Schrödinger Equation and Free Particle Wave Function

Karl De Paepe

Abstract

Using the wave function of a free particle we obtain a solution of the Schrödinger equation for a class of potentials.

1 Accelerating frame of reference

We simpify to one space dimension and time independent potential. Consider an accelerating frame of reference \mathcal{F}^{\prime} with coordinates x^{\prime}, t^{\prime} and an inertial frame of reference \mathcal{F} with coordinates x, t. The coordinates of the frames being related by

$$
\begin{equation*}
x^{\prime}=x-\frac{1}{2} a t^{2} \quad t^{\prime}=t \tag{1}
\end{equation*}
$$

Since $d x^{\prime}=d x$ and position probabilites are the same for \mathcal{F}^{\prime} and \mathcal{F} we have for the wave function $\psi(x, t)$ with respect to \mathcal{F} and corresponding wave function $\psi^{\prime}\left(x^{\prime}, t^{\prime}\right)$ with respect to \mathcal{F}^{\prime} that [1]

$$
\begin{equation*}
\left|\psi^{\prime}\left(x^{\prime}, t^{\prime}\right)\right|^{2}=|\psi(x, t)|^{2} \tag{2}
\end{equation*}
$$

Consequently there is a real valued function $\beta(x, t)$ such that

$$
\begin{equation*}
\psi^{\prime}\left(x^{\prime}, t^{\prime}\right) e^{\frac{i}{\hbar} \beta\left(x^{\prime}, t^{\prime}\right)}=\psi(x, t) \tag{3}
\end{equation*}
$$

With respect to \mathcal{F} let the wave function $\psi(x, t)$ satisfy the Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}(x, t)=i \hbar \frac{\partial \psi}{\partial t}(x, t) \tag{4}
\end{equation*}
$$

With respect to \mathcal{F}^{\prime} the potential is $\max ^{\prime}+V_{0}$ where V_{0} is a constant hence the wave function $\psi^{\prime}\left(x^{\prime}, t^{\prime}\right)$ satisfies the Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi^{\prime}}{\partial x^{\prime 2}}\left(x^{\prime}, t^{\prime}\right)+\left(\max ^{\prime}+V_{0}\right) \psi^{\prime}\left(x^{\prime}, t^{\prime}\right)=i \hbar \frac{\partial \psi^{\prime}}{\partial t^{\prime}}\left(x^{\prime}, t^{\prime}\right) \tag{5}
\end{equation*}
$$

Now

$$
\begin{equation*}
\frac{\partial}{\partial x}=\frac{\partial}{\partial x^{\prime}} \quad \frac{\partial}{\partial t}=-a t^{\prime} \frac{\partial}{\partial x^{\prime}}+\frac{\partial}{\partial t^{\prime}} \tag{6}
\end{equation*}
$$

and on substituting (3) in (4) and using (5) and (6) gives

$$
\begin{equation*}
\left[\frac{i \hbar}{2 m} \frac{\partial^{2} \beta}{\partial x^{\prime 2}}-\frac{1}{2 m}\left(\frac{\partial \beta}{\partial x^{\prime}}\right)^{2}+m a x^{\prime}+V_{0}+a t^{\prime} \frac{\partial \beta}{\partial x^{\prime}}-\frac{\partial \beta}{\partial t^{\prime}}\right] \psi^{\prime}+\frac{i \hbar}{m}\left[\frac{\partial \beta}{\partial x^{\prime}}-m a t^{\prime}\right] \frac{\partial \psi^{\prime}}{\partial x^{\prime}}=0 \tag{7}
\end{equation*}
$$

Let the velocity of \mathcal{F}^{\prime} with respect to \mathcal{F} be zero for $t^{\prime}<0$ and $a t^{\prime}$ for $t^{\prime}>0$ hence $\beta\left(x^{\prime}, t^{\prime}\right)=0$ for $t^{\prime}<0$. Now ψ and ψ^{\prime} satisfy Schrödinger equations and so are continuous in time. Consequently β will be continuous in time hence $\beta\left(x^{\prime}, 0\right)=0$. We have for $t^{\prime} \geq 0$ that [2], [3]

$$
\begin{equation*}
\beta\left(x^{\prime}, t^{\prime}\right)=\max ^{\prime} t^{\prime}+V_{0} t^{\prime}+\frac{1}{6} m a^{2} t^{\prime 3} \tag{8}
\end{equation*}
$$

is the unique solution of (7) satisfying the initial condition $\beta\left(x^{\prime}, 0\right)=0$.

