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Attitude Kinematics of the Foucault Pendulum 
 

Russell P. Patera1 

Abstract 

Attitude kinematics is shown to be the fundamental cause of the apparent precession of the plane of motion of the 

Foucault Pendulum.  Ishlinskii’s Theorem in attitude kinematics provides a derivation of the angle by which a Foucault 

pendulum precesses after one complete rotation of the Earth about its axis.  A more recent kinematic theorem is used to 

provide a general derivation of the pendulum precession angle for any Earth rotation angle about its axis.  The derivations of 

these precession equations enhance understanding of the phenomenon by focusing on the essential cause of the precession, 

while avoiding complicated dynamical analyses and associated mathematical machinery.     

Keywords: Foucault Pendulum, Attitude kinematics, Ishlinskii’s Theorem, Solid angle, Precession angle 

1. Introduction     

The Foucault Pendulum [1] is a long pendulum usually with a significant mass attached to maintain 

its periodic motion in the presence of frictional forces.  The pendulum is essentially a spherical 

pendulum mounted to a frictionless bearing to allow rotation about its axis.  The motion of the 

pendulum is initialized such that the pendulum mass moves in a plane and does not move in circular or 

elliptical motion.  The Foucault Pendulum was first demonstrated in Paris in 1851 and showed that the 

Earth rotates [1] without relying on a celestial coordinate frame.  Since the plane of the pendulum’s 

swing appears to precess with respect to the Earth’s local reference frame, it demonstrated that the 

Earth rotates on its axis.  The rate of precession of the pendulum’s plane of motion is clockwise in the 

Northern Hemisphere and given by the Earth’s angular rate times the sine of the geodetic latitude.  The 

expression is similar for pendulum precession in the Southern Hemisphere, but the direction of 

precession is counterclockwise instead of clockwise.  The precession of the plane of motion is easy to 

understand when the Foucault Pendulum is located near the north pole where the Earth’s angular rate 

vector is vertical.  In this case, the pendulum is not affected by the rotation of the Earth and the Earth 

appears to rotate below the pendulum in the counterclockwise direction, as observed from the inertial 

frame.  From an observer at the north pole, the plane of the pendulum’s motion appears to precess in 

the clockwise direction at the Earth’s angular rate magnitude.  When the pendulum is placed at an 

arbitrary latitude, the rate of precession of its plane of motion requires more explanation.   

Dynamical analyses [2-4] of the motion of the Foucault Pendulum have been performed to help 

understand its behavior for all values of latitude.  The fictitious Coriolis Force appears in the equations of 

motion when a non-inertial reference frame is used and can provide an intuitive understanding of the 

precessional motion of the pendulum [2].  The Earth’s component of angular rate along the pendulum’s 

axis can also help in understanding its precessional motion [5].  Other researchers found that the 

precessional motion of the pendulum is the result of the geometrical considerations without the use of 

dynamical analysis [6-7].  In 1952, Ishlinskii published a theorem in the area of attitude kinematics [8], 

which provides the fundamental cause of the apparent precession motion of the Foucault Pendulum.  
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In this work, it is shown that a kinematical theorem published by Ishlinskii in 1952 [8] can be used to 

explain the observed precession of the Foucault Pendulum.  Ishlinskii’s Theorem states that if an axis 

fixed in the body, describes a closed conical surface in space, the angle of rotation of the body around 

this axis is equal to the integral of the projection of the angular velocity of the body onto this axis plus 

the solid angle of the cone enclosed.  If the angular rate is zero, the rotation about the axis is equal to 

the solid angle of the enclosed cone.  It is shown that for a complete rotation of the Earth about its axis, 

the pendulum attach point has both the solid angle rotational contribution and the integral of the 

angular rate contribution mentioned in Ishlinskii’s Theorem.  The pendulum itself has only the solid 

angle rotational contribution.   The difference between the attach point and pendulum contributions 

accounts for the apparent precessional motion of the pendulum’s plane of motion.  A recently 

developed kinematic theorem [9] was used to compute the pendulum’s precession angle associated 

with an arbitrary Earth rotation angle, which could be less than the 360 degrees required by Ishlinskii’s 

Theorem.    

Section 2 contains an analysis of the precession of the pendulum’s plane of motion using Ishlinskii’s 

Theorem, which applies to a complete rotation of the Earth about its axis.  Section 3 contains a more 

complete application of attitude kinematics to the precessional motion of the pendulum’s plane of 

motion.  This analysis provides the pendulum’s precession angle associated with an arbitrary rotation 

angle of the Earth about its axis.  Section 4 contains a numerical example to clarify the slewing 

transformation of the pendulum.  Section 5 contains the conclusion.    

