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Abstract

The motion in a Black Hole spacetime is studied. Several new results are found, in particular

about the nature of Dark Matter and Dark Energy. The energy aspect of a matter in curved

spacetime is explained. It is understandable why underground detectors for particles of Dark

Matter have caught absolutely nothing for so many years of work. Usually, particles have a pretty

strong effect on our world. But such small corpuscles as neutrinos have the weakest effect on

ordinary matter. I give convincing arguments that Dark Matter acts so weakly on our world that

its direct-contact action is equal to zero. That is why Dark Matter passes through the devices that

are built for its capture completely without noticing them, completely without labor and friction

with these devices. Such Dark Matter is representative for the INVISIBLE world, i.e. the detectors

trying to detect it locally are “blind”, they see nothing.
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I. MATH-FREE JUSTIFICATION OF THE PAPER

The theoretically possible vanishing of test-particles is investigated using General Rela-

tivity methods. This is a promising solution, clear and concise, to the Dark Matter mystery.

Four different methods in this paper give the same results for the energy Localization prob-

lem pointed to a falling body compression in the first order deviation equation.

In 2020, an Earth-bound observation showed how the gravitational field of one of the large

Black Holes stretches one of the stars into a long thin spaghetti. [1] The hole ate its “prey”.

However, according to my calculations (four different methods gave the same formula, so

I’m sure I’m right), half of the way to the surface of the Black Hole the star indeed stretches

like spaghetti, but already flying up to the Black Hole event horizon, it begins to shrink into

a heap. The fact that the Black Hole can compress falling bodies (and not tear them apart)

is proven by me strictly scientifically.

First, there are two conflicting factors.

Factor A. The lower parts of the falling star are closer to the Black Hole, so they should be

attracted more strongly than the upper layers of the star. Therefore, according to Newton’s

theory, the star is being stretched apart.

Factor B. According to observations from Earth, the star will never reach the event horizon

of the Black Hole, and if so, then its compression should be seen from the Earth. Factor B

turned out to be stronger than factor A.

Another circumstance speaks for this contraction. Black Holes are formed when a cloud

of dust (or stellar matter) begins to collapse under its own gravity. If the astronaut is in free

fall inside this cloud, he should also be compressed together with the cloud, not stretched.

Let us consider the famous Lemâıtre coordinates, which have convinced everybody about

the stretching.

The Schwarzschild Black Hole in falling coordinates is given by

dS2 = ds2 − 2M

r
dρ2 − r2(dθ2 + sin2θ dφ2) , (1)

where

r =
(

3

2
(ρ− s)

)2/3

(2M)1/3 . (2)

Each choice ρ = const corresponds to the free-falling particle with proper time s. Thus,

one would rush to the conclusion that the falling body is stretching because at s = fixed
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the proper interval between closely separated free-falling particles
∫
dS is monotonically

increasing. However, I expect that in the co-moving coordinate system the simultaneous

events (which are found via infinite fast local motion) have different s.

II. INTRODUCTION

There are physically reasonable solutions in General Relativity with neither event nor

Cauchy horizons, but with naked singularities [2]. Let us study the simplest case of a naked

singularity in the Reissner-Nordström metric with M < Q,

dS2 = −Adt2 + dr2/A+ r2 dΩ2 , A = 1− 2M/r +Q2/r2 . (3)

Here and in the following, we use the single-line style like 1− 2M/r +Q2/r2 for

1− 2M

r
+
Q2

r2
. (4)

Here and in the following, s is the parameter of motion, e.g. the proper time. Q, M ,

S ν̂ , s and r are being measured in meters: they are “geometrised”. The initial velocity (at

r = R) is zero, ur = 0. The fall happens along the radial line.

A. Ethical Statement

I agree with the journal Ethical Statement, and follow it in full.

III. EQUATIONS OF GEODETIC MOTION

From the rest state at r = R, let us release a small, electrically neutral test body.

The metric is t-independent, so the test-body has a velocity component ut = −E = const.

