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Abstract; 
This paper is bifurcated into two elements: a) synthesizing a differential understanding of 
classical mechanics, and in particular Gravity, and b) a collection of thoughts on the 
underpinnings of Minkowski diagrams, light cones and space-time intervals. Neither bears 
remarkably significant consequences, but is nonetheless not entirely trivial. 
 
Gravitational observations (that are constrained to classical domains) can oftentimes be 
demonstrated to engender an acceleration, in the form of differential equations and second 
positional derivatives. This comment reiterates that idea with (approximate) prototypical 
examples, in celestial contexts. 
 
Secondly, Minkowski diagrams can facilitate geometric interpretations of space-time - a 
characteristic brought to the fore by their mathematically amenable nature. 
For instance, by revolving a linear worldline around its ct axis, one can construct its 
corresponding light cone. 
 
Space-time intervals, traditionally characterized by 3 dimensions, can also be reconstituted in the 
form of generalized, n-dimensional spatial coordinates. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Newtonian Gravitation 

Envisage, for argument, the classical approximations: 

𝐹 = 𝑀𝐴 𝑎𝑛𝑑 𝐹 =
𝐺𝑀1𝑀2

𝑟2
 

These arguments sustain themselves (for all practical intents) amidst non-accelerating and low-velocity 

(in comparison to c) reference frames. In truth, the second formulation is equivalent to the first – and is 

solely repurposed to be consistent with the gravitational parameter GM.  

Additionally, if one were to disintegrate an observed gravitational acceleration into its positional 

consequences, they’d invoke the differential form: 

𝐹 = 𝑀
𝑑2𝑠

𝑑𝑡2
 

wherein s, in a given context, characterizes a positional function of a massive body. 

In creating the equivalence: 

𝐹 = 𝑀
𝑑2𝑠

𝑑𝑡2
=

𝐺𝑀1𝑀2

𝑟2
 

Imagine (maintaining the above notion) an asteroid, of negligible mass 𝑀2, approaching (directly) a larger 

celestial body (a planet). For calculating objectives, presuppose that no other noticeable forces operate 

on either of them. 
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𝐹

𝑀
=

𝑑2𝑠

𝑑𝑡2
=

𝐺𝑀1

𝑟2
 

 

Furthermore, identify that prior to immersing in 𝑀1’s gravitational field, 𝑀2 was entirely stationary. 

Consequently, if s is the positional function (with respect to time) that describes the distance that 𝑀2 has 

travelled (towards 𝑀1); 

𝑠s(0) = 0
 



𝑠′(0) = 1 

While 𝑀1 experiences an interchangeable gravitational force, its consequent acceleration, and therefore 

the distance it travels towards 𝑀2, may be discounted. 

With these assumptions, one observes that: 

𝑑2𝑠

𝑑𝑡2
=

𝐺𝑀1

𝑟2
 

𝑟2, albeit a seemingly independent parameter, can be reformulated in terms of 𝑠(𝑡). 

Instantaneously, 𝑟 plainly refers to the distance that separates two masses at any point in time. 

If one assigns an initial separation of 𝐼 𝑎𝑡 𝑡 = 0, then: 

𝑟 = 𝐼 −  𝑠(𝑡) 

since 𝑠(𝑡) does not alter direction. 

Consequently,  

𝑑2𝑠

𝑑𝑡2
=

𝐺𝑀1

𝐼 −  𝑠(𝑡)2
 

Abbreviating variable notation from 𝑠(𝑡) to 𝑠:  

 

𝑑2𝑠

𝑑𝑡2
=

𝐺𝑀1

𝐼2 + 𝑠2 − 2𝐼𝑠
 

𝐺𝑀 =  
𝑑2𝑠

𝑑𝑡2
(𝐼2 + 𝑠2 − 2𝐼𝑠) 

𝐺𝑀 =  
𝑑2𝑠

𝑑𝑡2
𝐼2 +

𝑑2𝑠

𝑑𝑡2
𝑠2 −

𝑑2𝑠

𝑑𝑡2
2𝐼𝑠 

 

Abbreviating variable notation from 
𝑑2𝑠

𝑑𝑡2 to 𝑠’’: 

𝐺𝑀 =  𝑠′′𝐼2 + 𝑠′′𝑠2 − 2𝐼𝑠′′𝑠 

 

which constitutes a non-linear, second order ordinary differential equation, whose solution (if existent) is 

predicated on the gravitational parameter (GM) of a massive body. 

