follows:

$$M_{gS(total)} \approx M_{r0S} + m_{gC} =$$

$$\approx M_{r0S} + \left[1 - 2 \left(1 + \frac{5.1 \times 10^{-12} B_{rms}^4}{f} \right)^{-1} \right] m_{0C}$$ \hspace{1cm} (A3)

Therefore, for $\left(5.1 \times 10^{-12} B_{rms}^4/f\right) > 1$, we get

$$M_{gS(total)} \approx M_{r0S} - \left[1 + 5.1 \times 10^{-12} B_{rms}^4/f \right] m_{0C}$$ \hspace{1cm} (A4)

For example, if $M_{gS} \approx M_{r0S} = 10,000$ kg; $m_{0C} = 1,000$ kg; $f = 0.1$ Hz and, $B_{rms} \approx 1.189T$, then Eq. (A4) yields

$$M_{gS(total)} < 4$ kg

This means that the weight of the spacecraft becomes less than 40N.

Mach’s principle predicts that inertial forces acting on a particle are the result from the gravitational interaction between the particle and the other particles of the Universe. Thus, the inertial forces F_i acting on a particle are proportional to gravitational mass, m_i, of the particle, i.e., $F_i = m_i a_i$. [1]

This fact shows that the inertial effects upon a spacecraft can be strongly reduced because, as we have seen, the gravitational mass of the spacecraft $M_{gS(total)}$ can be strongly reduced ($F_i = M_{gS(total)} a_i$). In practice, it means that will be possible to become quasi-null the inertial properties of the spacecraft.

Under these circumstances, the spacecraft can describe incredible trajectories, and to make super accelerations and super decelerations in a very short time interval (<1s), without be destructed (See The Gravitational Spacecraft [3]).
APPENDIX B: Gravitational Motor with design similar to an Internal Combustion Engine

Based on the possibilities described in this paper, we show now how it is possible to convert gravitational energy into rotational kinetic energy by means of a Gravitational Motor, which design is similar to the Internal Combustion Engine (See Fig.2). In that Gravitational Motor the pistons are made of Magnesium (Mg), subjected to an alternating magnetic field, \(B_{rms} \), with Extra-low frequency, \(f \). According to Eq. (10), the gravitational mass of one piston, \(m_{gp} \), is given by

\[
\chi = \frac{m_{gp}}{m_{i0p}} = \left[1 - 2 \left\{ \frac{5.1 \times 10^{-12} B_{rms}^4}{f} + 1 \right\} \right] (B1)
\]

If \(f = 0.1 Hz \) and \(B_{rms} \cong 3.751 T \), then Eq. (B2) yields

\[
\chi = \frac{m_{gp}}{m_{i0p}} \cong -198 (B2)
\]

Then, the gravitational force, \(\vec{F} \), acting on one piston (See Fig.2) is

\[
\vec{F} = m_{gp} \vec{g} = \chi m_{i0p} \vec{g} = m_{i0p} (\chi \vec{g}) = m_{i0p} \vec{a} \text{,}
\]

and the average power is \(\bar{P} = \vec{F} \vec{v} \), where

\[
\vec{v} = \frac{1}{2} \sqrt{2 a H} = \sqrt{\chi g H / 2} \text{ (B3)}
\]

Thus, we can write that

\[
\bar{P} = \bar{F} \vec{v} = m_{i0p} \vec{a} \sqrt{\chi g H / 2} = m_{i0p} \sqrt{\chi g H / 2} \text{ (B4)}
\]

For \(g = 9.81 m/s^2 \), \(\chi = -198 \) (See Eq. (B2)), \(m_{i0p} = 5kg \) and \(H = 0.15m \) we get

\[
\bar{P} = 1.1 \times 10^5 W \cong 147HP \text{ (B5)}
\]

\(^1 \) Note that the acceleration \(\vec{a} \) has direction opposed to \(\vec{g} \), because \(\chi \) is negative (See B2).

