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Abstract 

Built as a manifestly nonlinear quantum field theory (QFT), the Standard Model for particle physics (SM) 

describes the low-energy interaction of gauge and Higgs bosons with quarks and leptons. Since both 

Yang-Mills and Higgs bosons are self-interacting fields, their behavior is inevitably sensitive to the 

transition from order to chaos. Here we point out that quantum corrections to the interaction of the Higgs 

with gauge bosons may lower the threshold for the onset of chaos and destabilize the vacuum somewhere 

in the TeV range of scales. The inability of the vacuum to survive in this energy region hints to a 

straightforward solution for the gauge hierarchy problem. It also suggests that perturbative estimates on 

vacuum stability well above the Large Hadron Collider (LHC) scale are likely to be invalid.  
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1. Introduction   

By construction, the SM represents a nonlinear field theory in which Yang-Mills (YM) 

and Higgs bosons are self-interacting. Nonlinear dynamics of such objects is present at 

both classical and quantum levels. The chaotic attributes of YM fields have been known 
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and studied since the beginning of the eighties [1-11]1. Chaos was first analyzed in the 

classical limit of the YM theory and it was shown to exist in both the continuum and 

lattice formulations of the theory. Particularly, for homogeneous gauge field 

configurations, it was found that spontaneous symmetry breaking triggers the transition 

to chaos (TC) with the rise of the energy density, whereas the dynamics of YM fields in 

the absence of spontaneous symmetry breaking remains chaotic at any density of 

energy. The emergence of chaos in classical dynamics of the SU(2) x U(1) theory was 

numerically explored in [9]. Follow-up research was focused on understanding the TC in 

the semi-classical regime of quantum mechanics (QM) as well as in quantum field 

theory (QFT). The investigation of chaos in classical gauge theory has later targeted on a 

number of specific problems. One of them was confirming the effect induced by the 

Higgs on the chaotic dynamics of classical YM theory. It was shown that the Higgs scalar 

regularizes the dynamics of gauge fields at low energy densities [4, 7-8]. It was also 

discovered that quantum fluctuations leading to symmetry breaking via the Coleman–

Weinberg mechanism tend to stabilize chaotic dynamics of spatially homogeneous 

systems of YM and Higgs fields at low energy densities [7-8, 10-11]. The connection 

between the chaotic dynamics of a classical field theory and the instability of the one-

loop effective action of the associated QFT was analyzed in [10].  

Surprisingly, aside from studies like the ones previously cited, most theoretical models 

in particle physics have overlooked the implications of chaos in QFT. The goal of our 

report is to contribute to a reversal of this trend.  We emphasize here that one-loop 

corrections to the classical interaction of the Higgs with W, Z bosons or photons are 

                                                           
1 Due to the large number of contributions on this topic, we have opted to list only a representative sample 

of recent publications. As a result, many relevant references are not included here.  
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likely to lower the threshold for the TC and destabilize the vacuum somewhere in the  

TeV range of scales. By default, a rapidly decaying vacuum in this energy region 

explains away the long-standing problems of fine-tuning and ultraviolet stability of 

the SM.  

Our report is organized as follows: section two reviews the Higgs potential and the fine-

tuning problem of the SM. Estimates on vacuum stability based on extrapolation of the 

SM near the Planck scale are briefly addressed in section three. Section four highlights 

details on the TC that may be relevant for the dynamics of the di-boson and di-photon 

decay channels. Concluding remarks are presented in the last section. This work 

represents a continuation of several studies initiated by the author in [12-15]. It is 

preliminary in nature and calls out for further clarifications and revisions. Concurrent 

efforts may refute, refine or consolidate our findings.  

