
Equiprobability for any non null natural integer of having
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Abstract. Redefining the set of all non null natural integers N∗ as the union of infinitely

many disjoint sets, we prove the equiprobability for any integer of each said set to have either

an odd or even number of prime factor(s) counted with multiplicity. The thus established

equiprobability on N∗ allows us to use the standard normal distribution to establish that

lim
N→+∞

L(N)
√
N

= 0, L(N) the summatory Liouville function. Recalling the Dirichlet series for

the Liouville function we deduce that
ζ(2s)
ζ(s)

, s = σ+ it , is analytic for σ > 1
2

, ζ(s) the Riemann

zeta function. Consequently the veracity of the Riemann hypothesis is being established.

Introduction

On the topic of the probability of the parity of the number of prime factor(s)

counted with multiplicity, we have not come across any article nor book that

deals directly with the matter in a fashion that is similar to that of the present

article.

Indeed by introducing a novel approach, we have been able to prove the

equiprobability for any non null natural integer of having either an odd or even

number of prime factor(s) counted with multiplicity. The equiprobability of

which does in turn have remarkable implications.

Lemma 1. Considering an infinite number of probability spaces defined

by : ∀i ∈ N let 〈Ωi = ωi ∪ ωi,Fi = {∅, ωi, ωi, Ωi}, Pi : Fi → [0, 1]〉, with

Pi(ωi) = a, a ∈ [0, 1], Pi(ωi) = 1− a, ωi and ωi being both non-empty countable

sets while one or both being possibly infinite, be the probability space uniquely

indexed by i ∈ N.

If ΩU =
⋃
i∈NΩi and ∀i, j ∈ N, i 6= j,Ωi ∩ Ωj = ∅ and ∀i ∈ N,

Pi(ωi) = a, then on the probability space 〈ΩU =
⋃
i∈N ωi ∪

⋃
i∈N ωi,FU =

{∅,
⋃
i∈N ωi,

⋃
i∈N ωi, ΩU}, PU : FU → [0, 1]〉 we have :

PU (
⋃
i∈N ωi) = a
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Proof

Let t ∈ ΩU be an outcome of ΩU then by definition : t ∈
⋃
i∈N ωi ⇔ ∃ a

unique j ∈ N such that t ∈ ωj .
That is to say that for a given outcome t ∈ ΩU , the event

⋃
i∈N ωi ∈ FU has

occurred iff for that same outcome t ∈ ΩU , ∃ a unique j ∈ N such that the event

ωj ∈ Fj has occurred. Given that ∀i ∈ N, Pi(ωi) = a, therefore PU (
⋃
i∈N ωi) =

Pj(ωj) = a; then by considering the complementary event of
⋃
i∈N ωi ∈ FU :

PU (
⋃
i∈N ωi) = Pj(ωj) = 1− a and PU (ΩU ) = PU (

⋃
i∈N ωi) + PU (

⋃
i∈N ωi) = 1.

Lemma 2. Considering a finite number of probability spaces defined by :

∀i, V ∈ N, ∀i ∈ [0, V ], let 〈Ωi = ωi ∪ ωi,Fi = {∅, ωi, ωi, Ωi}, Pi : Fi → [0, 1]〉,
with Pi(ωi) = a, a ∈ [0, 1], Pi(ωi) = 1 − a, ωi and ωi being both non-empty

countable sets while one or both being possibly infinite, be the probability space

uniquely indexed by i ∈ [0, V ].

If ΩV =
⋃
i∈[0,V ]Ωi and ∀i, j ∈ [0, V ], i 6= j,Ωi ∩ Ωj = ∅ and ∀i ∈ [0, V ],

Pi(ωi) = a, then on the probability space 〈ΩV =
⋃
i∈[0,V ] ωi ∪

⋃
i∈[0,V ] ωi,FV =

{∅,
⋃
i∈[0,V ] ωi,

⋃
i∈[0,V ] ωi, ΩV }, PV : FV → [0, 1]〉 we have :

PV (
⋃
i∈[0,V ] ωi) = a

Proof

Let t ∈ ΩV be an outcome of ΩV then by definition : t ∈
⋃
i∈[0,V ] ωi ⇔ ∃ a

unique j ∈ [0, V ] such that t ∈ ωj .
That is to say that for a given outcome t ∈ ΩV , the event

⋃
i∈[0,V ] ωi

∈ FV has occurred iff for that same outcome t ∈ ΩV , ∃ a unique j ∈ [0, V ]

such that the event ωj ∈ Fj has occurred. Given that ∀i ∈ [0, V ], Pi(ωi) = a,

therefore PV (
⋃
i∈[0,V ] ωi) = Pj(ωj) = a; then by considering the complementary

event of
⋃
i∈[0,V ] ωi ∈ FV : PV (

⋃
i∈[0,V ] ωi) = Pj(ωj) = 1 − a and PV (ΩV ) =

PV (
⋃
i∈[0,V ] ωi) + PV (

⋃
i∈[0,V ] ωi) = 1.

Lemma 3. For any integer n drawn randomly from N∗, it is equiprobable

that either n ∈ {2k + 1 : k ∈ N} or n ∈ {2k : k ∈ N∗}. That is, consider-

ing the probability space 〈ΩN∗ = N∗,FN∗ = {∅, {2k + 1 : k ∈ N}, {2k : k ∈
N∗}, ΩN∗}, PN∗ : FN∗ → [0, 1]〉, then :

PN∗({2k + 1 : k ∈ N}) = PN∗({2k : k ∈ N∗}) = 1
2 .

Proof

Let us consider the random experiment consisting in drawing randomly any

integer n from N∗ in order to note as the outcome whether n ∈ {2k + 1 : k ∈
N} or n ∈ {2k : k ∈ N∗}. The probability space associated with the latter

random experiment is : 〈ΩN∗ = N∗,FN∗ = {∅, {2k + 1 : k ∈ N}, {2k : k ∈
N∗}, ΩN∗}, PN∗ : FN∗ → [0, 1]〉.
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∀l ∈ N let us now consider the random experiment consisting in drawing

randomly any integer n from the set {2l+1, 2l+2} in order to note as the outcome

whether n ∈ {2k + 1 : k ∈ N} or n ∈ {2k : k ∈ N∗}. The probability space

associated with the latter random experiment is : 〈Ωl = {2l + 1, 2l + 2},Fl =

{∅, {2l+ 1}, {2l+ 2}, Ωl}, Pl : Fl → [0, 1]〉. Given that the set {2l+ 1, 2l+ 2} has

only 2 elements that are equally likely to be picked, it is therefore obvious that

to draw randomly any integer n from the set {2l+1, 2l+2} then : Pl({2l+1}) =

Pl({2l + 2}) = 1
2 and Pl(Ωl) = Pl({2l + 1} ∪ {2l + 2}) = 1

2 + 1
2 = 1.

Noting that N∗ =
⋃
l∈NΩl and ∀l, l′ ∈ N, l 6= l′, Ωl ∩ Ωl′ = ∅ and ∀l ∈ N,

Pl({2l + 1}) = 1
2 , by applying Lemma 1 we have : PN∗({2k + 1 : k ∈ N}) =

Pl({2l + 1}) = 1
2 , PN∗({2k : k ∈ N∗}) = Pl({2l + 2}) = 1

2 and PN∗(ΩN∗) =

PN∗({2k + 1 : k ∈ N} ∪ {2k : k ∈ N∗}) = 1
2 + 1

2 = 1.

Lemma 4. For any integer n drawn randomly from N, it is equiprobable

that either n ∈ {2k + 1 : k ∈ N} or n ∈ {2k : k ∈ N}. That is, considering the

probability space 〈ΩN = N,FN = {∅, {2k + 1 : k ∈ N}, {2k : k ∈ N}, ΩN}, PN :

FN → [0, 1]〉, then :

PN ({2k + 1 : k ∈ N}) = PN ({2k : k ∈ N}) = 1
2 .

Proof

Let us consider the random experiment consisting in drawing randomly any

integer n from N in order to note as the outcome whether n ∈ {2k + 1 : k ∈ N}
or n ∈ {2k : k ∈ N}. The probability space associated with the latter random

experiment is : 〈ΩN = N,FN = {∅, {2k + 1 : k ∈ N}, {2k : k ∈ N}, ΩN}, PN :

FN → [0, 1]〉.
∀m ∈ N let us now consider the random experiment consisting in drawing

randomly any integer n from the set {2m, 2m+1} in order to note as the outcome

whether n ∈ {2k + 1 : k ∈ N} or n ∈ {2k : k ∈ N}. The probability space

associated with the latter random experiment is : 〈Ωm = {2m, 2m + 1},Fm =

{∅, {2m}, {2m+1}, Ωm}, Pm : Fm → [0, 1]〉. Given that the set {2m, 2m+1} has

only 2 elements that are equally likely to be picked, it is therefore obvious that

to draw randomly any integer n from the set {2m, 2m+ 1} then : Pm({2m}) =

Pm({2m+ 1}) = 1
2 and Pm(Ωm) = Pm({2m} ∪ {2m+ 1}) = 1

2 + 1
2 = 1.

Noting that N =
⋃
m∈NΩm and ∀m,m′ ∈ N,m 6= m′, Ωm ∩ Ωm′ = ∅ and

∀m ∈ N, Pm({2m + 1}) = 1
2 , by applying Lemma 1 we have : PN ({2k + 1 :

k ∈ N}) = Pm({2m + 1}) = 1
2 , PN ({2k : k ∈ N}) = Pm({2m}) = 1

2 and

PN (ΩN ) = PN ({2k + 1 : k ∈ N} ∪ {2k : k ∈ N}) = 1
2 + 1

2 = 1.

1/ N∗ as infinitely many complementary disjoint sets

∀n ∈ N∗ \ {1}, by the unique prime factorization theorem, there exists a

unique sequence (p1, p2, . . . , pi, . . . , pm), p1 < p2 < . . . < pi < . . . < pm, m ∈ N∗,
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pi ∈ P, the set of all the prime numbers and a unique sequence (f1, f2, . . . , fi, . . .

, fm), fi ∈ N∗ such that n = pf11 × p
f2
2 × . . .× p

fi
i × . . .× pfmm (the latter notation

will be used for the entirety of the article).

