Length dilation

Abdelaziz Chahboun

16 janvier 2021

Abstract: Another hypothesis to explain the Michelson-Morley experiment : the dilation of the length in the direction perpendicular to the movement.

In a right triangle ($\mathrm{x}, \mathrm{y}, \mathrm{r}$), we have : $r^{2}=x^{2}+y^{2}$

$$
\begin{aligned}
& x^{2}=r^{2}-y^{2}=(r-y)(r+y)=r^{2}\left(1-\frac{y}{r}\right)\left(1+\frac{y}{r}\right) \\
& \frac{r^{2}}{x^{2}}=\frac{1}{\left(1-\frac{y}{r}\right)\left(1+\frac{y}{r}\right)}=\frac{1}{\frac{x^{2}}{r^{2}}}=\frac{1}{\cos ^{2}(\alpha)}=\frac{1}{1-\sin ^{2}(\alpha)}
\end{aligned}
$$

In the right triangle $: \sin (\alpha)=\frac{y}{r}$, i.e :

$$
\frac{1}{1-\left(\frac{y}{r}\right)^{2}}=\frac{1}{\left(1-\frac{y}{r}\right)\left(1+\frac{y}{r}\right)}=\left(\frac{1}{\sqrt{1-\frac{y^{2}}{r^{2}}}}\right)^{2}
$$

From the figure 1 :

$$
\left\{\begin{array}{l}
x=c t \\
y=v t^{\prime} \\
r=c t^{\prime}
\end{array}\right.
$$

Fig: 1
we have :

$$
\frac{1}{1-\left(\frac{v}{c}\right)^{2}}=\gamma^{2}=\frac{1}{\left(1-\frac{v}{c}\right)\left(1+\frac{v}{c}\right)}=k \bar{k}
$$

we have an inversion with respect to the circle of radius γ.
from where :

$$
\begin{aligned}
& k+\bar{k}=\frac{\gamma^{2}}{\bar{k}}+\frac{\gamma^{2}}{k}=\gamma^{2}\left(\frac{1}{k}+\frac{1}{\bar{k}}\right) \\
& k+\bar{k}=\frac{1}{1-\frac{v}{c}}+\frac{1}{1+\frac{v}{c}}=2 \gamma^{2}
\end{aligned}
$$

it is a mathematical relation [I] that can be multiplied by a constancy L / c :

$$
(k+\bar{k}) L / c=2 \gamma^{2} L / c \quad(*)
$$

That we can rewrite :

$$
\sqrt{1-\beta^{2}}(k+\bar{k}) L / c=2 \gamma L / c \quad(* *)
$$

-Lorentz's hypothesis : contraction in the direction of movementt $\left({ }^{*}\right)$

$$
\mathcal{L}=\sqrt{1-\beta^{2}} L
$$

-Another hypothesis : dilation in the direction perpendicular to the movement (*)

$$
\overline{\mathcal{L}}=\gamma L
$$

The two hypotheses have the right to exist physically to explain the mathematical relation (*).
[I] https ://vixra.org/pdf/2006.0280v6.pdf

