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Abstract 
The early pioneers who worked or derived the Lorentz transform, like Voigt, Lorentz, Poincare, and Einstein used an                  

additional common scaling factor to start with. We review the arguments of these pioneers and analyze them to deduce                   

which aspects by dropping this scaling factor are affected. The Interval and phase invariance of the Lorentz transform                  

contradicts its own clock time relationship, but the same is shown to disappear if we translate them to the real domain.                     

Moreover, the invariance does not imply the values of interval and phase are preserved because Lorentz transforms do                  

scale them across frames. Behind the success of the four-vector-based covariant formulation of Lorentz transform is the                 

fact that they operate in the Minkowski domain that maps the positions and computes the times accordingly, but the                   

same makes them difficult to interpret. The real domain view makes their interpretation easy where time dilation persists                  

but the synchronization term disappears. 

____________________________________________________________________________________________________ 
1. A brief review 
Voigt [1] was the first who demanded covariance of         
the homogeneous wave equation in inertial      
reference frames, assumed the invariance of      
lightspeed in these frames, and obtained Voigt       
transforms (VT),  
 

′ −vt, T ′ −vx/c  , Y ′ /γ , Z ′ /γ,X = x  = t 2  = y  = z  (1)  

 

where , ​v is the relative velocity /  γ = 1 √1 /c− v2 2       

between primed and unprimed frames. Lorentz [2]       
used a similar set of transforms that leave the         
Maxwell formulations and Lorentz force covariant, 
 

′ γx, T ′ (t/γ−γvx/c ), Y ′ y , Z ′ z,X = l  = l 2  = l  = l  (2)  

 
where ​l is assumed to be a function of v. Poincare           
[3] corrected it to, 
 

′ γ(x−vt), T ′ γ(t−vx/c ),  Y ′ y,  Z ′ zX = l  = l 2  = l  = l  (3) 

 
Thus, Lorentz in his original form (2) did not even          
use today’s much-celebrated ​x,t symmetry like ​x-vt       
and ​ct-vx/c​, but he instead tweaked the ​t and ​x          
parts of the temporal transforms. Einstein [4] by        
using the two famous postulates of relativity       

arrived at a similar form as (3) except for use of           
variable instead of ​l(v)​. Lorentz in [2] (v)  φ        

explicitly assumed ​l to differ from 1 in        
second-order only like 𝛾 in VT. Above all equations         
are claimed to preserve the lightspeed and leave        
the formulation of electrodynamics covariant i.e.      
they retain the shape and form of waves and laws,          
and so are conformal transforms. Also, it is obvious         
if we use ​l=1/​𝛾 ​in (3) it reduces to Voigt transform           
(1) and if we use ​l=​1 in (3) we arrive at the            
modern-day Lorentz transform (LT) of (4), named       
so by Poincare in [3]. 
 

′ (x−vt), T ′ (t−vx/c2),  Y ′ ,  Z ′X = γ  = γ  = y  = z  (4) 

 
Voigt was the earliest user of the above classes of          
covariant or conformal transforms, but the other       
three pioneers in their respective papers provided       
their different arguments to fix ​l=​1 to get (4). Two          
of them Lorentz and Einstein were physicists, and        
Poincare, who very early discovered the      
mathematical elegance of (4) as they formed a        
group, was a mathematician. We are interested to        
know the exact physical reasons of these pioneers        
for arriving at ​l=​1 apart from mathematical       
necessity. Later in 1906 while proposing a Lorentz        
covariant gravitational theory, Poincare incited by      
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symmetrical coupling of ​x and ​t briefly introduced        
the idea of four-dimensional spacetime, which was       
elaborated by another mathematician Minkowski     
in 1908 [5]. LT of (4) also offers the invariance of           
spacetime interval and phase for ​l​=1, 
 