Fig. 2 – Schematic diagram of a Gravitational Motor with design similar to the Internal Combustion Engine. Here the pistons are made with Magnesium. The Helmholtz Coils provide the alternating magnetic field \(B_{rms} \).
APPENDIX C: Gravitational Thruster of Fluids

In a previous paper [4] it was shown that, when the gravitational mass, \(m_{g1}\), of a plate is reduced by the factor \(\chi_1 = \frac{m_{g1}}{m_{i0}}\), then the gravity acceleration after the plate, \(g_1\), is reduced at the same proportion, i.e., \(g_1 = \chi_1 g\) where \(g\) is the gravity acceleration before the plate (See Fig. 4).

Consequently, after a second plate, with gravitational mass, \(m_{g2}\), the gravity becomes:
\[g_2 = \chi_2 g_1 = \chi_1 \chi_2 g,\]
where \(\chi_2 = \frac{m_{g2}}{m_{i02}}\). In a generalized way, we can write that after the \(n\)th plate the gravity, \(g_n\), will be given by
\[g_n = \chi_1 \chi_2 \chi_3 \cdots \chi_n g\]
(C1)

If \(\chi_1 = \chi_2 = \cdots = \chi_n = \chi < 1\), and \(n\) is odd then, the gravitational forces, \(F\), between a body B before the first plate and another body A after the \(n\)th plate are repulsive (See Fig.4), and given by
\[F = m_{g1}g_n = m_{gA}(\chi^n g) = m_{gA}\left(\frac{-GM_{gB}}{r^2}\right) = 4\chi^n G \frac{m_{gA}m_{gB}}{r^2}\]
(C2)

Fig. 3 - The gravity acceleration after the plate is \(g_1 = \chi_1 g\) where \(g\) is the gravity acceleration before the plate. The perpendicular axis of the plate can be in any direction.

Fig. 4 - The gravity after a battery of plates

This possibility shows that, by means of a battery of similar plates, we can make particles acquire enormous accelerations. In practice, this can lead to the conception of a Gravitational Thruster of Fluids (See Fig.5). In this case, the plates have the same dimensions (with the same inertial mass \(m_{i0}\)), and they are made of Magnesium, subjected to an alternating magnetic field, \(B_{rms}\), with Extra-low frequency, \(f\). If the gravitational masses of the plates are, \(m_{gp}\), then, according to Eq. (10), we can write that
\[\chi = \frac{m_{gp}}{m_{i0p}} = \left\{1 - 2 \sqrt{1 + \frac{5.1 \times 10^{-12} B_{rms}^4}{f}}\right\} \]
(C3)

If \(f = 0.1Hz\) and \(B_{rms} = 2.061 T\), then Eq. (C3) gives
\[\chi = m_{gp}/m_{i0p} \approx -577\]
(C4)

If \(g\) refers to the gravity produced by a sphere with inertial mass \(m_{i0} = 10Kg\), and \(M_g = m_{i0}\), at the distance \(r = 1cm\), then
\[g = GM_g/r^2 = 6.6 \times 10^{-6} m/s^2.\]
Thus, the gravity acceleration after the \(n\)th plate, \(g_n\), for \(n = 5\), will be given by
\[g_n = \chi^5 g = \left(-577\right)^5 g = +4.2 \times 10^3 m/s^2\]
(C5)

Fig. 5- Gravitational Thruster of Fluids

Note that this system can be modified to produce microgravity environments (See Fig. 5a). In a previous paper [5] we described another way to produce microgravity environments in order to “activate” the cellular autophagy. After an infection, autophagy can destroy bacteria and viruses.

Fig. 5a – Activation of cellular Autophagy in Human bodies.
APPENDIX D: Another type of Gravitational Motor

In Fig. 6, we show a schematic diagram of another type of Gravitational Motor, with different characteristics to the types previously proposed. Now the Gravitational Motor has 4 Gravity Control Cells (GCC), which can be made with plates of

Magnesium, subjected to an alternating magnetic field, \(B_{rms}\), with **Extra-low frequency**, \(f\). If the gravitational masses of the plates are, \(m\), then according to Eq. (10), we can write that

\[
\chi = \frac{m_{gD}}{m_{gop}} = \left\{1 - 2\left[\frac{5.1 \times 10^{-12} B_{rms}^2}{f} \right]^{-1}\right\} \quad (D1)
\]