Let us note that for the entirety of the article the adjectives odd or even

are employed in the classical definition of parity i.e. a natural integer is ”odd”

shall it be a member of {2k + 1 : k ∈ N} and ”even” shall it be a member of

{2k : k ∈ N}. Thus 1 is the smallest odd number while 0 is the smallest even

number. Additionally let us note by N1 the set of all the odd natural integers

such that N1 = {2k + 1 : k ∈ N}, by N2 the set of all the even natural integers

such that N2 = {2k : k ∈ N} and by N∗2 the set of all the non null even natural

integers such that N∗2 = {2k : k ∈ N∗}.
Let us note for the entirety of the article by F , F ∈ N, the number of prime

factor(s) counted with multiplicity of n ∈ N∗ and by F ′, F ′ ∈ {odd, even}, the

parity of F .

Additionally let us note for the entirety of the article by f ′i , i ∈ [1,m] the

parity of each fi.

Let N∗ be as such :

N∗ = A1 ∪ A2 ∪
⋃
m∈N∗,m≥2 Bm

where :

A1 = {2k : k ∈ N};
A2 =

⋃
p∈P\{2}{pk : k ∈ N∗}, P \ {2} denoting the set of all the prime

numbers excluding {2};
∀m ∈ N∗,m ≥ 2,Bm =

⋃
pi∈P,p1<p2<...<pi<...<pm(

⋃
km∈N1∪km∈N∗2

(. . . (⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{(pk11 × pk22 × . . . × pkii × . . . × pkmm ) : k1 ∈
N∗}) . . .)) . . .)), thus ∀m,m′ ∈ N,m,m′ ≥ 2,m 6= m′,Bm ∩ Bm′ = ∅.

Let us note for the entirety of the article that for infinitely many given sets

Si, i ∈ N∗ , we will be using the expression ”
⋃
i∈N1∪i∈N∗2

Si” in order to mean

”
⋃
i∈N1

Si ∪
⋃
i∈N∗2

Si” i.e.
⋃
i∈N1∪i∈N∗2

Si =
⋃
i∈N1

Si ∪
⋃
i∈N∗2

Si. Thus for infin-

itely many given sets Si,j , i, j ∈ N∗, we have :
⋃
j∈N1∪j∈N∗2

(
⋃
i∈N1∪i∈N∗2

Si,j)

=
⋃
j∈N1∪j∈N∗2

(
⋃
i∈N1

Si,j ∪
⋃
i∈N∗2

Si,j) =
⋃
j∈N1

(
⋃
i∈N1

Si,j ∪
⋃
i∈N∗2

Si,j) ∪⋃
j∈N∗2

(
⋃
i∈N1

Si,j ∪
⋃
i∈N∗2

Si,j) =
⋃
j∈N1

(
⋃
i∈N1

Si,j) ∪
⋃
j∈N1

(
⋃
i∈N∗2

Si,j) ∪⋃
j∈N∗2

(
⋃
i∈N1

Si,j) ∪
⋃
j∈N∗2

(
⋃
i∈N∗2

Si,j).

Additionally, for the entirety of the article we will be using the expression

”
⋃
pi∈P,p1<p2<...<pi<...<pm” in order to mean ”

⋃
∀i∈[1,m],pi∈P,p1<p2<...<pi<...<pm”;

the latter is to say : ”the union for all m prime numbers such that p1 < p2 <

. . . < pi < . . . < pm”. For instance for infinitely many given sets Sp1,p2 , p1, p2 ∈
P and for m = 2 we have

⋃
pi∈P,p1<p2 Sp1,p2 =

⋃
p1,p2∈P,p1<p2 Sp1,p2 which is the

union of all the sets Sp1,p2 for all couples of prime numbers p1, p2 ∈ P, p1 < p2.

Thus :



EQUIPROBABILITY OF THE PARITY OF THE NUMBER OF PRIME FACTOR(S) 5

A1 ∩ A2 = ∅;
∀m ∈ N∗,m ≥ 2,A1 ∩ Bm = ∅;
∀m ∈ N∗,m ≥ 2,A2 ∩ Bm = ∅;
∀m,m′ ∈ N∗,m,m′ ≥ 2,m 6= m′,Bm ∩ Bm′ = ∅;
∀p1, p2, . . . , pi, . . . , pm ∈ P, p1 < p2 < . . . < pi < . . . < pm,∀p′1, p′2, . . . , p′i,

. . . , p′m ∈ P, p′1 < p′2 < . . . < p′i < . . . < p′m, p1 × p2 × . . . × pi × . . . ×
pm 6= p′1 × p′2 × . . . × p′i × . . . × p′m,

⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (⋃
k2∈N1∪k2∈N∗2

{(pk11 × pk22 × . . . × pkii × . . . × pkmm ) : k1 ∈ N∗}) . . .)) . . .)∩⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{(p′k11 × p′k22 × . . . × p′kii ×
. . .× p′kmm ) : k1 ∈ N∗}) . . .)) . . .) = ∅.

Let us remark that 1 = 20 ∈ A1 .

Let us note that ∀m ∈ N∗, m ≥ 2, ∀p1, p2, . . . , pi, . . . , pm ∈ P, p1 < p2 <

. . . < pi < . . . < pm, ∀k2, . . . , ki, . . . , km,∀i ∈ [2,m], ki ∈ N1∪ki ∈ N∗2, each of the

sets {(pk11 × p
k2
2 × . . .× p

ki
i × . . .× pkmm ) : k1 ∈ N∗}, A1 and {pk : k ∈ N∗} ⊂ A2,

∀p ∈ P \ {2}, can be considered in a strictly increasing order that is being

conferred by the original strictly increasing order of N and N∗.

2/ n belongs to A1 or n belongs to A2

a. n belongs to A1

Theorem 1. To draw randomly any integer n from A1 then the probability

that F being odd is equal to the probability that F being even which is 1
2 . That is,

considering the probability space 〈ΩA1 = {n ∈ A1 : F ′ ∈ {odd}}∪{n ∈ A1 : F ′ ∈
{even}},FA1

= {∅, {n ∈ A1 : F ′ ∈ {odd}}, {n ∈ A1 : F ′ ∈ {even}}, ΩA1
}, PA1

:

FA1
→ [0, 1]〉 then :

PA1
({n ∈ A1 : F ′ ∈ {odd}}) = PA1

({n ∈ A1 : F ′ ∈ {even}}) = 1
2

Proof

Since n ∈ A1 ,A1 = {2k : k ∈ N}, it comes that the parity of F is given

by the parity of f1 – let us note the special case of f1 = 0 where n = 1 has 0

prime factor; 0 being considered as even, which is consistent with the Liouville

function as λ(1) = 1.

By the unique prime factorization theorem, it is clear that to any integer

n ∈ A1 , n = 2f1 , corresponds the unique integer f1 ∈ N, and vice versa to any

integer f1 ∈ N, corresponds the unique integer n ∈ A1 , n = 2f1 . That is to say

that be a function fA1 : A1 → N such that for any n ∈ A1 , n = 2f1 , we have

fA1
(n) = f1, f1 ∈ N, then fA1

is a bijective function from A1 toward N, whose

inverse function is f−1A1
: N → A1 , such that for any integer f1, f1 ∈ N, we have

f−1A1
(f1) = 2f1 = n, n ∈ A1 .
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Thus : A1 = {2k : k ∈ N} = {f−1A1
(k) : k ∈ N}.

Thus each integer n in A1 necessarily has only but one corresponding integer

f1 that determines the parity of the number of prime factor(s) counted with

multiplicity of n, F .

Let us now consider the random experiment consisting in drawing randomly

any integer n from A1 in order to note as the outcome the parity f ′1 of the

corresponding exponent f1 given by fT1
(n). The probability space associated

with the latter random experiment is 〈ΩT1
= {k′ : k′ ∈ {odd, even}},FT1

=

2ΩT1 , PT1 : FT1 → [0, 1]〉.
Let us note by ef1 ∈ FT1 the event that f ′1 is odd and ef1 ∈ FT1 the event

that f ′1 is even.

Given Lemma 4, it is equiprobable for any integer drawn randomly from

N to be either odd or even, therefore PT1(ef1) = PT1(ef1) = 1
2 .

It is clear that the total number of possible outcomes k′, card(ΩT1
) is equal

to 2; thus PT1(ΩT1) = PT1(ef1 ∪ ef1) = 1
2 + 1

2 = 1 indeed.

F is odd iff f ′1 is odd and F is even iff f ′1 is even. Let us note by

AF ∈ FT1
, AF = ef1 the event that F is odd and AF ∈ FT1

, AF = ef1 the

event that F is even. It comes that PT1
(AF ) = PT1

(AF ) = 1
2 with PT1

(ΩT1
) =

PT1
(AF ) + PT1

(AF ) = 1 indeed.

By definition AF ∈ FT1
is equivalent to {n ∈ A1 : F ′ ∈ {odd}} ∈ FA1

and

AF ∈ FT1
is equivalent to {n ∈ A1 : F ′ ∈ {even}} ∈ FA1

, therefore Theorem

1 is established.

b. n belongs to A2

Theorem 2. To draw randomly any integer n from A2 then the probability

that F being odd is equal to the probability that F being even which is 1
2 . That is,

considering the probability space 〈ΩA2
= {n ∈ A2 : F ′ ∈ {odd}}∪{n ∈ A2 : F ′ ∈

{even}},FA2 = {∅, {n ∈ A2 : F ′ ∈ {odd}}, {n ∈ A2 : F ′ ∈ {even}}, ΩA2}, PA2 :

FA2
→ [0, 1]〉 then :

PA2
({n ∈ A2 : F ′ ∈ {odd}}) = PA2

({n ∈ A2 : F ′ ∈ {even}}) = 1
2

Proof

Let p be any given prime number in P \ {2}.
When considering n ∈ {pk : k ∈ N∗}, n = pf1 , it comes that the parity of F

is given by the parity of f1.