S’​2​  - c​2​T’​2​ = l​2​ (s​2​  - c​2 ​t​2 ​ )​,   𝜙’ =​l​2​ 𝜙 , (5) 
  
where S’, s are spatial interval and 𝜙’, 𝜙 are phases           
in the two frames computed for (3). Thus        
conformal equations (1) to (3) do not preserve the         
interval and phase as they homogeneously and       
isotropically scale them by a common factor ​l​.        
However, this non-invariance least deterred     
Minkowski to say ​in 1908 that ‘the transformations        
which play the main role in the principle of relativity          
were first examined by Voigt in 1887’ because the key          
to formulate the Minkowski space in these equations        
is the symmetrical coupling of ​x and ​t that helps to           
establish the space-time equivalence, not the      
invariance. Also, non-invariance of interval does not       
mean the lightspeed is not preserved for (3), nor it          
means the violation of the first postulate of relativity         

provided ​l like Lorentzian factor ​𝛾 is a function of          

second orders in ​v/c as is the case for VT. ​Moreover,           
l​=1 also does not mean LT preserves the values of          
interval and phases across the frames as LT still         
scales them despite ​l​=1, as is shown later. ​It seems          
after the popularity of LT when physicists came to         
know about similar transforms by Voigt, it was found         
while VT succeeds to produce many convincing       
results such as it conserves the energy and mass,         
reproduces the relativistic velocity-addition, the     
oblate shape of a sphere, aberration angle, but misses         
on certain aspects such as time dilation by a factor          

l=1/​𝛾​, and thus on Doppler frequencies, mass, etc by a          

factor ​𝛾 [6]. The success of VT was attributed to          
their resemblance with LT and its failures to the         
non-invariance of the interval, but wrongly so       
because the exact cause of the failures of VT was          
very different as we shall see. In this connection, it          
is important to carefully review and analyze the        
arguments of the three pioneers in favor of ​l=​1,         
from the physical point of view.  
 

2. The earliest arguments for ​l​ to be one 

Lorentz was the first to deduce ​l=​1 based on his          
calculation for longitudinal mass of electrons      
moving in the Ether, which is an obsolete concept.         
He first derives the expressions for axial and        
transverse electromagnetic masses for electrons in      
the ether as a function of ​v and other variables, and           
then based on his expression for the axial mass,         
which shows a ​𝛾​3 dependence, he concludes       
dl/dv​=0, and hence the constancy of l [2]. Finally,         
he uses his awareness that ​l can only have a second           
or even order dependence, and ​l should reduce to         
one for ​v​=0, so ​l​=1. Recall, Voigt also used ​l=​1/𝛾,          
showing a second-order dependence in ​v/c​.      
Lorentz's decision for ​l​=1 seems to have the least         
concern for invariance and more related to       
extracting the correct dependence of electron’s      
longitudinal mass on ​v/c​. 
 
Poincare was introduced to the above group of        
transforms through Lorentz’s paper. The     
mathematician not only advocated the case for ​l=​1        
more forcefully than anyone else but also slightly        
corrected the original transform of Lorentz, and       
named them after him. However, his reasons for ​l         
to be 1, as expected, were purely mathematical [3],         
as he writes, ​“​The sum of all these transformations,         
together with the set of all rotations of space, must          
form a group; but for this to occur, we need l=1; so            
one is forced to suppose l=1 and this is a          
consequence that Lorentz has obtained by another       
way”​, in his June abstract to the proceedings. A         
month later in section 4 of his detailed submission         
to the same proceedings, by carrying different       
operations on the frames, he produces two       
constraints on ​l for (3) to be a group, ​l(v)=l(-v) and           
l(v).l(-v)=​1, yielding ​l=​1. However, Poincare is not       
the only one to reach these two constraints on ​l​,          
Einstein later obtains them in reverse order using        
two operations of reflection and back-transforming      
[4]. However, on careful analysis, it can be seen         
that Einstein has either ignored the inverted       
transform (IT) altogether or has treated IT       
identical to backward transform (BT). To see this,        
let us obtain three different transforms from the        
forward transform (FT) in (3), and name them as         

 



 

reflected transform (RT), BT, and IT to understand        
Einstein's logic. Set ​v=-v​ in (3) to get RT,  
 