If \(f = 0.1\, \text{Hz}\) and \(B_{rms} = 2.061\, \text{T}\), then Eq. (D1) yields the following value for the correlation factor \(\chi\):

\[
\chi = m_{gD} / m_{gop} \approx -57.7 \quad (D2)
\]

The Gravity Control Cells, GCC1, GCC2 and the GCC3 are placed below the rotor (See Fig. 6); GCC1 and GCC2 on the right and GCC3 on the left. Above the GCC1 the local gravity, \(g\), is intensified for \(g' = \chi_1 g\) where \(\chi_1 = -n\) and \(\chi = -1\) are the correlation factors for GCC1 and GCC2, respectively. Above the GCC3 the local gravity becomes \(g'' = \chi_3 g = -n g\), where \(\chi_3 = -n\). The function of GCC4 and GCC5 (See Fig. 6), is only to revert the gravity down to values very close to \(g\).

As the gravity acceleration on the left half of the rotor becomes \(g'' = -n g\) while the gravity acceleration on the right half of the rotor becomes \(g' = +n g\), the torque on the rotor is

\[
T = \left(-\vec{F} + \vec{F}'\right) \times \vec{r} = \left(-\frac{1}{2} m g \vec{g} + \frac{1}{2} m g \vec{g}'\right) \times \vec{r} \quad (D3)
\]

\((m_g \approx m_{gD}\) is the mass of the rotor), and the rotor spins with angular velocity \(\omega\).

Then, the average power, \(P\), of the gravitational motor is given by

\[
P = T\omega = n m_{gD} g \omega r \quad (D4)
\]

On the other hand, we have that

\[
g' + g = \omega' r \quad (D5)
\]

Therefore the angular speed of the rotor is

\[
\omega = \sqrt{2ng / r} \quad (D6)
\]

By substituting (D6) into (D4) we obtain the expression of the average power of the gravitational motor, i.e.,

\[
P = n m_{gD} g \omega r = m_{gD} \sqrt{2n^3 g^3 r} \quad (D7)
\]

Now consider an electric generator coupling to the gravitational motor in order to produce electric energy. Since \(\omega = 2\pi f\) then for \(f = 60\, \text{Hz}\) we have

\[
\omega = 120 \pi \text{rad/s} = 3600 \text{rpm} \quad (D8)
\]

Therefore for \(\omega = 120 \pi \text{rad/s}\) and \(\chi = \chi_3 = -n = -57.7\) (See (D2)) the Eq. (D6) tells us that we must have

\[
r = 2ng / \omega^2 = 0.0786m \quad (D9)
\]

Since \(r = R/3\) and \(m_{l} = \rho \pi R^2 h\) where \(\rho\), \(R\) and \(h\) are respectively the mass density, the radius and the height of the rotor then for \(h = 0.5m\) and \(\rho = 7800\, \text{Kg.m}^{-3}\) (iron) we obtain

\[
m_{l} = 75.69\, \text{kg} \quad (D10)
\]

Then Eq. (D7) gives

\[
P = 4.04 \times 10^4 \, \text{W} = 404\, \text{kW} = 541 HP \quad (D11)
\]

Thus, when coupled to a conventional generator of electrical energy, this Gravitational Motor can supply an amount of electrical energy of about

\[
0.9(4.04 \times 10^4 \, \text{W})(3600 \, \text{s}) = 1.3 \times 10^9 \, \text{j} = \approx 361\, \text{kWh}\text{ per hour} \quad (D12)
\]

This energy is enough to supply about 180 homes, each one with an average consumption of about 2kW per hour.

Note that this electrical energy is produced without the use of any type of fuel, because the energy, which moves the Gravitational Motor comes from Earth’s gravitational field, i.e., the Gravitational Motor converts directly energy from the

2 Assuming an efficiency of 90%.
3 In the US typical household power consumption is about 1.3 kW per hour.

Earth’s gravitational field into rotational mechanical energy.

Thus, the Gravitational Motors are similar to the turbines of the hydroelectric plants. While the turbines convert energy from the Earth’s gravitational field into rotational mechanical energy, by means of water of the rivers, this type of Gravitational Motors convert energy from the Earth’s gravitational field \textit{directly} into rotational mechanical energy, by using the GCCs.