By the unique prime factorization theorem, it is clear that to any integer

n ∈ {pk : k ∈ N∗}, n = pf1 , corresponds the unique integer f1 ∈ N∗, and vice

versa to any integer f1 ∈ N∗, corresponds the unique integer n ∈ {pk : k ∈
N∗}, n = pf1 . That is to say that be a function fT2 : {pk : k ∈ N∗} → N∗ such
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that for any n ∈ {pk : k ∈ N∗}, n = pf1 , we have fT2
(n) = f1, f1 ∈ N∗, then

fT2 is a bijective function from {pk : k ∈ N∗} toward N∗, whose inverse function

is f−1T2
: N∗ → {pk : k ∈ N∗}, such that for any integer f1, f1 ∈ N∗, we have

f−1T2
(f1) = pf1 = n, n ∈ {pk : k ∈ N∗}.

Thus : {pk : k ∈ N∗} = {f−1T2
(k) : k ∈ N∗}}.

Thus each integer n in {pk : k ∈ N∗} necessarily has only but one corre-

sponding integer f1 that determines the parity of the number of prime factor(s)

counted with multiplicity of n, F .

Let us now consider the random experiment consisting in drawing randomly

any integer n from {pk : k ∈ N∗} in order to note as the outcome the parity f ′1 of

the corresponding exponent f1 given by fT2
(n). The probability space associated

with the latter random experiment is 〈ΩT2 = {k′ : k′ ∈ {odd, even}},FT2 =

2ΩT2 , PT2
: FT2

→ [0, 1]〉.
Let us note by ef1 ∈ FT2

the event that f ′1 is odd and ef1 ∈ FT2
the event

that f ′1 is even.

Given Lemma 3, it is equiprobable for any integer drawn randomly from

N∗ to be either odd or even, therefore PT2(ef1) = PT2(ef1) = 1
2 .

It is clear that the total number of possible outcomes k′, card(ΩT2) is equal

to 2; thus PT2
(ΩT2

) = PT2
(ef1 ∪ ef1) = 1

2 + 1
2 = 1 indeed.

F is odd iff f ′1 is odd and F is even iff f ′1 is even. Let us note by

ET2
∈ FT2

, ET2
= ef1 the event that F is odd and ET2

∈ FT2
, ET2

= ef1 the event

that F is even. It comes that PT2
(ET2

) = PT2
(ef1) = 1

2 , PT2
(ET2

) = PT2
(ef1) =

1
2 and PT2

(ΩT2
) = PT2

(ET2
) + PT2

(ET2
) = 1 indeed.

∗ ∗ ∗
Since A2 =

⋃
p∈P\{2}{qk : k ∈ N∗} and ∀p, p′ ∈ P \ {2}, p 6= p′, {pk :

k ∈ N∗} ∩ {p′k : k ∈ N∗} = ∅ and ∀p ∈ P \ {2}, PT2(ET2) = 1
2 , by applying

Lemma 1 we can deduce that : PA2
({n ∈ A2 : F ′ ∈ {odd}}) = PT2

(ET2
) = 1

2 ,

PA2
({n ∈ A2 : F ′ ∈ {even}}) = PT2

(ET2
) = 1

2 and PA2
(ΩA2

) = PA2
({n ∈ A2 :

F ′ ∈ {odd}}) + PA2({n ∈ A2 : F ′ ∈ {even}}) = 1
2 + 1

2 = 1 which establishes

Theorem 2.

3/ n belongs to B2

Lemma 5. ∀p1, p2 ∈ P, p1 < p2, to draw randomly any integer n from⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 : k1 ∈ N∗} then the probability that F being odd is

equal to the probability that F being even which is 1
2 . That is, considering the

probability space 〈ΩL5
=
⋃
k2∈N1∪k2∈N∗2

{pk11 × p
k2
2 : k1 ∈ N∗},FL5

= {∅, {n ∈
ΩL5 : F ′ ∈ {odd}}, {n ∈ ΩL5 : F ′ ∈ {even}}, ΩL5}, PL5 : FL5 → [0, 1]〉 then :
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PL5
({n ∈ ΩL5

: F ′ ∈ {odd}}) = PL5
({n ∈ ΩL5

: F ′ ∈ {even}}) = 1
2

Proof

Let p1, p2, p1 < p2 be any 2 given prime numbers in P and let f2 be any

given integer in N∗.

When considering n ∈ {pk11 × p
f2
2 : k1 ∈ N∗}, n = pf11 × p

f2
2 , it comes that

the parity of F is given by the compounding by additivity of the parity of f1
and the parity of f2.

∗ ∗ ∗
Given that p2 and f2 being given and fixed, by the unique prime factor-

ization theorem, it is clear that to any integer n ∈ {pk11 × p
f2
2 : k1 ∈ N∗}, n =

pf11 × p
f2
2 , corresponds the unique integer f1 ∈ N∗, and vice versa to any integer

f1 ∈ N∗, corresponds the unique integer n ∈ {pk11 ×p
f2
2 : k1 ∈ N∗}, n = pf11 ×p

f2
2 .

That is to say that be a function fT3
: {pk11 × p

f2
2 : k1 ∈ N∗} → N∗ such that

for any n ∈ {pk11 × p
f2
2 : k1 ∈ N∗}, n = pf11 × p

f2
2 , we have fT3

(n) = f1, f1 ∈ N∗,
then fT3

is a bijective function from {pk11 × p
f2
2 : k1 ∈ N∗} toward N∗, whose

inverse function is f−1T3
: N∗ → {pk11 × p

f2
2 : k1 ∈ N∗}, such that for any integer

f1, f1 ∈ N∗, we have f−1T3
(f1) = pf11 × p

f2
2 = n, n ∈ {pk11 × p

f2
2 : k1 ∈ N∗}.

Thus : {pk11 × p
f2
2 : k1 ∈ N∗} = {f−1T3

(k1) : k1 ∈ N∗}.

Thus each integer n in {pk11 × p
f2
2 : k1 ∈ N∗} necessarily has only but one

corresponding integer f1 that determines the parity of the number of prime

factor(s) counted with multiplicity of n, F (the parity f ′2 being given and fixed).

Let us now consider the random experiment consisting in drawing randomly

any integer n from {pk11 × p
f2
2 : k1 ∈ N∗} in order to note as the outcome the

parity f ′1 of the corresponding exponent f1 given by fT3(n). The probabil-

ity space associated with the latter random experiment is 〈ΩT3
= {k′1 : k′1 ∈

{odd, even}},FT3
= 2ΩT3 , PT3

: FT3
→ [0, 1]〉.

Let us note by ef1 ∈ FT3
the event that f ′1 is odd and ef1 ∈ FT3

the event

that f ′1 is even.

Given Lemma 3, it is equiprobable for any integer drawn randomly from

N∗ to be either odd or even, therefore PT3
(ef1) = PT3

(ef1) = 1
2 .

It is clear that the total number of possible outcomes k′1, card(ΩT3) is equal

to 2; thus PT3
(ΩT3

) = PT3
(ef1 ∪ ef1) = 1

2 + 1
2 = 1 indeed.

∗ ∗ ∗
For any given f2 ∈ N1, let us now consider the following probability space :

〈Ω′T3
= {pk11 × p

f2
2 : k1 ∈ N∗},F ′T3

= {∅, {n ∈ Ω′T3
: F ′ ∈ {odd}}, {n ∈ Ω′T3

:

F ′ ∈ {even}}, Ω′T3
}, P ′T3

: F ′T3
→ [0, 1]〉.
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f2 ∈ N1, f2 being given and fixed, F is odd iff f1 is even and F is even iff

f1 is odd. Therefore we have : P ′T3
({n ∈ Ω′T3

: F ′ ∈ {odd}}) = PT3(ef1) = 1
2 ,

P ′T3
({n ∈ Ω′T3

: F ′ ∈ {even}}) = PT3
(ef1) = 1

2 and P ′T3
(Ω′T3

) = 1
2 + 1

2 = 1.

Then let us consider the following probability space :

〈Ω′3 =
⋃
f2∈N1

{pk11 × p
f2
2 : k1 ∈ N∗},F ′3 = {∅, {n ∈ Ω′3 : F ′ ∈ {odd}}, {n ∈

Ω′3 : F ′ ∈ {even}}, Ω′3}, P ′3 : F ′3 → [0, 1]〉.

Since Ω′3 =
⋃
f2∈N1

{pk11 × pf22 : k1 ∈ N∗} and ∀f2, f ′′2 ∈ N1, f2 6= f ′′2 ,

{pk11 × p
f2
2 : k1 ∈ N∗} ∩ {pk11 × p

f ′′2
2 : k1 ∈ N∗} = ∅ and ∀f2 ∈ N1, P ′T3

({n ∈
Ω′T3

: F ′ ∈ {odd}}) = 1
2 , by applying Lemma 1 we can deduce that : P ′3({n ∈

Ω′3 : F ′ ∈ {odd}}) = P ′T3
({n ∈ Ω′T3

: F ′ ∈ {odd}}) = 1
2 , P ′3({n ∈ Ω′3 : F ′ ∈

{even}}) = P ′T3
({n ∈ Ω′T3

: F ′ ∈ {even}}) = 1
2 and P ′3(Ω′3) = P ′3({n ∈ Ω′3 : F ′ ∈

{odd}}) + P ′3({n ∈ Ω′3 : F ′ ∈ {even}}) = 1
2 + 1

2 = 1.

∗ ∗ ∗
For any given f2 ∈ N∗2, let us now consider the following probability space :

〈Ω′′T3
= {pk11 × p

f2
2 : k1 ∈ N∗},F ′′T3

= {∅, {n ∈ Ω′′T3
: F ′ ∈ {odd}}, {n ∈ Ω′′T3

:

F ′ ∈ {even}}, Ω′′T3
}, P ′′T3

: F ′′T3
→ [0, 1]〉.

f2 ∈ N∗2, f2 being given and fixed, F is odd iff f1 is odd and F is even iff

f1 is even. Therefore we have : P ′′T3
({n ∈ Ω′′T3

: F ′ ∈ {odd}}) = PT3
(ef1) = 1

2 ,

P ′′T3
({n ∈ Ω′′T3

: F ′ ∈ {even}}) = PT3
(ef1) = 1

2 and P ′′T3
(Ω′′T3

) = 1
2 + 1

2 = 1.