2. Ishlinskii’s Theorem Application 

Ishlinskii’s Theorem [8] can be applied to the case of the Foucault Pendulum by considering an axis 

extending from the center of the Earth, which is assumed spherical, to the pendulum attach point at a 

latitude, ϴ, in the Northern Hemisphere, as shown in Fig. 1.  As the Earth completes one rotation, the 

axis sweeps out a conical region enclosing a solid angle given by eq. (1).     

𝛺 = 2𝜋[1 − sin(𝛳)]      (1) 
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Fig. 1. Solid angle region enclosed by the axis as the Earth completes one revolution about its axis. 

Ishlinskii’s Theorem states that after the axis completes its closed trajectory it will have rotated by Ω, as 

given in eq. (1).  This rotation is not due to an angular rate along the axis and therefore is not 

measurable by a rate gyro that has its input axis aligned with the slewing axis.  The rotation is the result 

of fundamental attitude kinematics captured in Ishlinskii’s Theorem.  

The other component of rotation about the axis is due to the integral of the projection of the Earth’s 

angular rate onto the axis, which is in the vertical direction at the location of the pendulum.  This 

rotation component is given by eq. (2), where ω is the Earth’s angular rate magnitude and T is the period 

of the Earth’s rotation.  This rotation contribution is measurable by a rate gyro. 

𝜙 = ∫ 𝜔 sin(𝛳) 𝑑𝑡 =
𝑇

0
𝜔𝑇𝑠𝑖𝑛(𝛳) = 2𝜋sin(𝛳)    (2)  

The amount that the axis rotates at the pendulum’s attach point, β, after the Earth completes one 

revolution can be found by applying Ishlinskii’s Theorem to the axis and using eqs. (1) and (2), as shown 

in eq. (3).  

𝛽 = 𝛺 + 𝜙 = 2𝜋[1 − sin(𝛳)] + 2𝜋 sin(𝛳) = 2𝜋   (3)  

Eq. (3) shows that the pendulum attach point rotates by 2π along the axis, while the Earth rotates 2π 

about its spin axis.  It should be noted that a rotation of 2π about an axis is equivalent to a rotation of 2π 

about any other axis or a rotation of zero degrees, which is equivalent to no rotation at all.     

According to Ishlinskii’s Theorem, the amount that the pendulum and its plane of oscillation rotates 

about its axis after one complete rotation of the Earth is the solid angle of the cone swept out by the 

axis, which is given by Ω in eq. (1).  Therefore, the pendulum, its attach point and its plane of motion all 

rotate about the axis by angle, Ω, because they all slew about the Earth’s spin axis.  The plane of motion 

of the pendulum does not have the additional rotation given by eq. (2), since the swinging motion of the 

pendulum establishes an oscillating angular momentum vector, which is normal to the vertical axis and 

would require an applied torque to slew in synchronous motion with vertical component of the Earth’s 

angular rate.  Since the pendulum is decoupled from its attach point in terms of axial rotation, the 

torque required to slew the angular momentum vector is not available.  Therefore, the plane of 

pendulum motion has zero angular rate in the vertical direction, which creates its apparent precession 

with respect to the attach point in the local reference frame.  The pendulum and its plane of motion, as 

observed from its attach point appear to precess by an amount, ψ, according to eq. (4).   

𝜓 = 𝛺 − 𝛽 = 2𝜋[1 − sin(𝛳)] − 2𝜋 = −2𝜋sin(𝛳)   (4) 

Eq. (4) shows that the plane of the pendulum’s motion precesses by the expected amount, after the 

Earth completes one revolution.   

In summary, the pendulum’s attach point rotates due to the two components in Ishlinskii’s Theorem; 

the solid angle contribution and the contribution of the integral of the angular rate along the axis.  The 

pendulum and its plane of rotation have only the solid angle rotational contribution, since it is 

decoupled from the axial rotation of the attach point and cannot rotate according to the vertical 

component of the Earth’s rotation.  The difference in the rotation angle of the pendulum’s attach point 
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and the rotation angle of the pendulum’s plane of motion about the axis accounts for the observed 

precession of the pendulum’s plane of motion.   