In any event, its veracity is contingent to whether a given circumstance is favorable to its described 

motion. In almost every instance, this necessitates the existence of a negligible (or point) mass, in 

conjunction with few (if any) exogenous forces – both of which are commensurate with celestial and 

astrophysical environments. Nevertheless, it ceases to trace the orbit of a given mass, if one emerges, 

with regards to another. 

s'(0) = 0
 



One can elicit this equation in innumerable contexts - one of which may comprise an asteroid steadily 

approaching Earth, from 100 kilometers afar: 

𝐺𝑀𝐸𝑎𝑟𝑡ℎ =  𝑠′′𝐼2 + 𝑠′′𝑠2 − 2𝐼𝑠′′𝑠 

3.986 𝑥 1014 =  𝑠′′1052
+ 𝑠′′𝑠2 − 2𝐼𝑠′′𝑠 

1010 𝑠′′ + 𝑠′′𝑠2 − (2𝑥105)𝑠′′𝑠 − 3.986 𝑥 1014 = 0 

wherein 𝑠 delineates the distance traversed by the asteroid, with regards to a progression in time. 

By referring to the constancy associated with: 

𝐺𝑀 =  𝑠′′𝐼2 + 𝑠′′𝑠2 − 2𝐼𝑠′′𝑠 

One may also derive a generic, universal differential equivalency with regards to all gravitationally 

inspired positional functions; 

𝑑

𝑑𝑡
𝐺𝑀 =

𝑑

𝑑𝑡
 𝑠′′𝐼2 + 𝑠′′𝑠2 − 2𝐼𝑠′′𝑠 = 0 

𝑑

𝑑𝑡
𝑠′′𝐼2 +

𝑑

𝑑𝑡
𝑠′′𝑠2 −

𝑑

𝑑𝑡
2𝐼𝑠′′𝑠 = 0 

𝑠′′′𝐼2 + (𝑠′′′𝑠2 + 2𝑠𝑠′𝑠′′) − 2𝐼(𝑠′′′𝑠 + 𝑠′𝑠′′) = 0 

𝐼2𝑠′′′ + 𝑠2𝑠′′′ + 2𝑠𝑠′𝑠′′ − 2𝐼(𝑠𝑠′′′ + 𝑠′𝑠′′) = 0 

 

wherein 𝐼 expresses the initial separation between any two celestial entities, and 𝑠 (and its derivatives) 

describe iterations of the distance either one has travelled (with respect to time). 

Any physical framework that describes a mode of acceleration, can be redefined to the domain of a 

second positional derivative, and, by the transitive association, positional functions. Naturally, these 

approximations capitulate at high velocities, consequent to time dilation and length contraction.  

Position-functions, which evolve with regards to time, are inherently dependent on objective conceptions 

of length.  

Furthermore, the Newtonian conceptualization of a gravitational force is inherently flawed; as 

movements along a gravitational field are instead rationalized by geodesic transformations and 

Langrangian variants of the Stationary-Action Principle (ex: The Einstein-Hilbert Action).  

As far as special relativity is concerned, masses (irrespective of the gravitational potential they are 

embroiled in) are not immune to relativistic phenomena, either.  

Gravitational forces can be redefined (in relativistic paradigms) by virtue of: 

𝐹 =
𝑑

𝑑𝑡
�⃗� 

insofar as �⃗� entails a relativistic momentum vector, whose derivation instantiates a Lorentz factor. 

This construction isn’t necessarily exclusive to celestial, or for that matter gravitational interactions.



2. Minkowski Diagrams 

Space-time diagrams (that are constrained to two dimensions) are ubiquitous schematics invoked in the 

description of worldlines (migrations across a space-time fabric) and events. While they are canonically 

two-dimensional (one axis assembling space, and another characterizing time), their expressions are 

routinely thought of as being analogous to observations across three spatial dimensions. 

A) Firstly, contemplate any two events, entitled ∅ and 𝛽, that occur in a time-like circumstance.  

In light of these events, the space-time interval that they exhibit (in terms of 1, and 3 spatial dimensions 

respectively) is defined by: 

 𝑑𝑠2 = 𝑑𝑥2 − (𝑐∆𝑡)2  

𝑑𝑠2 = −(𝑐∆𝑡)2 + (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 (−, +, +, +)  

𝑑𝑠2 = (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) − (𝑐∆𝑡)2 

 

ordered triples (∅𝑥 , ∅𝑦, ∅𝑧) and (𝛽𝑥 ,  𝛽𝑦,  𝛽𝑧), they’d derive: 

 