∗ ∗ ∗
Then let us consider the following probability space :

〈Ω′′3 =
⋃
f2∈N∗2

{pk11 × p
f2
2 : k1 ∈ N∗},F ′′3 = {∅, {n ∈ Ω′′3 : F ′ ∈ {odd}}, {n ∈

Ω′′3 : F ′ ∈ {even}}, Ω′′3 }, P ′′3 : F ′′3 → [0, 1]〉.

Since Ω′′3 =
⋃
f2∈N∗2

{pk11 × pf22 : k1 ∈ N∗} and ∀f2, f ′′2 ∈ N∗2, f2 6= f ′′2 ,

{pk11 × p
f2
2 : k1 ∈ N∗} ∩ {pk11 × p

f ′′2
2 : k1 ∈ N∗} = ∅ and ∀f2 ∈ N∗2, P ′′T3

({n ∈
Ω′′T3

: F ′ ∈ {odd}}) = 1
2 , by applying Lemma 1 we can deduce that : P ′′3 ({n ∈

Ω′′3 : F ′ ∈ {odd}}) = P ′′T3
({n ∈ Ω′′T3

: F ′ ∈ {odd}}) = 1
2 , P ′′3 ({n ∈ Ω′′3 : F ′ ∈

{even}}) = P ′′T3
({n ∈ Ω′′T3

: F ′ ∈ {even}}) = 1
2 and P ′′3 (Ω′′3 ) = P ′′3 ({n ∈ Ω′′3 :

F ′ ∈ {odd}}) + P ′′3 ({n ∈ Ω′′3 : F ′ ∈ {even}}) = 1
2 + 1

2 = 1.

∗ ∗ ∗
Then we can consider the following probability space :

〈Ω3 =
⋃
f2∈N1

{pk11 × p
f2
2 : k1 ∈ N∗} ∪

⋃
f2∈N∗2

{pk11 × p
f2
2 : k1 ∈ N∗},F3 =

{∅, {n ∈ Ω3 : F ′ ∈ {odd}}, {n ∈ Ω3 : F ′ ∈ {even}}, Ω3}, P3 : F3 → [0, 1]〉.
Since Ω3 = Ω′3 ∪ Ω′′3 and Ω′3 ∩ Ω′′3 = ∅ and P ′3({n ∈ Ω′3 : F ′ ∈ {odd}})

= P ′′3 ({n ∈ Ω′′3 : F ′ ∈ {odd}}) = 1
2 , by applying Lemma 2 we can deduce that
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P3({n ∈ Ω3 : F ′ ∈ {odd}}) = P ′3({n ∈ Ω′3 : F ′ ∈ {odd}}) = P ′′3 ({n ∈ Ω′′3 : F ′ ∈
{odd}}) = 1

2 , P3({n ∈ Ω3 : F ′ ∈ {even}}) = P ′3({n ∈ Ω′3 : F ′ ∈ {even}}) =

P ′′3 ({n ∈ Ω′′3 : F ′ ∈ {even}}) = 1
2 and P3(Ω3) = P3({n ∈ Ω3 : F ′ ∈ {odd}}) +

P3({n ∈ Ω3 : F ′ ∈ {even}}) = 1
2 + 1

2 = 1.

∗ ∗ ∗
Having shown for any 2 given prime numbers p1, p2 ∈ P, p1 < p2, that

P3({n ∈ Ω3 : F ′ ∈ {odd}}) = P3({n ∈ Ω3 : F ′ ∈ {even}}) = 1
2 and given

that by definition
⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 : k1 ∈ N∗} =
⋃
f2∈N1

{pk11 × pf22 :

k1 ∈ N∗} ∪
⋃
f2∈N∗2

{pk11 × pf22 : k1 ∈ N∗} we can immediately deduce that :

PL5
({n ∈ ΩL5

: F ′ ∈ {odd}}) = P3({n ∈ Ω3 : F ′ ∈ {odd}}) = 1
2 , PL5

({n ∈
ΩL5 : F ′ ∈ {even}}) = P3({n ∈ Ω3 : F ′ ∈ {even}}) = 1

2 and PL5(ΩL5) =

PL5({n ∈ ΩL5 : F ′ ∈ {odd}}) + PL5({n ∈ ΩL5 : F ′ ∈ {even}}) = 1
2 + 1

2 = 1;

which establishes Lemma 5.

Theorem 3. To draw randomly any integer n from B2 then the probability

that F being odd is equal to the probability that F being even which is 1
2 . That is,

considering the probability space 〈ΩB2
= {n ∈ B2 : F ′ ∈ {odd}} ∪ {n ∈ B2 : F ′ ∈

{even}},FB2 = {∅, {n ∈ B2 : F ′ ∈ {odd}}, {n ∈ B2 : F ′ ∈ {even}}, ΩB2}, PB2 :

FB2
→ [0, 1]〉 then :

PB2
({n ∈ B2 : F ′ ∈ {odd}}) = PB2

({n ∈ B2 : F ′ ∈ {even}}) = 1
2

Proof

Let us consider the probability space :

〈ΩB2
= {n ∈ B2 : F ′ ∈ {odd}} ∪ {n ∈ B2 : F ′ ∈ {even}},FB2

= {∅, {n ∈
B2 : F ′ ∈ {odd}}, {n ∈ B2 : F ′ ∈ {even}}, ΩB2

}, PB2
: FB2

→ [0, 1]〉.

Since B2 =
⋃
p1,p2∈P,p1<p2(

⋃
k2∈N1∪k2∈N∗2

{pk11 ×p
k2
2 : k1 ∈ N∗}) and ∀p1, p2 ∈

P, p1 < p2,∀p′1, p′2 ∈ P, p′1 < p′2, p1× p2 6= p′1× p′2,
⋃
k2∈N1∪k2∈N∗2

{pk11 × p
k2
2 : k1 ∈

N∗}∩
⋃
k2∈N1∪k2∈N∗2

{p′1
k1 × p′2

k2 : k1 ∈ N∗} = ∅ and given Lemma 5, ∀p1, p2 ∈
P, p1 < p2, PL5

({n ∈ ΩL5
: F ′ ∈ {odd}}) = 1

2 , by applying Lemma 1 we can

deduce that PB2
({n ∈ B2 : F ′ ∈ {odd}}) = PL5

({n ∈ ΩL5
: F ′ ∈ {odd}}) = 1

2 ,

PB2({n ∈ B2 : F ′ ∈ {even}}) = PL5({n ∈ ΩL5 : F ′ ∈ {even}}) = 1
2 and

PB2(ΩB2) = PB2({n ∈ B2 : F ′ ∈ {odd}}) + PB2({n ∈ B2 : F ′ ∈ {even}}) =
1
2 + 1

2 = 1; which establishes Theorem 3.

4/ n belongs to Bm,m ∈ N∗,m ≥ 2

Lemma 6. ∀m ∈ N∗, m ≥ 2, ∀p1, p2, . . . , pi, . . . , pm ∈ P, p1 <

p2 < . . . < pi < . . . < pm to draw randomly any integer n from
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km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 × . . . × pkii · · · ×
pkmm : k1 ∈ N∗}) . . .)) . . .) then the probability that F being odd is equal to the

probability that F being even which is 1
2 . That is, considering the probability

space 〈ΩL6
=
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 ×

. . .× pkii · · · × pkmm : k1 ∈ N∗}) . . .)) . . .),FL6
= {∅, {n ∈ ΩL6

: F ′ ∈ {odd}}, {n ∈
ΩL6

: F ′ ∈ {even}}, ΩL6
}, PL6

: FL6
→ [0, 1]〉 then :

PL6({n ∈ ΩL6 : F ′ ∈ {odd}}) = PL6({n ∈ ΩL6 : F ′ ∈ {even}}) = 1
2

Proof

Let us prove by mathematical induction Lemma 6.

Lemma 5 means that Lemma 6 is true for m = 2.

Let m ∈ N∗, m > 2 be any given integer in N∗ and let us assume that

Lemma 6 is true for m. Let us now prove that Lemma 6 is true for m+ 1.

∗ ∗ ∗
Let p1, p2 . . . , pi, . . . , pm+1, p1 < p2 < . . . < pi < . . . < pm+1 be any m + 1

given prime numbers in P and let fm+1 be any given integer in N∗.
When considering n ∈

⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 ×p
k2
2 ×. . .×p

ki
i · · ·×pkmm ×p

fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .), n = pf11 ×p
f2
2 ×. . .×p

fi
i ×

· · ·× pfmm × p
fm+1

m+1 , it comes that the parity of F is given by the compounding by

additivity of the parity of the sum (f1 + f2 + . . .+ fi + . . .+ fm) and the parity

of fm+1.

∗ ∗ ∗
Given that pm+1 and fm+1 being given and fixed, by the

unique prime factorization theorem, it is clear that to any integer

n ∈
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 × . . . ×

pkii · · · × pkmm × p
fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .), n = pf11 × pf22 × . . . × pfii ×
· · · × pfmm × p

fm+1

m+1 , corresponds the unique sequence (f1, f2, . . . , fi, . . . , fm) ∈⋃
fm∈N1∪fm∈N∗2

(. . . (
⋃
fi∈N1∪fi∈N∗2

(. . . (
⋃
f2∈N1∪f2∈N∗2

{(f1, f2, . . . , fi, . . . , fm) :

f1 ∈ N∗}) . . .)) . . .), and vice versa to any sequence (f1, f2, . . . , fi, . . . , fm) ∈⋃
fm∈N1∪fm∈N∗2

(. . . (
⋃
fi∈N1∪fi∈N∗2

(. . . (
⋃
f2∈N1∪f2∈N∗2

{(f1, f2, . . . , fi, . . . , fm) :

f1 ∈ N∗}) . . .)) . . .), corresponds the unique integer n ∈⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 × . . . ×

pkii × · · · × pkmm × p
fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .), n = pf11 × pf22 ×
. . . × pfii × · · · × pfmm × p

fm+1

m+1 . That is to say that be a func-

tion fT4 :
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 ×

pk22 × . . . × pkii · · · × pkmm × p
fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .) →⋃
fm∈N1∪fm∈N∗2