The falling is radial, so uθ = uφ = const = 0. Using normalized velocity vector with

uν u
ν = gtt ut ut + grr u

r ur = E2/(−A) + (ur)2/A = −1, for the radial component of velocity

one has

(ur)2 = E2 − A . (5)

Starting at r = R with radial velocity ur = 0, one has

E2 = 1− 2M/R +Q2/R2 , (6)
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and

(ur)2 = Q2(1/R2 − 1/r2) + 2M (1/r − 1/R) = (1/r − 1/R)(2M −Q2 [1/R + 1/r]) . (7)

Note that if

2M −Q2(1/R + 1/r) < 0 ⇔ 2M/Q2 − 1/R < 1/r (8)

during the falling r < R, one has (ur)2 < 0, but because of 2M/Q2 − 1/R > 0, one obtains

r < 1/(2M/Q2 − 1/R). Thus, the test-body has not reached the singularity at r = 0.

IV. VANISHING SIZE

Further research has shown that the proper size of the body shrinks to zero at r = rm =

1/(2M/Q2 − 1/R).

Consider a drop of “perfect fluid” falling into a Black Hole. Because the drop is small,

the velocity of every part of it is the velocity of the fall. The equation of matter is T µν; ν = 0,

thus uµ T
µν
; ν = 0, where

T µν = (ρ+ p)uµuν + p gµν , (9)

where pressure p and density ρ are the inner characteristics of the drop. Thus,

−(ρ+ p), ν u
ν − (ρ+ p)uν; ν + (ρ+ p)uν uµ; νuµ + p, ν u

ν = 0 , (10)

where uµ; νuµ = 0, because (uµuµ); ν = (−1); ν = 0. As uν = dxν/ds, one has

−d(ρ+ p)

ds
− (ρ+ p)uν; ν +

dp

ds
= 0 . (11)

Here and in the following the index with semicolon means the covariant derivative using

Christoffel symbols, while the index with comma means the ordinary derivative with respect

to the spacetime coordinate.

This differential equation has no solution, unless the fluid is compressible. Let the equa-

tion of state be p = p(ρ). Then

dρ

ds
= −(ρ+ p(ρ))uν; ν . (12)

Now the rate (and sign) of the change of the density depends on D := uν; ν , and the formula

coincides with the one given in Ref. [3], pages 226–227.
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If one inserts the above velocity uν into the divergence, one gets to know that uµ;µ ∼

1/ur → −∞ at r = rm. It is interesting to note that for a Schwarzschild Black Hole

(M 6= 0, Q = 0) one has

D := M
4 r − 3R√

2M Rr3 (R− r)
(13)

With the zero at r = 3R/4 being the starting point for the compression. Notably, this

happens at an infinite distance from the Black Hole, if R is infinite. Such an unexpected

result hardly can be found in Newton’s age, even while we still have a weak field at r =

(3/4)R � 2M . The deadly ripping with D � 1 never begins, but the deadly compression

with D � −1 happens at the singularity r = 0. This has been shown by several methods,

including the study of the geodetics deviation equation. While the first part of the present

note is aimed to raise attention to the problem, the complete study of the problem is found

later in the text.

The drop’s density at r → rm diverges because of

dρ

ρ
=

(
−D −Dp(ρ)

ρ

)
ds . (14)

Integration of both sides produces

ln(C ρ) =
∫ (
−D −Dp(ρ)

ρ

)
ds =

∫ (
D

ur
+
D

ur
p(ρ)

ρ

)
dr =∞ ,

where C is a constant of integration.