2. Stability of the Higgs potential and the fine-tuning problem 

Electroweak (EW) symmetry in the SM is broken by a scalar field having the following 

doublet structure [16]: 

 01 [( v) ]
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 (2.1) 

Here, G  and 0G represent the charged and neutral Goldstone bosons arisen from 

spontaneous symmetry breaking, H is the SM Higgs boson, v ≈ ( ) 246EWO M GeV is the 

Higgs vacuum expectation value (vev) and EWM  stands for the Fermi scale. Symmetry 

breaking is caused by the Higgs potential, whose form satisfies the requirements of 

renormalizability and gauge-invariance: 
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 2 2( )V         (2.2) 

with  ≈ O(1) and 2 ≈ 2( )EWO M . A vanishing quartic coupling ( 0  ) represents the 

critical value that separates the ordinary EW phase from an unphysical phase where the 

Higgs field assumes unbounded values. Likewise, the coefficient 2 plays the role of an 

order parameter whose sign describes the transition between a symmetric phase and a 

broken phase. Minimizing the Higgs potential yields a vev given by:  

 
2

2v ( )


   (2.3) 

where the physical mass of the Higgs is:  

 2 2 22 v 2HM      (2.4) 

The renormalized mass squared of the Higgs scalar contains two contributions: 

 2 2 2

0      (2.5) 

in which 2

0  represents the ultraviolet (bare) value. This mass parameter picks up 

quantum corrections 2  that depend quadratically on the ultraviolet cutoff   of the 

theory. Consider, for example the contribution of radiative corrections to 2 from top 

quarks. The complete one-loop calculation of this contribution reads: 
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in which t  and tM  are the Yukawa coupling and mass of the top quark.  If the bare 

Higgs mass is set near the cutoff 2 2 2

0 ( ) ( )PlO O M    , then 2 ≈ 3510 GeV. This large 
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correction must precisely cancel against 2

0  to protect the EW scale. This is the root 

cause of the fine-tuning problem, which boils down to the implausible requirement that 

2

0  and 2 should offset each other to about 31 decimal places.    

Closely related to the fine-tuning problem is the question of whether the SM remains 

valid all the way up to the Planck scale ( )PlM . This question is non-trivial because it 

depends on how the Higgs quartic coupling   behaves at high energies. Competing 

trends are at work here, namely [16-17]: 

1) Radiative corrections from top quarks drop λ at higher scales, while those from 

the self-interacting Higgs grow λ at higher scales. 

2) If ( )EWM is too large, the Higgs loops dominate and λ diverges at some 

intermediate scale called the Landau pole. However, if ( )EWM is too small, the 

top loops dominate, λ runs negative at some intermediate scale which, in turn, 

makes the potential unbounded from below and destabilizes the vacuum. 

3. Radiative corrections and the vacuum stability  

Within the SM, the value of the physical Higgs mass HM ≈ 125 GeV hinted by recent 

LHC data falls at the border of vacuum stability which, in turn, implies a vanishing 

quartic coupling near PlM . A recent study [16] has undertaken a complete perturbative 

analysis on the vacuum stability, including the two-loop threshold correction to   at the 

EW scale due to QCD and top quark couplings. This analysis has unveiled the following 

outcomes: 



6 
 

1) Vacuum instability develops around a Renormalization Group scale on the order 

of 11(10 )cr O 
 
GeV. 

2) Both parameters of the Higgs potential (2.2) assume near-critical values about 

cr  

 2 << PlM ,  ( )cr   ≈ 0 (3.1) 

It was concluded that (3.1) hints at the possibility that the SM behaves as a statistical 

system approaching criticality at cr . The next section attempts to refute this 

conclusion. We find that critical behavior and the approach to chaos in the SM are likely 

to occur at a scale appreciably lower than cr .  

4. Transition to chaos in Higgs channels 

The goal of this section is to briefly survey several scenarios describing the TC in 

systems comprising YM or Maxwell fields (EM) in interaction with the Higgs scalar. 

These scenarios may be relevant for the dynamics of decay channels in which Higgs 

breaks up in pairs of YM bosons or photons.   