X′=l(-v)​𝛾​(x+vt), T′=l(-v)​𝛾​(t+vx/c​2​),  

Y′=l(-v)y,  Z′=l(-v)z​,  (6) 
 
By considering a rod along ​y’ in the moving frame,          
Einstein argues that its length can not depend on         
the frame’s direction of motion to rightly deduce,  
 

l(v)=l(-v) (7) 
 
Next is BT that can be derived similarly as FT (3) is            
derived, 
 
x = l​𝛾​(X’+vT’), t=l​𝛾​(T’+vX’/c​2​),  y= lY’,  z =lZ’,  (8)  
 
where we have used (7). For the  IT, invert (3),  
 
x = ​𝛾​(X’+vT’)/l, t=​𝛾​(T’+vX’/c​2 ​)/l,  y=Y’/l,  z=Z’/l (9)  
 
After obtaining (7), Einstein uses BT (8) on the         
transformed coordinates of (3) and argues to       
restore original coordinates ​(x,y,z,t) in the rest       
frame, the following relation must hold. 
 

l = 1/l ​, (10) 
 
or ​l=​1. However, had Einstein used IT of eq (9) to           
transform back to the rest frame, they would have         
restored the original coordinates without the      
constraint of (10). Thus, (10) also implies that roles         
of BT and IT are interchanged forcing them to be          
identical, but there is no reason to do so especially          
when they are obtained very differently: BT is        
obtained by following a similar derivation for the        
other frame as was done for FT, and IT is just the            
inversion of (3). They both apply to different        
physical scenarios. Surprisingly, there is not even a        
mention of IT. Did they realize there are two ways          
to map back, one is using BT and the other using IT,            
and so a physical justification is required to decide         
on which one to apply in which scenario? Perhaps         
they were aware of the availability of two        
transforms to map back but saw it as an ambiguity          

to be resolved by setting ​l=1​, without realizing the         
BT and IT addressed two different physical       
scenarios. This merging of BT and IT simplifies the         
usage of LT greatly as RT being a special case of (3)            
is not separate from (3), and by reducing BT to IT it            
effectively leaves eq (3) alone to cater to all the          
physical scenarios, bringing great ease for the user.        
LT as a group is one of the most elegant tools in the             
hands of physicists. It is so simple to use that          
sometimes the user bewilders at its simplicity       
fearing if he is doing any mistake but LT works.          
Besides mathematical elegance, ​l=​1 also set the       
right factor for time dilation which VT missed, and         
that is behind the successful physics of LT. 
 
However, this remarkable mathematical elegance     
of LT comes at a little cost of its physical elegance           
because ​l=1 also leads to the invariance of        
spacetime interval, causing some physical     
discrepancy. Voigt however was either consciously      
or unconsciously aware of this fact as he retained         
the separate identity of IT and BT. Further, he         
chose a value of ​l=1/​𝛾 that generates the correct         
interval relationship between the two frames, but       
the same choice took VT away from the right factor          
needed for the time dilation. 
 
3. Interval and phase invariance discrepancy 
Time dilation is validated experimentally and can       
also be deduced from LT in (5) using ​x=vt for a           
clock placed in the moving frame, 
 

T’ = t’ = t​/​𝛾 = t  √1 /c− v2 2 (11) 

 
Eq (11) relates the time of the clocks of the two           
frames which were set to ​T’=t​=0 when their origins         
overlapped. Also recall, the demand on (3) to be a          
group leads to ​l​=1, which in turn leads to the          
merger of BT and IT, and also from (5) to          
spacetime interval invariance for LT, 
  

S’​2 ​ - c​2​T’​2​ = s​2 ​ - c​2​t​2​ ​, (12) 
 
Next, consider a light ray that originated at the         
origin of the moving frame at ​t=T’=​0 and detected         

 