Finally, note the \textit{small volume} of the rotor of this type Gravitational Motor, it shows that the total volume of the motor can be smaller than 1m³.

\[\chi = \frac{n}{r} \]

\[\chi = \frac{n}{r} \]

\[\chi = \frac{n}{r} \]

Fig. 6 – Schematic diagram (cross-section) of another type of Gravitational Motor.
APPENDIX E: Cooling and Heating Gravitational System

Consider the system shown in Fig. 7. It shows two spherical shells A and B connected by a tube; inside this system there is a liquid with density ρ. Bellow spherical shell A there is a plate (in red Fig.7) made of Magnesium, subjected to an alternating magnetic field B_{rms} with Extra-low frequency, f. According to Eq. (10), the gravitational mass, m_{gP}, of the Magnesium plate, is then given by

$$\chi = \frac{m_{gP}}{m_{0P}} = 1 - 2 \left(\frac{1}{1 + \frac{5.1 \times 10^{-12} B_{rms}^2}{f}} - 1 \right) \quad (E1)$$

If $f = 0.1 Hz$ and $B_{rms} = 2.061 T$, then Eq. (E1) yields the following value for the correlation factor χ:

$$\chi = m_{gP}/m_{0P} \simeq -57.7 \quad (E2)$$

In a previous paper [4] it was shown that, when the gravitational mass, m_g, of a plate is reduced by the factor $\chi = m_g/m_{0g}$, then the gravity acceleration above the plate, g', is reduced at the same proportion, i.e., $g' = \chi g$ where g is the gravity acceleration below the plate. Here, the gravity above the Magnesium plate becomes then $g' = \chi g$, where g is the gravity below the system. Therefore, the pressure p_a at point a (See Fig.7) is given by

$$\bar{p}_a = \rho g' \chi = -\rho h \chi \bar{g} \quad (E3)$$

Equation above shows that the pressure inside the spherical shell A can be reduced by reducing χ (See Eq. (E1)). The decreasing of the pressure causes the decreasing of the temperature, T_A, in spherical shell A, ($P'/T' = P/T$). In this case the system shown in Fig 7, it can works like a Cooling Gravitational System.

By increasing the magnitude of the magnetic field B_{rms}, it is possible to make χ negative (See Eq. (E1)), and also to increase its magnitude $|\chi|$. In this case, g' will be expressed by $g' = -|\chi| g$, and the pressure p_b at point b becomes

$$\bar{p}_b = \rho h g' = -\rho h |\chi| \bar{g} \quad (E4)$$

Note that, the pressure \bar{p}_b is in opposite direction to \bar{g}. The increase of \bar{p}_b causes a increasing of the pressure inside the spherical shell B, producing consequently, an increasing of the temperature, T_B, in the spherical shell B. In this case, the system shown in Fig 7 can works like a Heating Gravitational System.

Note that in all the red hatched area, gravity is g'.

Fig.7 – Schematic Diagram of an element of

Fig.8 – Schematic Diagram of a Gravitational System for Cooling and Heating.
APPENDIX F: Gravitational Electromotive Force

The electrical current arises in a conductor when an outside force acts upon the free electrons of the conductor. Usually, the electrons are moved by electrical force

\[\mathbf{F}_e = e \mathbf{E} \]

(F1)

Here, we show that the electrons can be moved by gravitational force, \(\mathbf{F}_g \), i.e.,

\[\mathbf{F}_g = m_{ge} \mathbf{g} \]

(F2)

Assuming the equivalence of these forces, we can write that

\[E = (m_{ge} / e) g \]

(F3)

Thus, the current density, \(j \), can be expressed by

\[j = \sigma_e E = \sigma_e (m_{ge} / e) g = \frac{i}{S} \]

(F4)

and, the electromotive force, (denoted \(\varepsilon \) and measured in volts), by

\[\varepsilon = Ri = \frac{l}{S} \sigma_e (m_{ge} / e) g S = l (m_{ge} / e) g \]

(F5)

where \(S \) is the area of the cross-section of the conductor, and \(l \) the length of the conductor.