V. SOLUTION TO THE VANISHING

Because the vanishing seems to go beyond the energy-momentum conservation law and

General Relativity, I have endured the known law T νµ;ν = 0 with the tensor of invisible Virtual

Matter Xνµ,

(T νµ +Xνµ);ν = 0 . (15)

I call the Virtual Matter “invisible” because it should go through underground “detectors

of Dark Matter” without the slightest effort. Why? Because being just a mathematical fix

to the vanishing of the test body, Virtual Matter is not a new kind of matter; hence, it does

not interact with the visible matter even via the weak interaction. To my understanding,

Virtual Matter with Xνµ
;ν = 0 is called Dark Matter, and Dark Matter with Xνµ = −Λ gνµ,

where Λ is the cosmological constant, is called Dark Energy.
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VI. THE COMPLETE STUDY

A. On the energy localization problem

Recall the demand for an inertial tetrad in the Galilean and Einstein postulates of rela-

tivity: in a non-inertial tetrad the laws of physics would be changed, but the latter comes

in conflict with Metrology. I have invented the following definition of Nature: Nature is

what the Standard Instruments do measure and Instruments are what measure Nature. To

measure correctly, the Instruments must be seen as invariants of Metrology, i.e. unchange-

able: any places, times, and universes in the multiverse which have alien laws or different

fundamental constants are not physical, as the instruments in those places would be changed.

By recalling the basic need to study problems in an inertial coordinate system (tetrad),

we found no problem with the local conservation of the most basic laws of physics. But

others have faced major problems (cf. e.g. Refs. [5]).

The rate vector in the local (ON) tetrad has

dBν̂

ds
= eν̂α

DBα

ds
. (16)

Thus, if Bν̂ conserves in inertial tetrad, then

dBν̂

ds
= 0 ,

D Bα

ds
= 0 . (17)

But because

Bα = eαν̂ B
ν̂ , (18)

the inertial tetrad is defined by

D eαν̂
ds

=
d eαν̂
ds

+ Γαβ γ e
β
ν̂ u

γ = 0 . (19)

In particular, a solution of this describes the yearly fixation of the Earth axis in the polar

star area. This also solves the energy localization problem in General Relativity. The known

formula

T ν µ;ν = 0 (20)

in an inertial ON tetrad is the needed conservation of energy-momentum

T ν̂ µ̂,ν̂ = 0 , (21)
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because in inertial ON tetrad all the Christoffel Symbols are zero,

Γα̂ν̂ µ̂ = 0 (22)

due to the strong equivalence principle: physics in a free-moving laboratory is independent

of gravity (spacetime position). Eq. (22) follows from Eq. (16) because the left-hand side of

the latter equation is a tensor.

B. The model in use

A motion of extended bodies in curved spacetime is a fascinating theme because the point-

like particles are way too simple idealization. However, because of the tremendous number

of details to be considered, large bodies lose the interest of the reader. What remains is the

golden area of study: a small object, but not a microscopic – a drop of “perfect fluid”. A

drop of fluid is falling along a geodesic line because the drop is small. Drops of fluid are

reasonable objects to consider, as there is water in the cosmos [6].

As a background example, the author considers the Schwarzschild metric of the black

hole spacetime gνµ = diag(−(1− 2M/r), 1/(1− 2M/r), r2, r2 sin2 θ).

Using the integral of motion ut = −E and the norm uν uν = −1, one finds non-zero

components of the velocity to be

ut = −E, ur = −

√
E2 − 1 + (2M/r)

1− (2M/r)
, (23)

where E =
√

1− (2M/R).

The free-falling ON reference frame (tetrad) has a time-like geodesic vector e0̂ν = uν

and space-like vectors e1̂ν = (A, H, 0, 0), which are radially directed, and e2̂ν = (0, 0, r, 0),

e3̂ν = (0, 0, 0, r sin θ) orthogonal to these, with inner product eq̂αe
û α = ηq̂ û = diag(−1, 1, 1, 1).

C. Usefulness of first-order Deviation Equation

We are sure about complicated algorithms, often written with extensive use of the second-

order deviation equation (in its higher approximation terms), see e.g. [7]. However, in the

present manuscript the author presents an easily accessible way to study any spacetime of

interest by employing the first order deviation equation.
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Please note that unlike the known deviation equation, the author’s first order deviation

Eq.(27) includes the property of a bundle of geodesics: a starting point with E = E(R) ≡ η

with proper time along each geodesic s ≡ λ. The calculation with the known deviation

equation is much more complicated because it includes second-order derivatives.