 

at time ​t in the rest frame at ​s = ct​. When the clock              
of the rest frame shows ​t​, the corresponding time         
in the moving frame clock is ​T’=t/​𝛾 by (11), so the           
ray has traversed ​S’=cT’=ct/​𝛾 using the second       
postulate. Constructing the ​spacetime interval     
relationship based on (11) gives us,  
 

S’​2 ​-c​2​T’​2​=(1/​𝛾​)​2​(s​2​-c​2 ​t​2 ​) (13) 
 
But, the interval invariance of LT (12) contradicts        
(13), the one deduced from its clock-time       
relationship. Eq (12) is the result of mathematical        
demand on (3) to be a group and (13) comes from           
the experimentally verified physics of time-dilation      
given by (11) [7,8]. Which one will physicists        
choose, a mathematical-demand on LT or the       
demand put by the Physics? Similarly, the phase        
invariance of LT does not comply with its clock         
relationship. However, if the issue of different       
physical scenarios of IT and BT that we raised in          
section 2 is solved then for sure it will help to pave            
a way to resolve these contradictions with the        
clock times. Principally, there are three distinct       
physical scenarios each having two subcategories      
related by respective IT. Let us list them in the          
context of the above example of viewing or        
detecting the emitted photons. 
Scenario 1: The source of photons lies in the         
moving frame, which are detected either in rest or         
moving frame, and then from this observed data,        
we wish to know the corresponding position and        
time of the photons in the other frame. Subcase         
one, suppose photons are detected in the rest        
frame, so we have ​s,t​, and wish to know ​s’,t’ in the            
moving frame. This one we have discussed above,        
where FT of (3) is employed. Subcase two, when         
they are detected in the moving frame, so we have          
s’,t’ and wish to calculate ​s,t​. This is the inverse          
problem of case one, so the IT of (3) is employed. In            
both subcases, the moving frame observer is not        
viewing the photons coming from the rest frame,        
which is devoid of the source, so the same clock          
relationship of (11) applies here. Thus, FT (3) and         
the IT of (3) suffice here. Erroneous use of BT, in           
this case, led to the constraint ​l​=1. 

Scenario 2: Contrast the above with the cases when         
rays originate in the rest frame and are detected in          
either of the frames. This is the case of BT given in            
eq (8) for transforming from moving frame to the         
rest and Inverse of BT for transforming back. In         
this scenario, the clock time relation is given by         
t=t’/​𝛾​, easily obtainable from backward LT, and the        
intervals are related by ​S’​2​-c​2​T’​2 ​= ​𝛾(​s​2​-c​2​t​2​).  
Scenario 3: The third is the trivial case, where an          
experiment done in one frame is repeated in the         
other using an identical copy of the setup. The         
results of the experiment have to be identical for         
the two frames from the first postulate, and        
therefore coordinates, interval frequency, phase,     
etc are mapped by an identity matrix: ​S’=s, T’=t,         
S’​2​-c​2​T’​2 ​= S​2​-c​2​t​2​, 𝜈’=𝜈​, and 𝜙’=𝜙, etc. where 𝜈 is the           
frequency and 𝜙 is the phase-acquired. It seems the         
interval and phase invariance which is only valid        
for the third scenario is enforced by LT over the          
first two scenarios as well, though this is a small          
price to pay for the large benefit of the         
four-vector-based covariant formulation it offers     
by operating in the Minkowski spacetime domain.       
Is it so? Does LT preserve the values of interval and           
phase across frames or just their forms? Let’s        
examine.  
 
4. LT preserves the forms and not the values 
Interval swept by the light-ray or photon is not         
suitable to test the preservation of value because        
for lightlike intervals all of (5), (12), and (13)         
produce zero in both the frames. Similarly, the        
causality is preserved under (5) and (13) as well, in          
the sense that a lightlike, spacelike, or timelike        
interval gets transformed to their types only in the         
other frame. Thus values of interval need not be         
preserved for preserving causality. Further, like a       
lightlike interval, the spatial and temporal parts of        
the accumulated phases while propagating an      
interval also add to zero. Therefore with photons,        
we have to resort to a strategy of focussing on          
spatial and temporal parts of interval and phase        
separately. Consider a photon originating in the       
moving frame at the common origin at ​t=t’=0 and         
found at ​(x,t) in the rest frame, generating (x,ct) the          

