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Abstract; 
This short paper comprises a set of differential and integral reformulations to a one-dimensional, 
nonrelativistic position-space variant of Schrodinger’s equation, in a fashion that interchanges 
Planck’s constant with De Broglie’s wavelengths for massive particles. As far as interpretative 
discussions are concerned, this merely constitutes a mathematically abstract, arbitrary approach 
to the equation and its constituents. Consequently, it bears almost no A Priori, conceptual or 
intuitive substance in the context of quantum mechanics. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Consider a nonrelativistic, massive particle oscillating over a one-dimensional positional space, whose 

state was described by: 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = (−

ℎ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥, 𝑡)) 𝜓(𝑥, 𝑡) 

or, equivalently: 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = −

ℎ2

2𝑚

𝜕2

𝜕𝑥2
𝜓(𝑥, 𝑡) + 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 

 

wherein 𝑉 denotes the particle’s scalar potential, and 𝜓 its apparent wave-function. 

Differentiating (with respect to time-dependency), on both sides results in:  

𝜕

𝜕𝑡
𝑖ℏ

𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) =

𝜕

𝜕𝑡
(−

ℎ2

2𝑚

𝜕2

𝜕𝑥2
𝜓(𝑥, 𝑡) + 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡)) 

𝑖ℏ
𝜕2

𝜕𝑡2
𝜓(𝑥, 𝑡) = −

ℎ2

2𝑚

𝜕3

𝜕𝑡𝜕𝑥2
𝜓(𝑥, 𝑡) +

𝜕

𝜕𝑡
𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 

 

If the particle in question is subject to exhibiting a De Broglie wavelength, ℎ may be reformulated using: 

𝜆 =
ℎ

𝑝
 

ℎ = 𝜆𝑝 

𝑖ℏ
𝜕2

𝜕𝑡2
𝜓(𝑥, 𝑡) = −

𝜆2𝑝2

2𝑚

𝜕3

𝜕𝑡𝜕𝑥2
𝜓(𝑥, 𝑡) +

𝜕

𝜕𝑡
𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 

 

Whilst quantum-mechanical systems are unamenable to conventions sourced from classical observations, 

they may be appreciative of the canonical relation:  

 

𝑝2

2𝑚
=

𝑚𝑣2

2
= E𝑘  

𝑖ℏ
𝜕2

𝜕𝑡2
𝜓(𝑥, 𝑡) = −𝜆2E𝑘

𝜕3

𝜕𝑡𝜕𝑥2
𝜓(𝑥, 𝑡) +

𝜕

𝜕𝑡
𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 

𝑖ℏ
𝜕2

𝜕𝑡2
𝜓(𝑥, 𝑡) + 𝜆2E𝑘

𝜕3

𝜕𝑡𝜕𝑥2
𝜓(𝑥, 𝑡) =

𝜕

𝜕𝑡
𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 

𝜆2E𝑘

𝜕3

𝜕𝑡𝜕𝑥2
𝜓(𝑥, 𝑡) =

𝜕

𝜕𝑡
𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) − 𝑖ℏ

𝜕2

𝜕𝑡2
𝜓(𝑥, 𝑡) 



𝜕

𝜕𝑡
𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) refers to the partial derivative of the product of a particle’s wave-function and its scalar 

potential.  

If progression through time is held to be invariant, then one can repurpose the product rule for ordinary 

derivatives, in the form: 

𝜕

𝜕𝑡
𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) =

𝜕𝑉

𝜕𝑡
𝜓 +

𝜕𝜓

𝜕𝑡
𝑉 

Therefore: 

 

𝜆2E𝑘

𝜕3

𝜕𝑡𝜕𝑥2
𝜓(𝑥, 𝑡) =

𝜕𝑉

𝜕𝑡
𝜓 +

𝜕𝜓

𝜕𝑡
𝑉 − 𝑖ℏ

𝜕2

𝜕𝑡2
𝜓(𝑥, 𝑡) 

 

Abbreviating variable notations for both 𝜓 and 𝑉, and rearranging the above, one may determine - 

 

𝜆2E𝑘 =

𝜕𝑉
𝜕𝑡

𝜓 +
𝜕𝜓
𝜕𝑡

𝑉 − 𝑖ℏ
𝜕2𝜓
𝜕𝑡2

𝜕3𝜓
𝜕𝑡𝜕𝑥2

 

Since 𝜆2E𝑘  will necessarily be real,  

𝜕𝑉
𝜕𝑡

𝜓 +
𝜕𝜓
𝜕𝑡

𝑉 − 𝑖ℏ
𝜕2𝜓
𝜕𝑡2

𝜕3𝜓
𝜕𝑡𝜕𝑥2

 𝜖 𝑅+ 

despite the complex values assigned by 𝜓(𝑥, 𝑡). 

Similarly,  

E𝑘 =

𝜕𝑉
𝜕𝑡

𝜓 +
𝜕𝜓
𝜕𝑡

𝑉 − 𝑖ℏ
𝜕2𝜓
𝜕𝑡2

𝜕3𝜓
𝜕𝑡𝜕𝑥2 𝜆2

 𝑎𝑛𝑑 𝜆 = √

𝜕𝑉
𝜕𝑡

𝜓 +
𝜕𝜓
𝜕𝑡

𝑉 − 𝑖ℏ
𝜕2𝜓
𝜕𝑡2

𝜕3𝜓
𝜕𝑡𝜕𝑥2 E𝑘

 

 

Schrodinger’s wave equation ascribes the kinetic energy of a particle by virtue of a differential operator 

(that evolves into a Laplacian for three-dimensional vector spaces). 

