Schrödinger Equation and Free Particle Wave Function

Karl De Paepe

Abstract

Using the wave function of a free particle we obtain a solution of the Schrödinger equation for a class of potentials.

1 Time dependent accelerating frame of reference

Consider an accelerating frame of reference \mathcal{F}^{\prime} with coordinates x^{\prime}, t^{\prime} and an inertial frame of reference \mathcal{F} with coordinates x, t. The coordinates of the frames being related by

$$
\begin{equation*}
x^{\prime}=x-f(t) \quad t^{\prime}=t \tag{1}
\end{equation*}
$$

Since $d x^{\prime}=d x$ and position probabilites are the same for \mathcal{F}^{\prime} and \mathcal{F} we have for the wave function $\psi(x, t)$ with respect to \mathcal{F} and corresponding wave function $\psi^{\prime}\left(x^{\prime}, t^{\prime}\right)$ with respect to \mathcal{F}^{\prime} that [1]

$$
\begin{equation*}
\left|\psi^{\prime}\left(x^{\prime}, t^{\prime}\right)\right|^{2}=|\psi(x, t)|^{2} \tag{2}
\end{equation*}
$$

Consequently there is a real valued function $\beta(x, t)$ such that

$$
\begin{equation*}
\psi^{\prime}\left(x^{\prime}, t^{\prime}\right)=e^{-\frac{i}{\hbar} \beta(x, t)} \psi(x, t) \tag{3}
\end{equation*}
$$

With respect to \mathcal{F} let the wave function $\psi(x, t)$ satisfies the Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}(x, t)=i \hbar \frac{\partial \psi}{\partial t}(x, t) \tag{4}
\end{equation*}
$$

With respect to \mathcal{F}^{\prime} we have an additional force $m \ddot{f}(t)$ and hence an additional potential $m \ddot{f}(t) x^{\prime}+V_{0}\left(t^{\prime}\right)$. The wave function $\psi^{\prime}\left(x^{\prime}, t^{\prime}\right)$ then satisfies the Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi^{\prime}}{\partial x^{\prime 2}}\left(x^{\prime}, t^{\prime}\right)+\left(m \ddot{f}\left(t^{\prime}\right) x^{\prime}+V_{0}\left(t^{\prime}\right)\right) \psi^{\prime}\left(x^{\prime}, t^{\prime}\right)=i \hbar \frac{\partial \psi^{\prime}}{\partial t^{\prime}}\left(x^{\prime}, t^{\prime}\right) \tag{5}
\end{equation*}
$$

Now

$$
\begin{equation*}
\frac{\partial}{\partial x^{\prime}}=\frac{\partial}{\partial x} \quad \frac{\partial}{\partial t^{\prime}}=\dot{f} \frac{\partial}{\partial x}+\frac{\partial}{\partial t} \tag{6}
\end{equation*}
$$

and on substituting (3) in (5) and using (4) and (6) gives

$$
\begin{align*}
{\left[\frac{i \hbar}{2 m} \frac{\partial^{2} \beta}{\partial x^{\prime 2}}\right.} & \left.+\frac{1}{2 m}\left(\frac{\partial \beta}{\partial x^{\prime}}\right)^{2}+m \ddot{f}(x-f)+V_{0}-\dot{f} \frac{\partial \beta}{\partial x}-\frac{\partial \beta}{\partial t}\right] \psi \\
& +\frac{i \hbar}{m}\left[\frac{\partial \beta}{\partial x}-m \dot{f}\right] \frac{\partial \psi}{\partial x}=0 \tag{7}
\end{align*}
$$

We have

$$
\begin{equation*}
\beta(x, t)=m \dot{f}(t) x+\int_{0}^{t}\left[V_{0}(s)-m f(s) \ddot{f}\left((s)-\frac{1}{2} m \dot{f}(s)^{2}\right] d s+C\right. \tag{8}
\end{equation*}
$$

is the unique solution of (7) satisfying the initial condition [2]

$$
\begin{equation*}
\beta(x, 0)=m \dot{f}(0) x+C \tag{9}
\end{equation*}
$$

2 Space and time dependent velocity

Let $v_{\epsilon}(x, t)$ be a smooth function in variables ϵ, x, t. Require $v_{\epsilon}(x, 0)=0$. Define $X_{\epsilon}(u ; t)$ to be the curve $x(t)$ such that

$$
\begin{equation*}
\frac{d x}{d t}=v_{\epsilon}(x, t) \tag{10}
\end{equation*}
$$

and $x(0)=u$. Require that the curves are defined for all t and the curves do not intersect. We then have a frame of reference \mathcal{F}_{ϵ} with coordinates $x_{\epsilon}, t_{\epsilon}$ such that

$$
\begin{equation*}
x_{\epsilon}=X_{\epsilon}(x ; t) \quad t_{\epsilon}=t \tag{11}
\end{equation*}
$$