(. . . (
⋃
fi∈N1∪fi∈N∗2

(. . . (
⋃
f2∈N1∪f2∈N∗2

{(f1, f2, . . . , fi, . . . , fm) :
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f1 ∈ N∗}) . . .)) . . .) such that for any n ∈⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 × . . . ×

pkii · · · × pkmm × p
fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .), n = pf11 × pf22 × . . . ×
pfii × · · · × pfmm × p

fm+1

m+1 , we have fT4
(n) = (f1, f2, . . . , fi, . . . , fm) ∈⋃

fm∈N1∪fm∈N∗2
(. . . (

⋃
fi∈N1∪fi∈N∗2

(. . . (
⋃
f2∈N1∪f2∈N∗2

{(f1, f2, . . . , fi, . . . , fm) :

f1 ∈ N∗}) . . .)) . . .), then fT4 is a bijective function from⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 ×

. . . × pkii × · · · × pkmm × p
fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .) toward⋃
fm∈N1∪fm∈N∗2

(. . . (
⋃
fi∈N1∪fi∈N∗2

(. . . (
⋃
f2∈N1∪f2∈N∗2

{(f1, f2, . . . , fi, . . . , fm) :

f1 ∈ N∗}) . . .)) . . .), whose inverse function is f−1T4
:⋃

fm∈N1∪fm∈N∗2
(. . . (

⋃
fi∈N1∪fi∈N∗2

(. . . (
⋃
f2∈N1∪f2∈N∗2

{(f1, f2, . . . , fi, . . . , fm) :

f1 ∈ N∗}) . . .)) . . .)→
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 ×

pk22 × . . . × pkii × · · · × pkmm × p
fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .),
such that for any sequence (f1, f2, . . . , fi, . . . , fm) ∈⋃
fm∈N1∪fm∈N∗2

(. . . (
⋃
fi∈N1∪fi∈N∗2

(. . . (
⋃
f2∈N1∪f2∈N∗2

{(f1, f2, . . . , fi, . . . , fm) :

f1 ∈ N∗}) . . .)) . . .), we have f−1T4
((f1, f2, . . . , fi, . . . , fm)) =

pf11 × pf22 × . . . × pfii × · · · × pfmm × p
fm+1

m+1 = n, n ∈⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 × . . . × pkii · · · ×

pkmm × p
fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .).

Thus :
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 ×

. . . × pkii × · · · × pkmm × p
fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .) =
⋃
fm∈N1∪fm∈N∗2

(

. . . (
⋃
fi∈N1∪fi∈N∗2

(. . . (
⋃
f2∈N1∪f2∈N∗2

{f−1T4
((f1, f2, . . . , fi, . . . , fm)) : f1 ∈

N∗}) . . .)) . . .).
Thus each integer n in

⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{

pk11 ×p
k2
2 ×. . .×p

ki
i · · ·×pkmm ×p

fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .) necessarily has only but

one corresponding sequence (f1, f2, . . . , fi, . . . , fm) that determines the parity

of the number of prime factor(s) counted with multiplicity of n, F (the parity

f ′m+1 being given and fixed).

Let us now consider the random experiment consisting in drawing randomly

any integer n from
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 ×

pk22 × . . . × p
ki
i · · · × pkmm × pfm+1

m+1 : k1 ∈ N∗}) . . .)) . . .) in order to note as the

outcome the parity of the sum (f1 +f2 + . . .+fi+ . . .+fm) of the corresponding

sequence of exponents (f1, f2, . . . , fi, . . . , fm) given by fTn(n) (let us note by

S′m the latter parity). The probability space associated with the latter random

experiment is 〈ΩT4
= {S′m : S′m ∈ {odd, even}},FT4

= 2ΩT4 , PT4
: FT4

→ [0, 1]〉.
Let us note by eS′m ∈ FT4

the event that S′m is odd and eS′m ∈ FT4 the
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event that S′m is even.

Given that we have initially assumed that Lemma 5 is true for m, it comes

that PT4
(eS′m) = PT4

(eS′m) = 1
2 .

It is clear that the total number of possible outcomes S′m, card(ΩT4
) is equal

to 2; thus PT4(ΩT4) = PT4(eS′m ∪ eS′m) = 1
2 + 1

2 = 1 indeed.

∗ ∗ ∗
For any given fm+1 ∈ N1, let us now consider the following probability

space :

〈Ω′T4
=
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 ×p
k2
2 ×. . .×

pkii · · ·×pkmm ×p
fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .),F ′T4
= {∅, {n ∈ Ω′T4

: F ′ ∈ {odd}}, {n ∈
Ω′T4

: F ′ ∈ {even}}, Ω′T4
}, P ′T4

: F ′T4
→ [0, 1]〉.

fm+1 ∈ N1, fm+1 being given and fixed, F is odd iff S′m is even and F

is even iff S′m is odd. Therefore we have : P ′T4
({n ∈ Ω′T4

: F ′ ∈ {odd}}) =

PT4(eS′m) = 1
2 , P ′T4

({n ∈ Ω′T4
: F ′ ∈ {even}}) = PT4(eS′m) = 1

2 and P ′T4
(Ω′T4

) =
1
2 + 1

2 = 1.

Then let us consider the following probability space :

〈Ω′4 =
⋃
fm+1∈N1

(
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 ×

pk22 × . . . × p
ki
i · · · × pkmm × p

fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .)),F ′4 = {∅, {n ∈ Ω′4 : F ′ ∈
{odd}}, {n ∈ Ω′4 : F ′ ∈ {even}}, Ω′4}, P ′4 : F ′4 → [0, 1]〉.

Since Ω′4 =
⋃
fm+1∈N1

(
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{

pk11 ×p
k2
2 ×. . .×p

ki
i · · ·×pkmm ×p

fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .)) and ∀fm+1, f
′′
m+1 ∈ N1,

fm+1 6= f ′′m+1,
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 ×

pk22 × . . . × pkii · · · × pkmm × p
fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .) ∩⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 × . . . ×

pkii · · · × pkmm × p
f ′′m+1

m+1 : k1 ∈ N∗}) . . .)) . . .) = ∅ and ∀fm+1 ∈ N1,

P ′T4
({n ∈ Ω′T4

: F ′ ∈ {odd}}) = 1
2 , by applying Lemma 1 we can de-

duce that : P ′4({n ∈ Ω′4 : F ′ ∈ {odd}}) = P ′T4
({n ∈ Ω′T4

: F ′ ∈ {odd}}) = 1
2 ,

P ′4({n ∈ Ω′4 : F ′ ∈ {even}}) = P ′T4
({n ∈ Ω′T4

: F ′ ∈ {even}}) = 1
2 and

P ′4(Ω′4) = P ′4({n ∈ Ω′4 : F ′ ∈ {odd}})+P ′4({n ∈ Ω′4 : F ′ ∈ {even}}) = 1
2 + 1

2 = 1.

∗ ∗ ∗
For any given fm+1 ∈ N∗2, let us now consider the following probability

space :

〈Ω′′T4
=
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 ×p
k2
2 ×. . .×

pkii · · ·×pkmm ×p
fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .),F ′′T4
= {∅, {n ∈ Ω′′T4

: F ′ ∈ {odd}}, {n ∈
Ω′′T4

: F ′ ∈ {even}}, Ω′′T4
}, P ′′T4

: F ′′T4
→ [0, 1]〉.
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fm+1 ∈ N∗2, fm+1 being given and fixed, F is odd iff S′m is odd and F

is even iff S′m is even. Therefore we have : P ′′T4
({n ∈ Ω′′T4

: F ′ ∈ {odd}}) =

PT4
(eS′m) = 1

2 , P ′′T4
({n ∈ Ω′′T4

: F ′ ∈ {even}}) = PT4(eS′m) = 1
2 and P ′′T4

(Ω′′T4
) =

1
2 + 1

2 = 1.

∗ ∗ ∗
Then let us consider the following probability space :

〈Ω′′4 =
⋃
fm+1∈N∗2

(
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{

pk11 × pk22 × . . . × pkii · · · × pkmm × p
fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .)),F ′′4 = {∅, {n ∈
Ω′′4 : F ′ ∈ {odd}}, {n ∈ Ω′′4 : F ′ ∈ {even}}, Ω′′4 }, P ′′4 : F ′′4 → [0, 1]〉.

SinceΩ′′4 =
⋃
fm+1∈N∗2

(
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{

pk11 ×p
k2
2 ×. . .×p

ki
i · · ·×pkmm ×p

fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .)) and ∀fm+1, f
′′
m+1 ∈ N∗2,

fm+1 6= f ′′m+1,
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 ×

pk22 × . . . × pkii · · · × pkmm × p
fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .) ∩⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 × . . . ×

pkii · · · × pkmm × p
f ′′m+1

m+1 : k1 ∈ N∗}) . . .)) . . .) = ∅ and ∀fm+1 ∈ N∗2,

P ′′T4
({n ∈ Ω′′T4

: F ′ ∈ {odd}}) = 1
2 , by applying Lemma 1 we can de-

duce that : P ′′4 ({n ∈ Ω′′4 : F ′ ∈ {odd}}) = P ′′T4
({n ∈ Ω′′T4

: F ′ ∈ {odd}}) = 1
2 ,

P ′′4 ({n ∈ Ω′′4 : F ′ ∈ {even}}) = P ′′T4
({n ∈ Ω′′T4

: F ′ ∈ {even}}) = 1
2 and

P ′′4 (Ω′′4 ) = P ′′4 ({n ∈ Ω′′4 : F ′ ∈ {odd}})+P ′′4 ({n ∈ Ω′′4 : F ′ ∈ {even}}) = 1
2 + 1

2 =

1.

∗ ∗ ∗
Then we can consider the following probability space :

〈Ω4 =
⋃
fm+1∈N1

(
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 ×

pk22 ×. . .×p
ki
i · · ·×pkmm ×p

fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .))∪
⋃
fm+1∈N∗2

(
⋃
km∈N1∪km∈N∗2

(

. . . (
⋃
ki∈N1∪ki∈N∗2

( . . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 × . . . × pkii · · · × pkmm × p
fm+1

m+1 :

k1 ∈ N∗}) . . .)) . . .)),F4 = {∅, {n ∈ Ω4 : F ′ ∈ {odd}}, {n ∈ Ω4 : F ′ ∈
{even}}, Ω4}, P4 : F4 → [0, 1]〉.