𝑑𝑠2 = (∅𝑥 − 𝛽𝑥)2 + (∅𝑦 − 𝛽𝑦)2 + (∅𝑧 − 𝛽𝑧)2 − (𝑐∆𝑡)2 

𝑑𝑠2 = ∅𝑥
2 + 𝛽𝑥

2 − 2∅𝑥𝛽𝑥 + ∅𝑦
2 + 𝛽𝑦

2 − 2∅𝑦𝛽𝑦 + ∅𝑧
2 + 𝛽𝑧

2 − 2∅𝑧𝛽𝑧 − (𝑐∆𝑡)2 

𝑑𝑠2 = ∅𝑥
2 + 𝛽𝑥

2 + ∅𝑦
2 + 𝛽𝑦

2 + ∅𝑧
2 + 𝛽𝑧

2 − (2∅𝑥𝛽𝑥 + 2∅𝑦𝛽𝑦 + 2∅𝑧𝛽𝑧) − (𝑐∆𝑡)2 

 

Therefore, constructing summations, replacing (x, y and z) with the familiar variants (i, j and k), and 

encapsulating every spatial term engenders: 

𝑑𝑠2 = ∑ ∅𝑛
2 + 𝛽𝑛

2

𝑘

𝑁=𝑖

− ∑ 2∅𝑛𝛽𝑛

𝑘

𝑁=𝑖

− (𝑐∆𝑡)2 

 

If the invariance of a stated space-time interval remains, by definition, undeterred, and its expansion 

indifferent to its spatial degree, one can reasonably postulate a generalized, coordinate summation that is 

n-dimensional in character. 

Consequently, with regards to any space-time continuum (that encompasses the entirety of 𝑁 = 1 to 

𝑁 = 𝑘): 

 

𝑑𝑠2 = ∑ ∅𝑛
2 + 𝛽𝑛

2

𝐾

𝑁=1

− ∑ 2∅𝑛𝛽𝑛

𝐾

𝑁=1

− (𝑐∆𝑡)2 

If one were to rewrite these spatial differentials in the form of their respective coordinates, with the



B) Secondly, envisage a space-time diagram, that illustrates the worldline of a photon immersed in a 

one-dimensional space, besides the light-cone of a three-dimensional particle: 

 

  
 

 

 

Naturally, one can’t create a meaningful equivalence between the two, since the two-dimensional plane 

of a light cone is a hypersurface. Nonetheless, there exists a geometric resonance between them; light-

cones, and their volumes, serve as proportional analogies of the space-time fabric that is accessible to an 

observer, at any point in time. If one were to redefine the second figure’s hypersurface as a regular, two-

plane space, then integrating across a cross-sectional image of a photon’s worldline (around its ct axis) 

would independently derive both segments of its light-cone. Mathematically, this constitutes a solid of 

revolution. 

By integrating across a Minkowski diagram, one can derive the light-cone equivalent of a body 

encapsulated in a one-dimensional space, with a temporal axis.   

To commence, one may define ct as a function of x (solely 

with the objective of integrating it). 

While one can’t easily derive a function that describes 

two light-cone segments, 𝑐𝑡 = |𝑥| suffices for the upper 

segment. 

Having distilled this function, one can invoke for a solid of 

revolution, and geometrically confirm its legitimacy. 

Nevertheless, one mustn’t conflate the existence of a 

functional relationship, with the existence of a causal 

determination; the former is solely geometric in intent. 

 



After replacing ct with y, and integrating across the entirety of y; 

𝑉𝑜𝑙𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝜋 ∫ 𝑥2𝑑𝑦
𝑦

𝑜
 

𝑦 = |𝑥| 

𝑦2 = 𝑥2 

𝑥 = ±√𝑦2 

𝑉𝑜𝑙𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝜋 ∫ ±√𝑦2
2

𝑑𝑦
𝑦

𝑜
= 𝜋 ∫ 𝑦2𝑑𝑦

𝑦

𝑜
 =  𝜋

𝑦3

3
|
𝑦
𝑜

| = 𝜋
𝑦3

3
= 𝜋

(𝑐𝑡)3

3
 = 𝜋

𝑐3𝑡3

3
 

One can re-verify by bringing to the fore: 

𝑉𝑜𝑙𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝜋
𝑟2ℎ

3
= 𝜋

𝑥2𝑐𝑡

3
 

𝑥2𝑐𝑡 =  (𝑐𝑡)2𝑐𝑡 =  𝑐3𝑡3;  𝑉𝑜𝑙𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝜋
𝑐3𝑡3

3
 

 

These conclusions, albeit not path-breaking, do comprise meaningful abstractions in the context of 

special relativity. By rediscovering the space-time fabrics associated with fictitious, n-dimensional surfaces 

and investigating them, one may still remain adherent to the constraints of light-speed invariance, 

simultaneity and time dilation.  

 

  

 

 

 

 

 

 

 

 

 

  

 

 