One can also integrate (with respect to time-dependency) on both sides of the function: 

∫ 𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) 𝑑𝑡 = ∫ −

ℎ2

2𝑚

𝜕2

𝜕𝑥2
𝜓(𝑥, 𝑡) + 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 𝑑𝑡 

or, equivalently: 



∫ 𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) 𝑑𝑡 = ∫ −𝜆2E𝑘

𝜕2

𝜕𝑥2
𝜓(𝑥, 𝑡) + 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 𝑑𝑡 

                 𝑖ℏ ∫
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) 𝑑𝑡 = −𝜆2E𝑘 ∫

𝜕2

𝜕𝑥2
𝜓(𝑥, 𝑡) 𝑑𝑡 + ∫ 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 𝑑𝑡          (𝐸 ∗) 

∫ 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 𝑑𝑡  𝑐𝑎𝑛′𝑡 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑏𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑝𝑎𝑟𝑡𝑠; 

𝑙𝑒𝑡 𝑉 = 𝑢, 𝑎𝑛𝑑 𝜓 = 𝑑𝑣/𝑑𝑥 

Adjusting roles for both functions obtains: 

∫ 𝑉𝜓 𝑑𝑡 = 𝑉 ∫ 𝜓 𝑑𝑡 − ∫ (∫ 𝜓 𝑑𝑡)
𝜕

𝜕𝑡
𝑉 𝑑𝑡 

Consequently, returning to (𝐸 ∗) 

 𝑖ℏ ∫
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) 𝑑𝑡 + 𝜆2E𝑘 ∫

𝜕2

𝜕𝑥2
𝜓(𝑥, 𝑡) 𝑑𝑡 = ∫ 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 𝑑𝑡 

𝜆2E𝑘 ∫
𝜕2

𝜕𝑥2
𝜓(𝑥, 𝑡) 𝑑𝑡 = ∫ 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 𝑑𝑡 −  𝑖ℏ ∫

𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) 𝑑𝑡 

𝜆2E𝑘 =
∫ 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 𝑑𝑡 −  𝑖ℏ ∫

𝜕
𝜕𝑡

𝜓(𝑥, 𝑡) 𝑑𝑡

∫
𝜕2

𝜕𝑥2 𝜓(𝑥, 𝑡) 𝑑𝑡
 

 

∫
𝜕2

𝜕𝑥2 𝜓(𝑥, 𝑡) 𝑑𝑡 can’t be rewritten as 
𝜕

𝜕𝑥
𝜓(𝑥, 𝑡), since 𝜓 is multivariate in character. 

 

Finally, abbreviating variable notations for 𝜓 and 𝑉, one can derive the equivalent formulations: 

E𝑘 =
∫ 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 𝑑𝑡 −  𝑖ℏ ∫

𝜕
𝜕𝑡

𝜓(𝑥, 𝑡) 𝑑𝑡

𝜆2 ∫
𝜕2

𝜕𝑥2 𝜓(𝑥, 𝑡) 𝑑𝑡
 𝑎𝑛𝑑 𝜆 =  √

∫ 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 𝑑𝑡 −  𝑖ℏ ∫
𝜕
𝜕𝑡

𝜓(𝑥, 𝑡) 𝑑𝑡

E𝑘 ∫
𝜕2

𝜕𝑥2 𝜓(𝑥, 𝑡) 𝑑𝑡
  

 

 

wherein  

∫ 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 𝑑𝑡 −  𝑖ℏ ∫
𝜕
𝜕𝑡

𝜓(𝑥, 𝑡) 𝑑𝑡

∫
𝜕2

𝜕𝑥2 𝜓(𝑥, 𝑡) 𝑑𝑡
 𝜖 𝑅+ 

 

despite any complex values assigned in the integrals of the expression. 



A Note on the Copenhagen School of Quantum Mechanics 

In order for a wavefunction to collapse in a manner that isn’t deterministic, there must 

necessarily exist a substantive argument as to the credence of its projections. If its mathematical 

implications are solely probabilistic, one may rightly question how precisely its probabilistic 

distribution is engendered, and whether it is a manifestation of empirical truths (by virtue of 

measurement), more so than it is one of intrinsic, phenomenal truths (by virtue of objective 

existence). In any event, its divergence from the strictures of classical mechanics should neither 

be abnegated as unreal, nor neglected as being an arbitrary fact of the universe. Any conceptual 

unifications in this regard, must necessarily be characterized as being both rationalistic and 

substantiated empirically. Most meaningful interpretations that have been promulgated thus far, 

have scarcely invoked any scientific consensuses in either modern or historical academia. 

Abstract mathematics can underpin a physical concept, only insofar as it facilitates an explication 

of the mechanisms that guide it. When considering an intuitive analogy (or concrete paradigm), 

abstractions in the form of probability amplitudes are futile in describing the trajectory that an 

electron undertakes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


