Schrödinger Equation and Free Particle Wave Function

Karl De Paepe

Abstract

Using the wave function of a free particle we obtain a solution of the Schrödinger equation for a class of potentials.

1 Time dependent accelerating frame of reference

Consider an accelerating frame of reference \mathcal{F}' with coordinates x', t' and an inertial frame of reference \mathcal{F} with coordinates x, t. The coordinates of the frames being related by

$$x' = x - f(t) \qquad t' = t \tag{1}$$

Since dx' = dx and position probabilities are the same for \mathcal{F}' and \mathcal{F} we have for the wave function $\psi(x, t)$ with respect to \mathcal{F} and corresponding wave function $\psi'(x', t')$ with respect to \mathcal{F}' that [1]

$$|\psi'(x',t')|^2 = |\psi(x,t)|^2 \tag{2}$$

Consequently there is a real valued function $\beta(x, t)$ such that

$$\psi'(x',t') = e^{-\frac{i}{\hbar}\beta(x,t)}\psi(x,t) \tag{3}$$

With respect to \mathcal{F} let the wave function $\psi(x, t)$ satisfies the Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2}(x,t) = i\hbar\frac{\partial\psi}{\partial t}(x,t)$$
(4)

With respect to \mathcal{F}' we have an additional force $m\ddot{f}(t)$ and hence an additional potential $m\ddot{f}(t)x' + V_0(t')$. The wave function $\psi'(x',t')$ then satisfies the Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi'}{\partial x'^2}(x',t') + \left(m\ddot{f}(t')x' + V_0(t')\right)\psi'(x',t') = i\hbar\frac{\partial\psi'}{\partial t'}(x',t')$$
(5)

Now

$$\frac{\partial}{\partial x'} = \frac{\partial}{\partial x} \qquad \frac{\partial}{\partial t'} = \dot{f} \frac{\partial}{\partial x} + \frac{\partial}{\partial t}$$
(6)

and on substituting (3) in (5) and using (4) and (6) gives

$$\begin{bmatrix} \frac{i\hbar}{2m} \frac{\partial^2 \beta}{\partial x'^2} + \frac{1}{2m} \left(\frac{\partial \beta}{\partial x'} \right)^2 + m\ddot{f}(x-f) + V_0 - \dot{f} \frac{\partial \beta}{\partial x} - \frac{\partial \beta}{\partial t} \end{bmatrix} \psi + \frac{i\hbar}{m} \left[\frac{\partial \beta}{\partial x} - m\dot{f} \right] \frac{\partial \psi}{\partial x} = 0$$
(7)

We have

$$\beta(x,t) = m\dot{f}(t)x + \int_0^t [V_0(s) - mf(s)\ddot{f}((s) - \frac{1}{2}m\dot{f}(s)^2]ds + C$$
(8)

is the unique solution of (7) satisfying the initial condition [2]

$$\beta(x,0) = m\dot{f}(0)x + C \tag{9}$$

2 Space and time dependent velocity

Let $v_{\epsilon}(x,t)$ be a smooth function in variables ϵ, x, t . Require $v_{\epsilon}(x,0) = 0$. Define $X_{\epsilon}(u;t)$ to be the curve x(t) such that

$$\frac{dx}{dt} = v_{\epsilon}(x, t) \tag{10}$$

and x(0) = u. Require that the curves are defined for all t and the curves do not intersect. We then have a frame of reference \mathcal{F}_{ϵ} with coordinates $x_{\epsilon}, t_{\epsilon}$ such that

$$x_{\epsilon} = X_{\epsilon}(x;t) \qquad t_{\epsilon} = t \tag{11}$$

Let $\psi(x,t)$ satisfy (4). Let $V_{\epsilon}(x_{\epsilon},t_{\epsilon})$ be the potential in these coordinates. We have

$$\frac{1}{m}\frac{\partial V_{\epsilon}}{\partial x_{\epsilon}}(x_{\epsilon}, t_{\epsilon}) = v(x, t)\frac{\partial v}{\partial x}(x, t) + \frac{\partial v}{\partial t}(x, t)$$
(12)

Let $\psi_{\epsilon}(x_{\epsilon}, t_{\epsilon})$ be the wave function satisfying the Schrödinger equation in $x_{\epsilon}, t_{\epsilon}$ coordinates and $\psi_{\epsilon}(x, 0) = \psi(x, 0)$. Let $B(x_0; \epsilon)$ be the set of points $x_0 - \epsilon < x < x_0 + \epsilon$. Choose $v_{\epsilon}(x, t)$ so that for $u \in B(x_0; \epsilon)$

$$X_{\epsilon}(u;t) = X_0(x_0;t) + u - x_0 \tag{13}$$

Let $\widehat{\mathcal{F}}$ be a frame of reference with coordinates \hat{x}, \hat{t} related to coordinates x, t of \mathcal{F} by

$$\hat{x} = x - X_0(x_0; t) \qquad \hat{t} = t$$
 (14)

The potential in these coordinates is $m\ddot{X}_0(\hat{x}_0:\hat{t})\hat{x} + V_0(\hat{t})$. Let $\hat{\psi}(\hat{x},\hat{t})$ be the wave function satisfying the Schrödinger equation with this potential and $\hat{\psi}(x,0) = \psi(x,0)$. We have by (8) a $\hat{\beta}(x,t)$ such that

$$\frac{\widehat{\psi}(\widehat{x},\widehat{t})}{\psi(x,t)} = e^{-\frac{i}{\hbar}\widehat{\beta}(x,t)} \qquad \frac{\partial\widehat{\beta}}{\partial x}(x,t) = m\dot{X}_0(x_0;t) \tag{15}$$

hence for points $(X_{\epsilon}(u;t),t)$ where $u \in B(x_0;\epsilon)$ we have

$$\frac{\psi_{\epsilon}(x_{\epsilon}, t_{\epsilon})}{\psi(x, t)} = e^{-\frac{i}{\hbar}\widehat{\beta}(x, t)} \qquad \frac{\partial\widehat{\beta}}{\partial x}(x, t) = m\dot{X}_{0}(x_{0}; t)$$
(16)

Define coordinates $x' = x_0, t' = t_0$. Let $\psi'(x', t') = \psi_0(x', t')$. Now x_0 is arbitrary and let $\beta(x, t)$ be the limit of $\hat{\beta}(x, t)$ as $\epsilon \to 0$ so we get

$$\frac{\partial\beta}{\partial x}(x,t) = mv_0(x,t) \tag{17}$$

Require $v(x,t) \to 0$ as $v \to -\infty$. We then have $\beta(x,t) \to 0$ as $x \to -\infty$ hence by (17)

$$\beta(x,t) = \int_{-\infty}^{x} v_0(u,t) du \tag{18}$$

Consequently

$$\psi'(x',t') = e^{-\frac{i}{\hbar} \int_{-\infty}^{x} v_0(u,t) du} \psi(x,t)$$
(19)

References

- [1] K. De Paepe, Physics Essays, September 2008
- [2] A. Colcelli, G. Mussardo, G. Sierra, A. Trombettoni, Phys. Rev. Lett. 123, 130401 (2019)