Now, consider the system shown in Fig. 9. It is a magnetic coil with a Magnesium Core, whose dimensions are: diameter \(\phi_c \), area \(S_e \), and height \(h_e \). The mentioned coil produces an alternating magnetic field, \(B_{rms} \), with extremely-low frequency, \(f \). According to Eq. (1), the gravitational masses of the free electrons inside Magnesium Core can be expressed by:

\[\chi_e = \frac{m_{g,\text{free-e}}}{m_{0,\text{free-e}}} = \left\{ 1 - 2 \left[\frac{V_{\text{free-e}}}{m_{0,\text{free-e}}} \right] - 1 \right\} = \left\{ 1 - 2 \left[1 + \left(\frac{V_{\text{free-e}}}{m_{0,\text{free-e}}} \right)^2 \right] - 1 \right\} = \left\{ 1 - 2 \left[1 + \left(\frac{V_{\text{free-e}}}{m_{0,\text{free-e}}} \right)^2 \right] - 1 \right\} \]

(F6)

By substitution of \(n_e^2 \) given by Eq.(7), and \(W = \mu_0 H_{rms}^2 \) into Eq. (F6), we obtain

\[\chi_e = m_{g,\text{free-e}} / m_{0,\text{free-e}} = \left[1 - 2 \left(1 + \left(\frac{V_{\text{free-e}}}{m_{0,\text{free-e}}} \right)^2 \right) - 1 \right] = \left[1 - 2 \left(1 + 3 \times 10^{-5} \frac{V_{\text{free-e}}^2}{m_{0,\text{free-e}}} \right) \right] \]

(F7)

Fig. 9 – System to generate Gravitational Electromotive force in the Magnesium Core.

Based on Quantum Mechanics we can now calculate the volume of the free electron, \(V_{\text{free-e}} \). Consider the free electron wave packet shown in Fig. 10,

\[\psi(x) \]

Fig. 10 – Free Electron wave packet \(\psi(x) \).

where \(\Delta x \) can be calculated by means of the Uncertainty relation, \(\Delta x \Delta p \geq \hbar \), i.e.,
\[\Delta x \equiv \hbar / \Delta p \quad (F8) \]

The variation shift \(\Delta p \) can be calculated starting from Eq. (1), rewritten below

\[m_g = \left\{ 1 - 2 \left[\sqrt{1 + (\Delta p / m_{i0})^2} - 1 \right] \right\} m_{i0} \quad (F9) \]

Equation (F9) shows that \(m_g \) decreases of \(\Delta m_g \) for an increase of \(\Delta p \).

Thus, starting from the expression of the momentum,

\[\bar{p} = m_n \frac{\bar{V}}{\sqrt{1 - V^2 / c^2}} \quad (F10) \]

we can write that

\[p + \Delta p = \frac{\left(m_g - \Delta m_g \right) V}{\sqrt{1 - (V/c)^2}} \quad (F11) \]

By considering that the particle is initially at rest \((p = 0) \), and that \(m_g - \Delta m_g = m_{i0} \) \([1] \) then, Eq. (F11), reduces to

\[\Delta p = \frac{m_{i0} V}{\sqrt{1 - (V/c)^2}} \quad (F12) \]

Substitution of Eq. (F12) into Eq. (F8), gives

\[\Delta x = \hbar \frac{V}{\sqrt{1 - (V/c)^2}} / m_{i0} V \quad (F13) \]

Since the velocity of the electron is \(V \approx 10^8 m/s \) \((V << c) \), then Eq. (F13) yields

\[\Delta x = \hbar / m_{i0} V \approx 10^{-10} m \quad (F14) \]

The volume of the free electron, \(V_{\text{free-e}} \), is then the volume of the sphere with diameter \(\Delta x \), i.e.,

\[V_{\text{free-e}} = \frac{4}{3} \pi (\Delta x / 2)^3 \approx 10^{-30} m^3 \quad (F15) \]

Substitution of Eq. (F15) into Eq. (F7) gives

\[\chi_e = \left\{ 1 - 2 \left[\sqrt{1 + 10^{-4} (B_{\text{rms}} / f)^4} - 1 \right] \right\} \quad (F16) \]

For \(f = 0.1 Hz \) and \(B_{\text{rms}} = 3.751 T \) \(\text{(See Eq. (B1))} \), Eq. (F16) yields

\[\chi_e \approx -10^6 \quad (F17) \]

Below the Magnesium Core \(\text{(See Fig. 9)} \), there are \(n \) Magnesium plates subjected to an alternating magnetic field \(B_{\text{rms}} \) with extremely low frequency, \(f^* \).