Since Ω4 = Ω′4 ∪ Ω′′4 and Ω′4 ∩ Ω′′4 = ∅ and P ′4({n ∈ Ω′4 : F ′ ∈ {odd}})
= P ′′4 ({n ∈ Ω′′4 : F ′ ∈ {odd}}) = 1

2 , by applying Lemma 2 we can deduce that

P4({n ∈ Ω4 : F ′ ∈ {odd}}) = P ′4({n ∈ Ω′4 : F ′ ∈ {odd}}) = P ′′4 ({n ∈ Ω′′4 : F ′ ∈
{odd}}) = 1

2 , P4({n ∈ Ω4 : F ′ ∈ {even}}) = P ′4({n ∈ Ω′4 : F ′ ∈ {even}}) =

P ′′4 ({n ∈ Ω′′4 : F ′ ∈ {even}}) = 1
2 and P4(Ω4) = P4({n ∈ Ω4 : F ′ ∈ {odd}}) +

P4({n ∈ Ω4 : F ′ ∈ {even}}) = 1
2 + 1

2 = 1.

∗ ∗ ∗
Having shown for any m+ 1 given prime numbers p1, p2, . . . , pi, . . . , pm+1 ∈

P, p1 < p2 < . . . < pi < . . . < pm+1, that P4({n ∈ Ω4 : F ′ ∈ {odd}}) =
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P4({n ∈ Ω4 : F ′ ∈ {even}}) = 1
2 and given that by definition⋃

km+1∈N1∪km+1∈N∗2
(
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 ×

pk22 × . . . × pkii · · · × pkmm × p
km+1

m+1 : k1 ∈ N∗}) . . .)) . . .)) =⋃
fm+1∈N1

(
⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 ×

. . . × pkii · · · × pkmm × p
fm+1

m+1 : k1 ∈ N∗}) . . .)) . . .)) ∪
⋃
fm+1∈N∗2

(
⋃
km∈N1∪km∈N∗2

(

. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{pk11 × pk22 × . . . × pkii · · · × pkmm × p
fm+1

m+1 :

k1 ∈ N∗}) . . .)) . . .)) we can immediately deduce that : PL6({n ∈ ΩL6 : F ′ ∈
{odd}}) = P4({n ∈ Ω4 : F ′ ∈ {odd}}) = 1

2 , PL6
({n ∈ ΩL6

: F ′ ∈ {even}}) =

P4({n ∈ Ω4 : F ′ ∈ {even}}) = 1
2 and PL6

(ΩL6
) = PL6

({n ∈ ΩL6
: F ′ ∈

{odd}}) + PL6
({n ∈ ΩL6

: F ′ ∈ {even}}) = 1
2 + 1

2 = 1; which means that

Lemma 6 is true for m+ 1.

∗ ∗ ∗
Having shown that Lemma 6 is true for m + 1, we have completed the

proof by mathematical induction and we can therefore deduce that Lemma 6

is true ∀m ∈ N∗, m ≥ 2; which establishes Lemma 6.

Theorem 4. ∀m ∈ N∗, m ≥ 2, to draw randomly any integer n from Bm

then the probability that F being odd is equal to the probability that F being even

which is 1
2 . That is, considering the probability space 〈ΩBm = {n ∈ Bm : F ′ ∈

{odd}} ∪ {n ∈ Bm : F ′ ∈ {even}},FBm = {∅, {n ∈ Bm : F ′ ∈ {odd}}, {n ∈ Bm :

F ′ ∈ {even}}, ΩBm}, PBm : FBm → [0, 1]〉 then :

PBm({n ∈ Bm : F ′ ∈ {odd}}) = PBm({n ∈ Bm : F ′ ∈ {even}}) = 1
2

Proof

Let m ∈ N∗, m ≥ 2 be any given integer in N∗.
Let us consider the probability space :

〈ΩBm = {n ∈ Bm : F ′ ∈ {odd}} ∪ {n ∈ Bm : F ′ ∈ {even}},FBm = {∅, {n ∈
Bm : F ′ ∈ {odd}}, {n ∈ Bm : F ′ ∈ {even}}, ΩBm}, PBm : FBm → [0, 1]〉.

Since Bm =
⋃
pi∈P,p1<p2<...<pi<...<pm(

⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(

. . . (
⋃
k2∈N1∪k2∈N∗2

{( pk11 × pk22 × . . . × pkii × . . . × pkmm ) : k1 ∈ N∗}) . . .)) . . .))
and ∀p1, p2, . . . , pi, . . . , pm ∈ P, p1 < p2 < . . . < pi < . . . < pm,∀p′1, p′2, . . . , p′i,
. . . , p′m ∈ P, p′1 < p′2 < . . . < p′i < . . . < p′m, p1 × p2 × . . . × pi × . . . ×
pm 6= p′1 × p′2 × . . . × p′i × . . . × p′m,

⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (⋃
k2∈N1∪k2∈N∗2

{(pk11 × pk22 × . . . × pkii × . . . × pkmm ) : k1 ∈ N∗}) . . .)) . . .)∩⋃
km∈N1∪km∈N∗2

(. . . (
⋃
ki∈N1∪ki∈N∗2

(. . . (
⋃
k2∈N1∪k2∈N∗2

{(p′k11 ×p
′k2
2 ×. . .×p

′ki
i ×. . .×

p′kmm ) : k1 ∈ N∗}) . . .)) . . .) = ∅ and given Lemma 6, ∀p1, p2, . . . , pi, . . . , pm ∈
P, p1 < p2 < . . . < pi < . . . < pm, PL6

({n ∈ ΩL6
: F ′ ∈ {odd}}) = 1

2 , by apply-

ing Lemma 1 we can deduce that PBm({n ∈ Bm : F ′ ∈ {odd}}) = PL6({n ∈
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ΩL6
: F ′ ∈ {odd}}) = 1

2 , PBm({n ∈ Bm : F ′ ∈ {even}}) = PL6
({n ∈ ΩL6

: F ′ ∈
{even}}) = 1

2 and PBm(ΩBm) = PBm({n ∈ Bm : F ′ ∈ {odd}}) +PBm({n ∈ Bm :

F ′ ∈ {even}}) = 1
2 + 1

2 = 1. Having shown for any m ∈ N∗, m ≥ 2, Theorem

4 immediately follows.

5/ n belongs to N∗

Theorem 5. To draw randomly any integer n from N∗ then the proba-

bility that F being odd is equal to the probability that F being even which is 1
2 .

That is, considering the probability space 〈ΩΩ = N∗,FΩ = {∅, {n ∈ N∗ : F ′ ∈
{odd}}, {n ∈ N∗ : F ′ ∈ {even}}, ΩΩ}, PΩ : FΩ → [0, 1]〉 then :

PΩ({n ∈ N∗ : F ′ ∈ {odd}}) = PΩ({n ∈ N∗ : F ′ ∈ {even}}) = 1
2

Proof

Since N∗ = A1 ∪ A2 ∪
⋃
m∈N∗,m≥2 Bm and A1 ∩ A2 = ∅, ∀m ∈ N∗,m ≥

2,A1 ∩ Bm = ∅, ∀m ∈ N∗,m ≥ 2,A2 ∩ Bm = ∅, ∀m,m′ ∈ N∗,m,m′ ≥ 2,m 6=
m′,Bm ∩ Bm′ = ∅ and given Theorem 1,Theorem 2 and Theorem 4, by

applying Lemma 1, we can deduce that PΩ({n ∈ N∗ : F ′ ∈ {odd}}) = PΩ({n ∈
N∗ : F ′ ∈ {even}}) = 1

2 and PΩ(Ω) = PΩ({n ∈ N∗ : F ′ ∈ {odd}}) + PΩ({n ∈
N∗ : F ′ ∈ {even}}) = 1

2 + 1
2 = 1; which establishes Theorem 5.

6/ The limit of the summatory Liouville function divided by
√

N

Theorem 6. Let L(N) = λ(1) +λ(2) + . . .+λ(i) + . . .+λ(N), λ(i) being

the Liouville function applied to i ∈ N∗, be the summatory Livouille function up

to N ∈ N∗ then :

lim
N→+∞

L(N)√
N

= 0

Proof

Let us consider (X1, X2, . . . , Xi, . . . , XN ), N ∈ N∗ a sequence of N inde-

pendent and identically distributed random variables Xi, where Xi is defined

as the random variable consisting in drawing randomly any integer n ∈ N∗ in

order to note as the outcome the value given by the Liouville function such that

Xi(n) = λ(n). That is to say that ∀i ∈ N∗ by considering the probability space

〈Ω = N∗,F = {∅, {n ∈ N∗ : F ′ ∈ {odd}}, {n ∈ N∗ : F ′ ∈ {even}}, Ω}, P ({n ∈
N∗ : F ′ ∈ {odd}}) = 1

2 〉 – given Theorem 5 – and the measurable space

〈E = {−1, 1} , E = 2E〉, Xi is defined as the random variable Xi : Ω → E such

that ∀ω ∈ {n ∈ N∗ : F ′ ∈ {odd}}, Xi(ω) = λ(ω) = −1 and ∀ω ∈ {n ∈ N∗ : F ′ ∈
{even}}, Xi(ω) = λ(ω) = 1 with P (Xi = −1) = P ({ω ∈ Ω | Xi(ω) = −1}) = 1

2

and P (Xi = 1) = P ({ω ∈ Ω | Xi(ω) = 1}) = 1
2 .



EQUIPROBABILITY OF THE PARITY OF THE NUMBER OF PRIME FACTOR(S) 17

By noting E[Xi] the mean of Xi and Var[Xi] the variance of Xi, we then

have E[Xi] = 0 and Var [Xi] = 1.

Let
√
N.SN be the random variable such that

√
N.SN =

X1+X2+...+Xi+...+XN√
N

. By applying the classical central limit theorem

(Lindeberg-Lévy central limit theorem), it comes that as N tends to infinity,

the series of random variables
√

1.S1,
√

2.S2, . . . ,
√
N.SN , . . ., converges in

distribution to the random variable X with X ∼ N (0, 1). That is to say that :
√
N.SN

d−−−−−→
N→+∞

X ∼ N (0, 1)

where the random variable X follows the standard normal distribution

N (0, 1).