3. Attitude Kinematics Application 

The analysis in Section 2 showed the application of Ishlinskii’s Theorem to the precession of a 

Foucault Pendulum after the Earth rotates 360 degrees about its axis.  The amount that the pendulum 

plane precesses when the Earth rotates by an angle λ can be found by performing a more in depth 

analysis involving the attitude transformation of the slewing axis.  It was shown in an earlier work that 

any attitude transformation can be represented by the slewing transformation of a body fixed axis 

followed by a rotational transformation of the body about the axis [9].  Both the slewing transformation 

and the rotational transformation are driven by the angular rate of the body, which in this case is the 

rotation of the Earth along its axis.  The component of the Earth’s angular rate normal to the axis 

produces the slewing motion of the axis along an infinite number of infinitesimal great circle arcs.  The 

component of the Earth’s angular rate parallel to the axis is integrated to produce the rotation angle and 

the associated rotational transformation, which can be applied after the slewing transformation, as was 

shown in an earlier work  [9].  It was also shown that, if the slewing motion of the axis is fixed in the 

inertial frame, the slewing and rotational transformations commute [9].  Let the axis slew from A to B 

along trajectory S, while the body rotates about the axis, as shown in Fig. 2.  The accumulated rotation 

angle, Δ, about the axis during the slewing motion can be applied about the axis at orientation B.  Thus, 

the total transformation is the product of the slewing, US, and rotational, R(B, Δ), transformations given 

in eq. (5).  Since the slewing and rotational transformations commute, the rotational transformation can 

be performed at orientation A or orientation B, as shown in eq. (5). 

𝐔 = 𝐔𝐒𝐑(𝑩, 𝛥) = 𝐑(𝐀, 𝛥)𝐔𝐒     (5) 
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Fig. 2. An axis slews along trajectory S connecting orientations A and B followed by a rotation of Δ about the axis at orientation 

B. 

The result of eq. (5) is applied to the slewing motion of the axis extending from the center of the 

Earth to the pendulum attach point, as the Earth rotates by angle λ.  The initial location of the pendulum 

attach point is at point A and the final location is at point B, in Fig. 3.  In this case, the total 

transformation, U, is given by a rotation of λ about the z-axis of the Earth, as shown in eq. (6), where R is 

the rotational transformation, z is the axis about which the rotation is applied and λ is the magnitude of 

the rotation angle.   

𝐔 = 𝐑(𝐳, 𝜆)      (6)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The pendulum axis moves from orientation A to orientation B as the Earth rotates by λ. 

Assuming that the pendulum is located at latitude ϴ, the component of the Earth’s angular rate along 

the axis is given by ω sin(ϴ).   After the Earth rotates by λ, the axis will have rotated by λ sin(ϴ).  

Therefore, the rotational transformation about the axis at orientation B is given by eq. (7). 

𝐑(𝐁, 𝛥) = 𝐑[𝐁, 𝜆sin(𝛳)]     (7) 

Using eqs. (6) and (7) in eq. (5), one obtains eq. (8). 

𝐔 = 𝐑(𝐳, 𝜆) = 𝐔𝐒𝐑[𝐁, 𝜆sin(𝛳)]    (8) 
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The slewing transformation can be obtained from eq. (8) by multiplying the inverse of the rotation 

transformation by both sides of eq. (8), as shown in eq. (9). 

𝐔𝐒 = 𝐑(𝐳, 𝜆)𝐑−1[𝐁, 𝜆sin(𝛳)] = 𝐑(𝐳, 𝜆)𝐑[𝐁,−𝜆sin(𝛳)]  (9) 

The inverse of the rotational transformation about the axis at orientation B is represented by the 

negative of the rotation angle as shown in eq. (9).  If we used the rotational transformation about A in 

eq. (5), the slewing transformation would be given by eq. (10), which is equivalent to eq. (9).   

𝐔𝐒 = 𝐑[𝐀,−𝜆 sin(𝛳)]𝐑(𝐳, 𝜆)     (10) 

The transformation of the pendulum attach point is given by U or R(z, λ).  The transformation of the 

pendulum’s plane of motion is the slewing transformation, US.  The precession of the pendulum’s plane 

of motion with respect to the attach point is given by the transformation, UP, in eq. (11).  Therefore, UP, 

is given by eq. (12), where the inverse of eq. (8) has been used. 

𝐔𝐔𝐏 = 𝐔𝐒      (11)  

𝐔𝐏 = 𝐔−𝟏𝐔𝐒 = 𝐑−𝟏[𝐁, 𝜆sin(𝜭)]𝐔𝐒
−𝟏𝐔𝐒 = 𝐑[𝐁,−𝜆 sin(𝛳)]   (12)  

Eq. (12) shows that the plane of the pendulum motion has rotated about the axis at orientation B by an 

angle of -λ sin(ϴ), which agrees with observations of the pendulum motion.  Note that the orientation of 

the axis at B is vertical at the location of the pendulum so the precession is in the clockwise direction.  As 

the Earth rotates by angle λ about the z-axis, the plane of the pendulum motion rotates in the clockwise 

direction about the vertical axis by λ sin(ϴ).  If λ = 2π, eq. (12) agrees with eq. (4), which indicates that 

the plane of pendulum motion rotates by 2π sin(ϴ) in the clockwise direction. 