VII. FIRST METHOD: ALTERNATIVE TO THE KNOWN DEVIATION EQUA-

TION

In this section, the equation of state of the fluid is zero pressure p = 0: dust is a particular

case of a fluid.

The derivation of deviation equation (see Ref. [3], pages 58, 291) shall be made more

clear, because the starting from the bundle of trajectories xα = xα(λ, η) and the definition

of a tangent to the geodesic line uα = ∂xα/∂λ can lead to the wrong assertion graduα ≡

∂u u
α 6= 0. However, here one has

graduα :=
∂uα

∂xν
=

∂

∂xν

(∂xα
∂λ

)
=

∂

∂λ

(∂xα
∂xν

)
=

∂

∂λ
δαν = 0 . (24)

One shall rewrite the official derivation using the alternative notations Uα({xν}; λ, η) =

Uα({xν(λ, η)}; λ, η) = uα(λ, η) with

Uα
,ν ≡

∂Uα(x0, x1, x2, x3)

∂xν
6= 0. (25)

Because mathematically speaking

∂2 xα

∂η ∂λ
=
∂2 xα

∂λ ∂η
, (26)

obviously holds [9]
∂nα

∂λ
=
∂uα

∂η
, (27)

where nα = ∂xα/∂η with nα = nû eû
α, where nû is the projection of the vector nα on the

free-falling ON reference frame. The equation turns into

d nû

dλ
eû
α =

∂uα

∂η
− nû ∂eû

α

∂λ
. (28)

Now, because we have realized the necessity of Eqs. (24) and (25), one has

∂uα

∂η
≡ Uα

,ν

∂xν

∂η
+
∂ Uα

∂η
, (29)
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where
∂xν

∂η
= nν = nû eνû . (30)

In case of the Schwarzschild metric with proper time s ≡ λ one obtains

M n1̂ +
d n1̂

ds
r
√
r2 (E2 − 1) + 2M r − r2 = 0 , (31)

and the s-derivative of the latter (note that r = r(s)) results in

d2 n1̂

ds2
=

2M

r3
n1̂ . (32)

The proper distance is S ν̂ = ∆η nν̂ , with a constant ∆η � 1.

Because this solution has fixed S 0̂ = dS0̂

ds
= 0, S 1̂ can be recognized as the distance

between the dust particles. The same is stated by the strong equivalence principle [8] as the

same time in the locality of the observer, namely S 0̂ = 0.

Amazingly, the radial size of the body can shrink despite the positive acceleration of

deviation:

f =
d2 S 1̂

ds2
> 0 ,

d S 1̂

ds
< 0 , (33)

if M n1̂ > r2. The author gives the following explanation to it: The deviation forces (f) are

not forces at all. Why? The strong equivalence principle states clearly that the physics of

the small laboratory is not affected by the outside curvature of spacetime. Therefore, it is

conceptually wrong to introduce alien force in such an oasis.

VIII. SECOND METHOD: THE KNOWN DEVIATION EQUATION AGREES

In this section the pressure is zero, p = 0. It is expected that in the (inertial) tetrad

dn hν̂

dsn
= eν̂α

Dn hα

dsn
, (34)

where

hν̂ = eν̂µ h
µ , hα = eαν̂ h

ν̂ , (35)

for any tensor hν and any n. By the way: the rank of a tensor can take any value. Then

the inertial tetrad is defined by

D eαν̂
ds

=
d eαν̂
ds

+ Γαβ γ e
β
ν̂ u

γ = 0 . (36)
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It is known that [3]
D2 nα

ds2
= −Rα

µρ ν u
µ uν nρ . (37)

Thus, for fixed S 0̂ = 0, the radial derivative gives

d2 S 1̂

ds2
= −e1̂αRαµρ ν u

µ uν (eρ
1̂
S 1̂) , (38)

which in case of Schwarzschild metric gives

d2 S 1̂

ds2
=

2M

r3
S 1̂ , (39)

exactly matching Eq. (32).