 



 

two components of the spacetime interval. Use LT        
to transform it to ​x’=​γ​(1-v/c)x, ct’=​γ​(1-v/c).ct​,      
confirming LT does scale the value of the interval.         
Similarly, the values of spatial and temporal parts        
of the phase are scaled by LT by a common factor           
(1-v/c)​2 ​owing to the reduced both interval and        
frequency in the other frame. Thus LT does not         
preserve the values but the forms of the interval         
and phase. However, this does not solve the basic         
contradiction of invariance of LT not agreeing ​with        
its clock relation (11). ​The real cause of this         
discrepancy is that the LT does not map the clock          
times in the two frames, what it maps are the          
positions, and this technique of working in the split         
time domain or Minkowski domain enables LT for        
covariant formulation in spacetime but makes it       
difficult to interpret them. Also, as shown below        
this contradiction can not be fixed in the        
Minkowski domain i.e. while retaining the      
symmetric coupling in ​x,t​. However, both these       
issues of agreement with clock time and of        
interpretation are resolved by translating the      
results from Minkowski to clock or real domain. 
 
Efforts to fix the problem in Minkowski domain 
From eq (13), it may sound easy to fix this          
invariance contradiction by taking ​l​=​1/​𝛾 in (3), but        
that gives us the VT of (1). Voigt arrived at a           
transform that preserved the lightspeed and also       
rightly mapped the spacetime intervals without      
falling for invariance that too, so early in the         
pre-relativity era. But by taking ​x​=​v​t, it can be seen          
VT fail on the correct time dilation factor, yielding         
t’​=​t/​𝛾​2​. That’s why VT, despite succeeding on many        
fronts including conservation laws, yields an extra       
factor ​wherever the temporal part is of concern        
such as mass or doppler frequency. The cause of         
the failure of VT is not the non-invariance of         
intervals, but the fact that fixing the latter resulted         
in disturbing the time dilation. We need to fix both,          
however, while retaining the basic structure of       
symmetric coupling between ​x and ​t​, we can never         
achieve all the three conditions of preserving the        
light speed, correct time-dilation, and interval or       
phase invariance agreeing with clock relation.      

Thus, joining the pioneers, we provide one more        
reason why  ​l​=1 is the best option for (3). 
 
5. Real domain solution and reinterpretation 
The clock and invariance discrepancy arises from       
ignoring two facts about LT. First, LT does not map          
the clock times, it maps the positions and computes         
the time associated with that position in the other         
frame. Let us call this computed time as split time,          
and so obtained ​(X’,T’) to lie in the Minkowski         
domain, opposed to the real domain which is        
obtained by mapping the clock times and       
computing the positions at that clock time. Thus,        
when we calculated intervals based on LT’s own        
clock time relationship of (11), it contradicted its        
own interval-invariance. Second, at any instant, the       
particles exist at different positions in different       
frames (DPDF) in the real domain, not at        
overlapped positions in different frames (OPDF).      
Thus, when LT maps or overlaps the position in         
one frame to the other and calculates the time for          
occupying that position, due to DPDF it results in         
mathematical mixing of the past and future and        
also the invariance of interval and phase in the         
Minkowski domain, but this does not imply these        
two effects also happen in the real domain. To         
understand, let us transform the LT in (4) to the          
real domain from the Minkowski one and see if the          
discrepancy still remains. The real domain      
transform (RDT) that maps the clock times and        
calculates positions accordingly are derived in [9], 
 

 , , ,m(x t)  x′ = e − v myy′ = e2 mzz′ = e2 (14) 

, e t t′ =   (15) 
 

where, ​e=​1​/​𝛾​, , (​x’,t’) are real  / [1 x/(c t) ]m = 1 − v 2      

domain parameters related to ​(X’, T’) of (4) in the          
Minkowski domain. Voila, various apparent     
discrepancies, synchronization term, and the     
relativity of simultaneity (RoS) which were visible       
in the Minkowski domain disappear in the real        
domain. (14,15) provides the FT for the first scene         
together with its IT. Similarly, BT related to        
backward LT, for the other scenario mentioned in        
section 3, is listed in [9].  