4.1) Let us begin by bringing up a numerical study of the TC for the classical and 

homogeneous SU(2) x U(1) theory [9]. It was found there that the critical energy density 

for the onset of chaos is given by: 
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where WM is the mass of the W boson, FG  the Fermi constant and   the energy density 

of the system of Yang-Mills and Higgs bosons. It follows from (4.1) that c ≈ 102 10

GeV/fm3 or c ≈ 81.529 10 GeV4. Multiplying this energy density by the volume 

corresponding to the EW interaction range EWV ≈ 3r with 3(10r O  fm), results in a 

critical energy for the TC on the order of 100  GeV ≈ ( )EWO M . 

4.2) We turn next to the case of massless scalar electrodynamics coupled to the Higgs 

scalar. One-loop corrections to the classical interaction of this system lead to the 

following critical energy density [10]:  
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    (4.2) 

If the quartic coupling is evaluated at the pole top mass [17] and the system is assumed 

to be near the EW scale, that is, if 0.126  and v ≈ 246 GeV, (4.2) leads to 

74.658 10c   GeV4 and a critical energy for the TC on the order of 10 GeV.   

4.3) Finally, let us consider a system of EW bosons coupled to a massless Higgs scalar 

[11]. The critical energy density defined there includes a contribution from radiative 

corrections to the Higgs potential ( 0

c ) and a contribution from the vacuum energy 

density ( v ). These are estimated to be, respectively:       
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Here   stands for the renormalization scale, g  for the weak coupling of the EW bosons, 

W is the Weinberg angle and , ,W W W    are numerical coefficients dependent on W . 

Taking 0.126  , assuming   ≈ (v)O  and adding the two contributions gives 

84.581 10c   GeV4 and again a critical energy on the order of 100 GeV ≈ ( )EWO M .   

The table below summarizes all results discussed in this section.         

 

Relation Context 
Critical energy density 

(GeV4) 
Critical energy 

(GeV) 

(4.1) classical YM-Higgs 1.529 x 108 O (102) 

(4.2) quantum EM-Higgs 4.658 x 107 O (10) 

(4.3) quantum YM-Higgs 4.581 x 108 O (102) 

 

4. Conclusions  

Our findings suggest that the transition from order to chaos in classical and quantum 

systems of gauge and Higgs fields is prone to occur at a scale substantially lower than 

11(10 )cr O  GeV. Quantum corrections from the Higgs quartic coupling and from the 

interaction of the Higgs with heavy particles become irrelevant as the vacuum loses 

stability and dies out. The inability of the vacuum to survive in the intermediate or far 

Terascale sector explains away the fine-tuning problem and signals the likely breakdown 

of the SM in this region.  

This conclusion, albeit preliminary, sheds light on the problem of extrapolating field 

theories in the deep ultraviolet sector, specifically near the Planck scale. As it is well 

known, General Relativity (GR) is exclusively an “effective” low-energy framework and 
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efforts to develop perturbative quantization of classical gravity result in non-

renormalizable theories [18]. So far, the ultraviolet completion of GR has been 

approached from two different directions. Whereas string theories pursues introduction 

of new fields and symmetries beyond the SM, some quantum gravity theories retain all 

fields and symmetries of GR and treat gravity as a fundamental non-perturbative 

interaction. Since gravity cannot be decoupled from the energy-momentum of matter at 

any level of description, vacuum instability in the TeV sector points out that both 

approaches to the ultraviolet completion of GR may be missing a critical piece of the 

puzzle. 

As mentioned in the first section, our conclusions need to be further scrutinized and, 

most importantly, confronted with the experiment. For instance, it is necessary to clarify 

the relationship between the standard Higgs mechanism of EW symmetry breaking and 

the vacuum stability problem. We anticipate that this effort may help answer the 

following open questions: 

a) Can one envision that the Higgs scalar is a short-lived cluster of gauge bosons 

(EW or gluons) rather than a fundamental field postulated by the theory, whose 

function is to preserve the consistency of the SM?   

b) Would this interpretation bring us closer to understanding the physical origin of 

the Higgs mass? 

The outcome of this investigation will be reported elsewhere [19]. 
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