IX. THIRD METHOD: GEOMETRIC DENSITY CHANGE

In this section, the pressure is again zero, p = 0.

Please note that the azimuthal size of the dust cloud shrinks like 1/r while approaching

the curvature singularity. This azimuthal contraction increases the density of the dust cloud

as 1/r2, because the geometry shows ρ ∼ 1/(S 1̂ r2). Then

dρ

ds
=

d

ds

(
K

S 1̂(s) r2(s)

)
. (40)

Here K = const.

From Eqs. (28), (29) and (40) one has

dρ

ds
= ρM

3R− 4 r√
2M Rr3 (R− r)

+ ∆η ρF (r) , (41)

where F (r) is certain function. These are exactly Eqs. (12) and (13) for a small falling

object (dust cloud) with initial radial size ∆R ∼ ∆η ≈ 0 and zero inner pressure p(ρ) = 0.

X. CONCLUSION

The points in this paper are proven now by four alternative approaches. Therefore, they

are true and must be published. One can calculate that the point r = 0, where ρ → ∞,

becomes the point r = rm > 0 for more general Black Hole metrics, for example in the Kerr
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metric. But there is no curvature singularity at r = rm. The introduction of virtual matter

heals the latter inconsistency.

[1] M. Nicholl et.al., “An outflow powers the optical rise of the nearby, fast-evolving tidal disruption

event AT2019qiz”, Mon. Not. R. Astr. Soc. 499 (1), 482–504 (2020).

[2] M. D. Roberts, “Scalar field counterexamples to the cosmic censorship hypothesis,” Gen. Rel.

Grav. 21 (9), 907–939 (1989).

[3] A. P. Lightman, W. H. Press, R. H. Price, S. A. Teukolsky, “Problem Book in Relativity and

Gravitation,” Princeton University Press, Princeton, 1975.

[4] Sabine Hossenfelder, “Lost in Math: How Beauty Leads Physics Astray,” New York, Basic

Books, 2018, 304 pages.

[5] A. Einstein, “Hamiltonsches Prinzip und allgemeine Relativitätstheorie”, Sitzungsberichte der

preußischen Akademie der Wissenschaften (1916) 1111; C. Møller, “Further Remarks on the

Localization of the Energy in the General Theory of Relativity”, Ann. Physics 12, 118–133

(1961); F. I. Mikhail, M. I. Wanas, A. Hindawi, E. I. Lashin, “Energy-Momentum Complex in

Møller’s Tetrad Theory of Gravitation”, Int. J. Theor. Phys. 32, 1627–1642 (1993); L.D. Lan-

dau, E.M. Lifshitz. “The Classical Theory of Fields: Course of Theoretical Physics.” Vol. 2,

Butterworth-Heinemann, 1975.

[6] D. C. Lis, D. A. Neufeld, T. G. Phillips, M. Gerin, R. Neri, “Discovery of Water Vapor in the

High-redshift Quasar APM 08279+5255 at z = 3.91.” AstrophJ̇L̇ett7̇38, L6 (2011).

[7] R. Tammelo, U. Kask, “On the local detectability of the passage through the Schwarzschild

horizon.” Gen. Rel. Grav. 29, 997–1009 (1997); R. Tammelo, “On the physical significance of

the second geodesic deviation.” Phys. Lett. A 106, 227–230 (1984); T. Mullari, R. Tammelo,

“Some applications of relativistic deviation ppequations.” Hadronic Journal 22, 373–389 (1999).

[8] Lin Zhu, Qi Liu, Hui-Hui Zhao, Qi-Long Gong, Shan-Qing Yang, Pengshun Luo, Cheng-Gang

Shao, Qing-Lan Wang, Liang-Cheng Tu, and Jun Luo, “Test of the Equivalence Principle with

Chiral Masses Using a Rotating Torsion Pendulum” Phys. Rev. Lett. 121, 261101 (2018).

[9] http://www.astronet.ru/db/msg/1170927/node9.html

11