 



 

 
To see how interval invariance discrepancy      
appears in the Minkowski domain and disappears       
when translated to the real domain and also to         
understand the relation between LT and its       
counterpart RDT, consider a photon that originated       
at the common origin in the moving frame at ​t’=t=0          
and detected at ​(x,t) in the rest frame. Use ​x=ct and           
RDT gives ​x’=ex and ​t’=et in the moving frame. It          
means RDT mapped ​t with the correct clock time in          
the moving frame ​t’=et and calculated the position        
of the photon at ​t’ in the moving frame which gives           
x’​=​et’​. Now use LT (4) to get ​X’​=​x(c-v)/ec​,        
T’​=​t(c-v)/ec in the split domain. Use these ​X’, T’ to          
compute the position of the photon in the moving         
frame at clock time ​t’​=​et ​to get real-time position         
x’=ex in the moving frame, confirming from LT the         
results of RDT, eq (7) and the DPDF i.e. the photon           
is not at the overlapped position ​X’ when it is          
detected in the rest frame but it is at a different           
position ​x’​. LT however in its scheme of split         
domain discards the journey of the photon after ​(X’,         
T’) till ​(x’,t’) to retain its group-status and the         
interval and phase invariance, which does not       
mean the invariance of values but the forms. This         
mathematical trick gives LT extraordinary     
mathematical capabilities to realize    
four-vector-based covariant formulation by mixing     
spacetime in the Minkowski domain, but also       
makes it difficult to interpret them. So caution is         
advised while interpreting them literally. 
 
The RDT is a useful tool to provide the correct          
interpretation of LT as it translates back the results         
of LT from split to the real domain​. They are shown           
in [10] to preserve the lightspeed, shape of the light          
sphere, and rightly predict the time dilation, length        
contraction, ​aberration angle, the Doppler shift for       
the correctly mapped phases 𝜙’​=e​2​m​𝜙, and also       
they are free from the interval-invariance      
discrepancy as they correctly generate (13).      
However, they lack mathematical elegance for the       
covariant formulation, but they readily reduce to       
LT, using ​x’=e​2​mX’ and ​t’=e​2 ​mT​’​, which suits the best         
for that purpose. One of the greatest impacts of         

RDT is on the current interpretation of LT based on          
the relativity of simultaneity and synchronization      
[10,11]. RDT offers the relativity of spatial       
concurrence (RSC) instead. It also predicts many       
stunning phenomena like relativistic non     
localization of the particle [10-13].  
 
5. Conclusion 
LTs that form a group offer a huge mathematical         
advantage in terms of four vector-based covariant       
formulation. This capability of LT is achieved by        
operating in Minkowski or split domain that is by         
not mapping the clock-times, but mapping the       
positions instead and calculating the times      
accordingly. However, this mathematical elegance     
of LT comes at the cost of physical elegance as it           
becomes difficult to interpret them because of the        
mixing of spacetime in the split domain. The        
solution is to translate the outcomes back to the         
real domain for correct interpretation using real       
domain transforms that map the clock times and        
recalculate the positions, which are easy to       
interpret. The interval and phase discrepancy and       
the effects like synchronization term and relativity       
of simultaneity that appear in the split domain,        
disappear in the real domain. Besides, RDT reveals        
many physical phenomena that remained hidden      
behind the mathematical elegance of LT and thus        
not explored so far [7-11]. However, the latter is         
not suitable for four-vector formulation, but they       
can readily reduce to LT which offers that        
advantage. Physicists are appealed to reconsider      
the current interpretation of LT based on the        
relativity of simultaneity. Lastly, LT does not       
preserve the values of intervals and phases but        
their forms. 
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