According to Eq. (10), the gravitational mass, \(m_{ge} \), of each Magnesium plate, is

\[\chi = m_{ge} / m_{i0} = \left\{ 1 - 2 \left[\sqrt{1 + 5.1 \times 10^{-12} (B_{\text{rms}} / f)^4} - 1 \right] \right\} (F18) \]

For \(f^* = 0.1 Hz \) and \(B_{\text{rms}}^* = 720 T \), Eq. (F18) yields

\[\chi = -4.6 \quad (F19) \]

Thus, the gravity acceleration above the plate \(\text{(Assuming} \ g_0 = 9.8 m/s^2 \text{and} \ n = 4) \) is

\[g = \chi^* g_0 = -4387.9 m/s^2 \quad (F20) \]

Since \(m_{ge} / m_{i0} = \chi_e \) and \(g = \chi^* g_0 \), then, Eqs. (F4) and (F5) can be rewritten respectively, as follows

\[i = \sigma_e (m_{ge} / e) S = \chi_e \chi^* \sigma_e (m_{i0} / e) g_0 S \quad (F21) \]

\[\varepsilon = (m_{ge} / e) g_0 = \chi_e \chi^* (m_{i0} / e) g_0 \quad (F22) \]

where \(l = h_1 \) and \(S = S_c \). Thus, we get

\[i = \chi_e \chi^* \sigma_e (m_{i0} / e) S_c \quad (F23) \]

\[\varepsilon = \chi_e \chi^* h_l (m_{i0} / e) \quad (F24) \]

For \(h_1 = 0.1 m \) and \(S_c = \pi \phi \chi = 3.14 m^2 \), Eqs.(F23) and (F24), gives

\[i \approx 10^2 \chi_e \chi^* \quad (F25) \]

\[\varepsilon \approx 10^2 \chi_e \chi^* \quad (F26) \]

Equation (F20) shows that \(\chi^* = 4477 \), and Eq.(17) that \(\chi_e \approx -10^6 \).Thus, substitution of these values into Eqs(F25) and (F26), gives

\[i \approx 10^6 A, \quad \varepsilon \approx 10^3 \text{volts,} \quad P \approx 1 kW \quad (F27) \]

When the system is operating with maximum power \((B_{\text{rms}} = 3.751 T) \) the weight of the Mg core is:

\[P_{\text{Mg}} = (\chi_{\text{Mg}} M_{(0,\text{Mg})} + \chi^* M_{(0,\text{Mg})}) g_0 = \]

\[= (\chi_{\text{Mg}} + \chi^*) M_{(0,\text{Mg})} g_0 = \]

\[= (-198 + 4477) M_{(0,\text{Mg})} g_0 = \]

\[= 249.7 M_{(0,\text{Mg})} g_0 = 1.3 \times 10^8 N \quad (F28) \]

Consequently, it will be subjected to a pressure \(\text{(at the same direction of} \ g_0) \), given by

\[P_{\text{Mg}} / S_c = 1.3 \times 10^8 N / 3.14 m^2 \approx \]

\[\approx 4.1 \times 10^5 N / m^2 \approx 4.1 \text{kgf / cm}^2 \]

The compressive strength of the Mg is between \(0.8 \times 10^5 N/m^2 \) to \(1.8 \times 10^5 N/m^2 \).

4 Note that \(n \) must be even \(\text{(See Eq. (F28); in red)} \).

5 \(\chi_{\text{Mg}} = -198 \quad \text{(See Eq. (B2))} \), and

\[M_{(0,\text{Mg})} = 1738 kg / m^3 \times 0.314 m^3 = 545.7 kg \]
CONCLUSION

In 2018, physicists from the Institute for Solid State Physics at the University of Tokyo, Japan, have recorded the largest magnetic field ever generated indoors — a whopping 1,200T [6]. This means that the experiments proposed in this work will can be carried out in the very near future.

References