Let $\psi(x, t)$ satisfy (4). Let $V_{\epsilon}\left(x_{\epsilon}, t_{\epsilon}\right)$ be the potential in these coordinates. We have

$$
\begin{equation*}
\frac{1}{m} \frac{\partial V_{\epsilon}}{\partial x_{\epsilon}}\left(x_{\epsilon}, t_{\epsilon}\right)=v(x, t) \frac{\partial v}{\partial x}(x, t)+\frac{\partial v}{\partial t}(x, t) \tag{12}
\end{equation*}
$$

Let $\psi_{\epsilon}\left(x_{\epsilon}, t_{\epsilon}\right)$ be the wave function satisfying the Schrödinger equation in $x_{\epsilon}, t_{\epsilon}$ coordinates and $\psi_{\epsilon}(x, 0)=$ $\psi(x, 0)$. Let $B\left(x_{0} ; \epsilon\right)$ be the set of points $x_{0}-\epsilon<x<x_{0}+\epsilon$. Choose $v_{\epsilon}(x, t)$ so that for $u \in B\left(x_{0} ; \epsilon\right)$

$$
\begin{equation*}
X_{\epsilon}(u ; t)=X_{0}\left(x_{0} ; t\right)+u-x_{0} \tag{13}
\end{equation*}
$$

Let $\widehat{\mathcal{F}}$ be a frame of reference with coordinates \hat{x}, \hat{t} related to coordinates x, t of \mathcal{F} by

$$
\begin{equation*}
\hat{x}=x-X_{0}\left(x_{0} ; t\right) \quad \hat{t}=t \tag{14}
\end{equation*}
$$

The potential in these coordinates is $m \ddot{X}_{0}\left(\hat{x}_{0}: \hat{t}\right) \hat{x}+V_{0}(\hat{t})$. Let $\widehat{\psi}(\hat{x}, \hat{t})$ be the wave function satisfying the Schrödinger equation with this potential and $\widehat{\psi}(x, 0)=\psi(x, 0)$. We have by (8) a $\widehat{\beta}(x, t)$ such that

$$
\begin{equation*}
\frac{\widehat{\psi}(\hat{x}, \hat{t})}{\psi(x, t)}=e^{-\frac{i}{\hbar} \widehat{\beta}(x, t)} \quad \frac{\partial \widehat{\beta}}{\partial x}(x, t)=m \dot{X}_{0}\left(x_{0} ; t\right) \tag{15}
\end{equation*}
$$

hence for points $\left(X_{\epsilon}(u ; t), t\right)$ where $u \in B\left(x_{0} ; \epsilon\right)$ we have

$$
\begin{equation*}
\frac{\psi_{\epsilon}\left(x_{\epsilon}, t_{\epsilon}\right)}{\psi(x, t)}=e^{-\frac{i}{\hbar} \widehat{\beta}(x, t)} \quad \frac{\partial \widehat{\beta}}{\partial x}(x, t)=m \dot{X}_{0}\left(x_{0} ; t\right) \tag{16}
\end{equation*}
$$

Define coordinates $x^{\prime}=x_{0}, t^{\prime}=t_{0}$. Let $\psi^{\prime}\left(x^{\prime}, t^{\prime}\right)=\psi_{0}\left(x^{\prime}, t^{\prime}\right)$. Now x_{0} is arbitrary and let $\beta(x, t)$ be the limit of $\widehat{\beta}(x, t)$ as $\epsilon \rightarrow 0$ so we get

$$
\begin{equation*}
\frac{\partial \beta}{\partial x}(x, t)=m v_{0}(x, t) \tag{17}
\end{equation*}
$$

Require $v(x, t) \rightarrow 0$ as $v \rightarrow-\infty$. We then have $\beta(x, t) \rightarrow 0$ as $x \rightarrow-\infty$ hence by (17)

$$
\begin{equation*}
\beta(x, t)=\int_{-\infty}^{x} v_{0}(u, t) d u \tag{18}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\psi^{\prime}\left(x^{\prime}, t^{\prime}\right)=e^{-\frac{i}{\hbar} \int_{-\infty}^{x} v_{0}(u, t) d u} \psi(x, t) \tag{19}
\end{equation*}
$$

References

[1] K. De Paepe, Physics Essays, September 2008
[2] A. Colcelli, G. Mussardo, G. Sierra, A. Trombettoni, Phys. Rev. Lett. 123, 130401 (2019)