L(N) being the summatory Liouville function up to N , L(N)√
N

is a spe-

cific value that the random variable
√
N.SN takes for the specific outcome

sequence where ∀i ∈ [1, N ], Xi(i) = λ(i) and lim
N→+∞

L(N)√
N

is a specific value

that the random variable X takes for the specific outcome sequence where

∀i ∈ N∗, Xi(i) = λ(i).

By definition the equiprobability over N∗ given by Theorem 5 means that

the probability to draw randomly either {−1} or {1} from the outcome sequence

(λ(1), λ(2), . . . , λ(i), . . . , λ(N)) as N tends to infinity is equiprobable. That is

to say that by definition : if one considers the random experiment consisting in

drawing randomly any element from the sequence (λ(1), λ(2), . . . , λ(i), . . . , λ(N))

as N tends to infinity then the probability space associated to the latter random

experiment is 〈ΩS =
⋃
i∈N∗{λ(i)},FS = {∅, {λ(i) : λ(i) = −1, i ∈ N∗}, {λ(i) :

λ(i) = 1, i ∈ N∗}, ΩS}, PS : FS → [0, 1]〉 with {n ∈ N∗ : F ′ ∈ {odd}} ∈ FΩ ⇔
{n ∈ N∗ : F ′ ∈ {odd}} ∈ F ⇔ {λ(i) : λ(i) = −1, i ∈ N∗} ∈ FS and PΩ({n ∈
N∗ : F ′ ∈ {odd}}) = P (Xi = −1) = PS({λ(i) : λ(i) = −1, i ∈ N∗}) = 1

2 .

Thus, by noting l = lim
N→+∞

L(N)√
N

, l corresponds to the mode of X ∼ N (0, 1)

by definition. Indeed the standard normal distribution of X ∼ N (0, 1) gives us

:

l > 0⇔ P(X ≤ l) > 1
2 ⇒ P (Xi = −1) > PS({λ(i) : λ(i) = −1, i ∈ N∗}) (a)

That is : l > 0 is equivalent to P(X ≤ l) > 1
2 which means that it is strictly

more probable to have outcomes of X that are lesser or equal to l than to have

outcomes of X that are strictly greater than l. Thereafter, given that it is strictly

more probable to have outcome sequences of X in which the events {Xi = −1}
have occurred more than the events {λ(i) : λ(i) = −1, i ∈ N∗} have occurred in

the outcome sequence of l, than to have outcome sequences of X in which the

events {Xi = −1} have occurred less than the events {λ(i) : λ(i) = −1, i ∈ N∗}
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have occurred in the outcome sequence of l, therefore P (Xi = −1) > PS({λ(i) :

λ(i) = −1, i ∈ N∗}) which establishes (a).

l < 0⇔ P(X ≤ l) < 1
2 ⇒ P (Xi = −1) < PS({λ(i) : λ(i) = −1, i ∈ N∗}) (b)

That is : l < 0 is equivalent to P(X ≤ l) < 1
2 which means that it is strictly

less probable to have outcomes of X that are lesser or equal to l than to have

outcomes of X that are strictly greater than l. Thereafter, given that it is strictly

less probable to have outcome sequences of X in which the events {Xi = −1}
have occurred more than the events {λ(i) : λ(i) = −1, i ∈ N∗} have occurred in

the outcome sequence of l, than to have outcome sequences of X in which the

events {Xi = −1} have occurred less than the events {λ(i) : λ(i) = −1, i ∈ N∗}
have occurred in the outcome sequence of l, therefore P (Xi = −1) < PS({λ(i) :

λ(i) = −1, i ∈ N∗}) which establishes (b).

Additionally given (a) and (b) :

(l is not well-defined) ⇒ l 6= 0 ⇔ (l > 0) ∪ (l < 0) ⇒ (P (Xi = −1) >

PS({λ(i) : λ(i) = −1, i ∈ N∗}))∪(P (Xi = −1) < PS({λ(i) : λ(i) = −1, i ∈ N∗}))
(c)

That is : if l is not well-defined then by definition l 6= 0 which is equivalent to

(l > 0)∪(l < 0) which given (a) and (b) implies that (P (Xi = −1) > PS({λ(i) :

λ(i) = −1, i ∈ N∗})) ∪ (P (Xi = −1) < PS({λ(i) : λ(i) = −1, i ∈ N∗})) which

establishes (c).

It follows that by taking the contraposition of (c) :

¬((P (Xi = −1) > PS({λ(i) : λ(i) = −1, i ∈ N∗})) ∪ (P (Xi = −1) <

PS({λ(i) : λ(i) = −1, i ∈ N∗}))) ⇔ ((P (Xi = −1) ≤ PS({λ(i) : λ(i) = −1, i ∈
N∗})) ∩ (P (Xi = −1) ≥ PS({λ(i) : λ(i) = −1, i ∈ N∗}))) ⇔ P (Xi = −1) =

PS({λ(i) : λ(i) = −1, i ∈ N∗}) ⇒ ¬((l > 0) ∪ (l < 0)) ⇔ (l = 0) ⇒ ¬(l is not

well-defined) ⇔ (l is well-defined)

Said otherwise : P (Xi = −1) = PS({λ(i) : λ(i) = −1, i ∈ N∗})⇒ l = 0

Given that by definition : P (Xi = −1) = PS({λ(i) : λ(i) = −1, i ∈ N∗}) =
1
2 , therefore l = 0. Thus Theorem 6 is established.

7/ The Riemann hypothesis

Theorem 7. By the Riemann hypothesis it is understood the hypothesis

according to which all the complex numbers s ∈ C, 0 ≤ <(s) ≤ 1, such that

ζ(s) = 0, ζ being the Riemann zeta function (B. Riemann, 1859, in [1]), are

located on the abscissa 1
2 of the complex plane then :

Theorem 6 implies the veracity of the Riemann hypothesis.

Proof
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The Dirichlet series for the Liouville function for s = σ + it , where <(s) =

σ, σ ∈ R+∗,=(s) = it, t ∈ R , gives us the following relation (E. Landau, 1909,

in [2]) for σ > 1 :

ζ(2s)

ζ(s)
=

+∞∑
n=1

λ(n)

ns

furthermore given that λ(0) = L(0) = 0 as λ(1) = L(1) = 1 – similarly to

E. Landau, 1909, in [3] – :

+∞∑
n=1

λ(n)

ns
=

+∞∑
n=1

L(n)− L(n− 1)

ns

=

+∞∑
n=1

L(n)

ns
−

+∞∑
n=1

L(n)

(n+ 1)s

=

+∞∑
n=1

L(n)(
1

ns
−

1

(n+ 1)s
)

=

+∞∑
n=1

L(n)

n+1∫
n

s

xs+1
dx

then – similarly to P. Turán, 1948, in [4] – as L(x) remaining constant for

x ∈ [n, n+ 1[ :

+∞∑
n=1

λ(n)

ns
= s.

+∞∫
1

L(x)

xs+1
dx

(Let us remark that P. Turán, 1948, in [4] has exposed a very similar equa-

tion where the summatory Liouville function is being substituted by a different

step function that remains constant on [m,m + 1[,m ∈ N; namely the function

”L(n) ≡
∑
v≤n

λ(v)
v ”).

∗ ∗ ∗
Theorem 6 implies that for ε ∈ R+∗, ε arbitrarily small, ∃M ∈ R+∗,M >

1, such that ∀x ∈ R+∗, x ≥M we have :

0 ≤
∣∣∣L(x)
x

1
2

∣∣∣ < ε

then for δ ∈ R+∗ :

0 ≤
∣∣∣ L(x)

x
1
2
+1+δ

∣∣∣ < ε
x1+δ

which implies that – as L(x) being a step-function with changes only at

each strictly positive integer and 1

x
1
2
+1+δ

being a function that is differentiable

on [1,+∞[ – :
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0 ≤
+∞∫
M

∣∣∣ L(x)

x
1
2
+1+δ

∣∣∣ dx < ε.
+∞∫
M

1
x1+δ dx

so that clearly – as the integral on the right side exists, is convergent and

non null – ∃C ∈ R+∗, C = ε.
+∞∫
M

1
x1+δ dx = εM

−δ

δ , a constant such that :

0 ≤
+∞∫
M

∣∣∣ L(x)

x
1
2
+1+δ

∣∣∣ dx < C

Now considering for σ ≥ 0 that :
+∞∫
1

∣∣∣L(x)xs+1

∣∣∣ dx =
+∞∫
1

∣∣∣ L(x)xσ+1

∣∣∣ dx =
M∫
1

∣∣∣ L(x)xσ+1

∣∣∣ dx +
+∞∫
M

∣∣∣ L(x)xσ+1

∣∣∣ dx

Then for σ ≥ 0, given that ∀x ∈ [1,M ], 0 ≤ |L(x)| ≤ M by definition and

∀x ∈ [1,M ], x 6= 0, it comes that ∃C ′ ∈ R+∗, C ′ a constant such that :

0 ≤
M∫
1

∣∣∣ L(x)xσ+1

∣∣∣ dx < C ′

Thus for σ > 1
2 , σ = 1

2 + δ, δ ∈ R+∗:

0 ≤
+∞∫
1

∣∣∣ L(x)xσ+1

∣∣∣ dx < C + C ′

Consequently s.
+∞∫
1

L(x)
xs+1 dx is absolutely convergent for σ > 1

2 .

∗ ∗ ∗
Let us note by f the complex function of the complex number s, from the

half-plane <(s) > 1
2 to C such that f(s) = s.

+∞∫
1

L(x)
xs+1 dx .

Let s0 be any complex number in the half-plane <(s) > 1
2 and s1 be a

complex number in the half-plane <(s) > 1
2 and in the neighborhood of s0.