4. Numerical Example 

A computer simulation was developed to compute the slewing transformation of the Foucault 

Pendulum as given by eq. (9) and the associated Euler Rotation Vector components, which are plotted in 

Fig. 4.  The angle between the Euler Vector, E, and the axis that extends from the center of the Earth to 

the location of the  pendulum was also computed, as illustrated in Fig. 5.  The pendulum was placed at a 

geodetic latitude of 30 degrees so that its precession angle is 180 degrees after one full rotation of the 

Earth, which is in agreement with eqs. (4) and (12).  The angle between E and the axis is initially 90 

degrees and decreases to 0 degrees, at Earth rotation angle of 360 degrees, as indicated in Fig. 5.  At this 

time, E is aligned with the axis and has magnitude 180 degrees, which means that the plane of the 

pendulum motion has rotated by 180 degrees due to its slewing motion cause by the Earth rotation.  

Since the local frame has rotated by 360 degrees, the apparent precession of the plane of motion with 

respect to the local frame is 180 - 360 = -180 degrees, as expected.  After the Earth rotates 720 degrees, 

the plane of pendulum motion has rotated by 360 degrees and the apparent precession angle is 360 - 

720 = -360 degrees.  The cycle repeats from 720 degrees to 1440 degrees, as shown in Figs. 4 and 5.  

Although the Euler Vector components change sign when the magnitude of the E reaches 180 degrees at 

Earth rotation angles of 360 and 1080 degrees, the associated slewing transformation is continuous for 

all values of Earth rotation.  When the components of E  change sign, the angle between the axis and E 

increases to 180 degrees, as indicated in Fig. 5.   

The apparent precession of the plane of motion of the pendulum with respect to its attach point can 

be observed in the Euler Vector, ER, obtained from eq. (12), whose components are plotted in Fig. 6.  
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The magnitude of ER increases linearly and has a value of 180 degrees at 360 degrees of Earth rotation, 

as shown in Fig. 6.  All of the components of ER are zero at Earth rotation angle of 720 and the cycle 

repeats from 720 to 1140  degrees, as given in Fig 6.   

The relative precession of the pendulum’s plane of motion is most clearly shown in Fig. 7, where the 

component of the Euler Rotation Vector parallel to the axis decreases from 0 to -180 degrees, as the 

Earth rotates 360 degrees.  The angle plotted in Fig. 7 is equivalent to -λ sin(ϴ), which is the angle in eq. 

(12).  The precession angle about the axis is zero at Earth rotation angles of 720 and 1440 degrees, as 

expected.  For other values of latitude, plots similar to Figs. 4-7 can be created.   

 

 

Fig. 4. Euler Rotation Vector components for the slewing transformation of a Foucault Pendulum located at geodetic latitude of 

30 degrees north.  

 

 

Fig. 5. Angle between axis and Euler Rotation Vector for a slewing pendulum located at geodetic latitude 30 degrees north.   
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Fig. 6. Euler Rotation Vector components for the apparent precessional transformation of a Foucault Pendulum with respect to 

its attach point located at geodetic latitude of 30 degrees north.  

 

 

Fig. 7. Component of Euler Vector parallel to the axis indicating precession of a Foucault pendulum located at geodetic latitude 

30 degrees north.   

5. Conclusion 

Attitude kinematics was shown to be the fundamental cause of the precession of the Foucault 

Pendulum.  After one complete rotation of the Earth about its axis, the local reference frame at any 

latitude location rotates about its vertical axis by an amount specified by Ishlinskii’s Theorem.  The plane 

of the pendulum motion, which is rotationally decoupled from the local frame, rotates about the vertical 

axis by an angle also specified by Ishlinskii’s Theorem, but which is different than that of the local frame.  

This rotation is due to attitude kinematics alone, since there is no torque applied to the pendulum to 
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cause the rotation of its plane of motion.  It was shown that the difference in these two rotation angles 

causes the apparent precession of the plane of motion of the Foucault Pendulum.  In a similar fashion, a 

more recent theorem in attitude kinematics was used to derive the general equation for the precession 

angle of the Foucault Pendulum for any Earth rotation angle, not just the complete rotation of 360 

degrees specified in Ishlinskii’s Theorem.  A numerical example using only kinematical equations was 

provided to clarify the slewing transformation of the pendulum’s plane of motion by computing the 

associated Euler Rotation Vector.  This work clearly establishes that attitude kinematics is the root cause 

of the precession of the Foucault Pendulum.   
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