2 Solution of Schrödinger equation

Let $V(x)$ be a smooth potential. Let $\left\{x_{n}\right\}$ with $n \in \mathbb{Z}$ be a set such that the union of sets $\left[x_{n}, x_{n+1}\right]$ is the real line. Let $\delta_{n}>0$ be small compared to $x_{n+1}-x_{n}$. Define the potential $\widehat{V}(x)$ to be the smooth function such that

$$
\begin{equation*}
\widehat{V}(x)=\frac{V\left(x_{n+1}\right)-V\left(x_{n}\right)}{x_{n+1}-x_{n}}\left(x-x_{n}\right)+V\left(x_{n}\right) \tag{9}
\end{equation*}
$$

for $x_{n}+\delta_{n}<x<x_{n+1}-\delta_{n}$ and $\widehat{V}(x)$ goes to $V(x)$ as the size of $\left[x_{n}, x_{n+1}\right]$ goes to zero. Define

$$
\begin{equation*}
a_{n}=\frac{1}{m} \frac{d \widehat{V}}{d x}\left(\frac{x_{n}+x_{n+1}}{2}\right) \quad \widehat{a}(x)=\frac{1}{m} \frac{d \widehat{V}}{d x}(x) \quad a(x)=\frac{1}{m} \frac{d V}{d x}(x) \tag{10}
\end{equation*}
$$

Require of $\widehat{V}(x)$ that $\hat{a}(x)$ is a nondecreasing function and $\hat{a}(0)=0$. Let $x^{\prime}=x^{\prime}(x, t), t^{\prime}=t$ be the coordinate transformation associated to the potential $\widehat{V}(x)$ such that the point $\left(x^{\prime}, 0\right)$ follows a path $(x(t), t)$ where

$$
\begin{equation*}
x(t)=x^{\prime}+\frac{1}{2} \hat{a}\left(x^{\prime}\right) t^{2} \tag{11}
\end{equation*}
$$

for $t>0$ and $x^{\prime}=x, t^{\prime}=t$ for $t<0$. Let $\psi_{0}(x, t)$ be a free particle wave function that satisfies the Schrödinger equation with zero potential and $\psi(x, t)$ the solution for potential $V(x)$ and $\psi(x, 0)=$ $\psi_{0}(x, 0)$. Let $\widehat{\psi}(x, t)$ be the solution of the Schrödinger equation with potential $\widehat{V}(x)$ and $\widehat{\psi}(x, 0)=$ $\psi_{0}(x, 0)$. We then have, dropping primes, for $x_{n}+\delta_{n}<x<x_{n+1}-\delta_{n}$ that

$$
\begin{equation*}
\widehat{\psi}(x, t)=e^{-\frac{i}{\hbar}\left[m a_{n} x t+V_{0} t+\frac{1}{6} m a_{n}^{2} t^{3}\right]} \psi_{0}\left(x+\frac{1}{2} a_{n} t^{2}, t\right) \tag{12}
\end{equation*}
$$

Consquently as the size of all the $\left[x_{n}, x_{n+1}\right]$ go to zero $\widehat{\psi}(x, t)$ converges to $\psi(x, t)$ hence a solution to the Schrödinger equation for potential $V(x)$ and $\psi(x, 0)=\psi_{0}(x, 0)$ is

$$
\begin{equation*}
\psi(x, t)=e^{-\frac{i}{\hbar}\left[m a x t+V_{0} t+\frac{1}{6} m a^{2} t^{3}\right]} \psi_{0}\left(x+\frac{1}{2} a t^{2}, t\right) \tag{13}
\end{equation*}
$$

References

[1] K. De Paepe, Physics Essays, September 2008
[2] K. De Paepe, Physics Essays, June 2013
[3] A. Colcelli, G. Mussardo, G. Sierra, A. Trombettoni, arXiv, 29 July 2020
k.depaepe@utoronto.ca