Given that s.
+∞∫
1

L(x)
xs+1 dx is obviously non-constant and analytic for σ > 1, it

comes that for the complex number (s0 + 1
2 ) in the half-plane <(s + 1

2 ) > 1

and the complex number (s1 + 1
2 ) in the half-plane <(s + 1

2 ) > 1 and in the

neighborhood of (s0 + 1
2 ) there exists a series (ak) of complex coefficients such

that :

f(s1 + 1
2 ) =

+∞∑
k=0

ak.[(s1 + 1
2 )− (s0 + 1

2 )]k

s.
+∞∫
1

L(x)
xs+1 dx being absolutely convergent for σ > 1

2 , ∃z0 ∈ C such that :

f(s1) = f(s1 + 1
2 ) + z0 =

+∞∑
k=0

ak.[(s1 + 1
2 )− (s0 + 1

2 )]k + z0

By posing A0 = a0 + z0 and ∀k ∈ N∗, Ak = ak we then have :
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f(s1) =
+∞∑
k=0

Ak.(s1 − s0)k

This demonstrates that for any complex number s0 in the half-plane <(s) >
1
2 if one is to consider a complex number s1 in the half-plane <(s) > 1

2 and in

the neighborhood of s0 then one can write f(s1) as a convergent power series;

which means that s.
+∞∫
1

L(x)
xs+1 dx is analytic for σ > 1

2 .

It follows that by analytic continuation to the half-plane <(s) > 1
2 , ζ(2s)

ζ(s) is

analytic for σ > 1
2 (and so is 1

ζ(s) =
s.

+∞∫
1

L(x)

xs+1 dx

ζ(2s) for σ > 1
2 given that ζ(2s) is by

definition analytic and never null for σ > 1
2 ). Said otherwise ζ(2s)

ζ(s) is holomorphic

on the half-plane <(s) > 1
2 and has a single zero for s = 1 which corresponds to

the simple pole of ζ(s) in the the half-plane <(s) > 1
2 .

The fact that ζ(2s)
ζ(s) is holomorphic for σ > 1

2 implies that ζ(s) can never be

null for σ > 1
2 : indeed if ∃z ∈ C, <(z) > 1

2 , ζ(z) = 0 then necessarily ζ(2z) = 0,

<(2z) > 1, – in that if ζ(2z)
ζ(z) is not a pole of ζ(2s)

ζ(s) in the half-plane <(s) > 1
2

then necessarily ζ(2z) = 0, <(2z) > 1 – which is a contradiction given that by

definition ζ(2s) is absolutely convergent and never null for σ > 1
2 . That is to say

that ζ(s) has no non-trivial zeros – i.e. zeros in the strip [0, 1] of the complex

plane – whenever σ > 1
2 .

(Let us remark that – as stated above – the holomorphism of ζ(2s)ζ(s) for σ > 1
2

can constitute an alternate proof of the results of J. Hadamard, 1896, in [5] and

Ch. J. de la Vallée Poussin, 1896, in [6] according to which there cannot be zeros

of ζ(s) on the abscissa <(s) = 1).

It follows that by the symmetry of the non-trivial zeros of ζ(s) with regard

to the abscissa 1
2 in the complex plane (E. Landau, 1909, in [7]), there are no non-

trivial zeros of ζ(s) whenever σ 6= 1
2 . Consequently Theorem 7 is established.

∗ ∗ ∗
Additionally one can note that :

Theorem 8. Let L(N) = λ(1) +λ(2) + . . .+λ(i) + . . .+λ(N), λ(i) being

the Liouville function applied to i ∈ N∗, be the summatory Livouille function up

to N ∈ N∗ then ∀ρ ∈
]
0, 12
]

:

lim
N→+∞

∣∣∣∣ L(N)

N
1
2−ρ

∣∣∣∣ = +∞

Proof

Following the exact same steps of the reasoning previously exposed in this

section we have :
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∃A ∈ R+∗, lim
N→+∞

∣∣∣∣ L(N)

N
1
2−ρ

∣∣∣∣ < A, ρ ∈
]
0,

1

2

]
⇒ ∃B ∈ R+∗,∃T ∈ R+∗, T > 1,∀x ∈ R+∗, x ≥ T : 0 ≤

∣∣∣∣ L(x)

x
1
2−ρ

∣∣∣∣ < B

⇒ s.

+∞∫
1

L(x)

xs+1
dx is absolutely convergent for σ >

1

2
− ρ

⇒ s.

+∞∫
1

L(x)

xs+1
dx is analytic for σ >

1

2
− ρ

⇒ ζ(2s)

ζ(s)
is holomorphic on the half-plane <(s) >

1

2
− ρ

⇒ ζ(2z) = 0,<(2z) = 1 for z ∈ C,<(z) =
1

2
, ζ(z) = 0

⇒ ζ(4z) = 0,<(4z) = 2 for 2z ∈ C,<(2z) = 1, ζ(2z) = 0,

with ζ(4z) = 0,<(4z) = 2, being a contradiction.

That is to say that : if ∃A ∈ R+∗, lim
N→+∞

∣∣∣∣ L(N)

N
1
2−ρ

∣∣∣∣ < A, ρ ∈
]
0, 12
]
, then

∃B ∈ R+∗, ∃T ∈ R+∗, T > 1 such that ∀x ∈ R+∗, x ≥ T , 0 ≤
∣∣∣ L(x)
x

1
2
−ρ

∣∣∣ < B, then

s.
+∞∫
1

L(x)
xs+1 dx is absolutely convergent for σ > 1

2 −ρ, then s.
+∞∫
1

L(x)
xs+1 dx is analytic

for σ > 1
2 − ρ, then by analytic continuation ζ(2s)

ζ(s) is analytic or equivalently

holomorphic in the half-plane <(s) > 1
2 − ρ as s.

+∞∫
1

L(x)
xs+1 dx is obviously non-

constant and analytic in the the half-plane <(s + 1
2 + ρ) > 1, then ζ(2z) = 0,

<(2z) = 1, for z ∈ C, <(z) = 1
2 , ζ(z) = 0, the existence of which can be admitted

given the result of J. P. Gram, 1903, in [8], – in that if ζ(2z)
ζ(z) is not a pole of

ζ(2s)
ζ(s) in the half-plane <(s) > 1

2 − ρ then necessarily ζ(2z) = 0, <(2z) = 1 –

, then ζ(4z) = 0, <(4z) = 2, for 2z ∈ C, <(2z) = 1, ζ(2z) = 0, – in that

if ζ(4z)
ζ(2z) is not a pole of ζ(2s)

ζ(s) in the half-plane <(s) > 1
2 − ρ then necessarily

ζ(4z) = 0, <(4z) = 2, – which is a contradiction given that by definition ζ(4z)

is absolutely convergent and never null for <(4z) > 1; which establishes that

lim
N→+∞

∣∣∣∣ L(N)

N
1
2−ρ

∣∣∣∣ = +∞, ρ ∈
]
0, 12
]

and therefore Theorem 8.

Using big O Landau notation : Theorem 6 means that L(N) ∈ o(
√
N)

while Theorem 8 means that L(N) /∈ O(N
1
2−ρ), ρ ∈

]
0, 12
]
.
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∗ ∗ ∗ ∗ ∗

Besides, let us remark that L. Menici, 2012, in [9] has briefly mentioned

as a theorem (1.4.2) the equivalence between the Riemann hypothesis and the

limit lim
N→+∞

L(N)

N
1
2+ε

= 0, ε > 0, and further commented that ”RH is equivalent to

the statement that a natural integer n has equal probability of having an odd

or even number of distinct prime factors (counted with multiplicity).”

However L. Menici has not provided any specific reference nor further infor-

mation on how such results can be obtained. It was therefore unknown how the

said equiprobability could have been possible. Furthermore, given Theorem 6

one can note that the comment by L. Menici in [9] is in fact not totally cor-

rect in that the equiprobability that any non null natural integer has an odd or

even number of primes factor(s) counted with multiplicity actually implies that

lim
N→+∞

L(N)

N
1
2

= 0 precisely and not lim
N→+∞

L(N)

N
1
2+ε

= 0, ε > 0. Nonetheless, it was

in L. Menici’s writing that the present author has encountered for the first time

the mentioning of a relation between probability and the Riemann hypothesis.

Last but not least, let us remark that the proofs of Theorem 5 and The-

orem 6 are self-standing and elementary in that the proofs do only rely on :

enumerations performed on probability spaces defined in accordance with the ax-

ioms of probability, the Lemma 1, the Lemma 2, the Lemma 3, the Lemma

4, the classical central limit theorem and the standard normal distribution. In

this regard, it is very much remarkable that Theorem 5 and Theorem 6 be-

ing self-standing and elementary, do actually imply the veracity of the Riemann

hypothesis.
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APPENDIX

A posteriori, let us remark that the expression ”outcome sequences of X in

which the events {Xi = −1} have occurred more than the events {λ(i) : λ(i) =

−1, i ∈ N∗} have occurred in the outcome sequence of l” on the page 16 of the

present article, can be reformulated more formally.

Let O ∈ R ∪ {+∞} ∪ {−∞} be a given outcome of the random variable

X. Let us note by tO(N) the function that counts the number of occurrences

of {−1} in the outcome sequence of O up to N , including N , N ∈ N∗, and by

tl(N) the function that counts the number of occurrences of {−1} in the outcome

sequence of l up to N , including N , N ∈ N∗.
For O ≤ l we then have :

O ≤ l, by definition,

⇔ lim
N→+∞

[N − tO(N)]− tO(N)√
N

≤ lim
N→+∞

[N − tl(N)]− tl(N)√
N

⇔ lim
N→+∞

[[N − tO(N)]− tO(N)]− [[N − tl(N)]− tl(N)]√
N

≤ 0

⇔ lim
N→+∞

−2.tO(N) + 2.tl(N)√
N

≤ 0, as lim
N→+∞

1√
N

= 0+,

⇔ lim
N→+∞

[−2.tO(N) + 2.tl(N)] ≤ 0

⇔ lim
N→+∞

tO(N) ≥ lim
N→+∞

tl(N)

Thus more formally : a given outcome O of X ”in which the events

{Xi = −1} have occurred more than the events {λ(i) : λ(i) = −1, i ∈ N∗} have

occurred in the outcome sequence of l” is an outcome such that lim
N→+∞

tO(N) ≥

lim
N→+∞

tl(N).

Similarly, a given outcome O of X ”in which the events {Xi = −1} have

occurred less than the events {λ(i) : λ(i) = −1, i ∈ N∗} have occurred in the

outcome sequence of l” is an outcome such that lim
N→+∞

tO(N) ≤ lim
N→+∞

tl(N).
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