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Abstract 
The early pioneers who worked or derived Lorentz transform, like Voigt, Lorentz, Poincare, and Einstein used an                 

additional common scaling factor to start with. We review the arguments of these pioneers and analyze them to deduce                   

which aspects by dropping this scaling factor are affected. The Interval and phase invariance of the Lorentz transform                  

contradicts its own clock time relationship, but the same is shown to disappear if we translate them to the real domain.                     

Moreover, the invariance does not imply the values of interval and phase are preserved as Lorentz transforms do scale                   

them across frames. Behind the success of the four-vector-based covariant formulation of Lorentz transform is the fact                 

that they operate in the Minkowski domain that maps the positions and computes the times accordingly, but the same                   

makes them difficult to interpret. The real domain view makes their interpretation easy where time dilation persists but                  

the synchronization term disappears. 

____________________________________________________________________________________________________ 
1. A brief review 
Voigt [1] was the first who demanded covariance of         
the homogeneous wave equation in inertial      
reference frames, assumed the invariance of      
lightspeed in these frames, and obtained Voigt       
transforms (VT),  
 

′ −vt, T ′ −vx/c  , Y ′ /γ , Z ′ /γ,X = x  = t 2  = y  = z  (1)  

 

where , v is the relative velocity /  γ = 1 √1 /c− v2 2       

between primed and unprimed frames. Lorentz [2]       
used a similar set of transforms that leave the         
Maxwell formulations and Lorentz force covariant, 
 

′ γx, T ′ (t/γ−γvx/c ), Y ′ y , Z ′ z,X = l  = l 2  = l  = l  (2)  

 
where l is assumed to be a function of v. Poincare           
[3] corrected it to, 
 

′ γ(x−vt), T ′ γ(t−vx/c ),  Y ′ y,  Z ′ zX = l  = l 2  = l  = l  (3) 

 
Thus, Lorentz in his original form (2) did not even          
use today’s much celebrated x,t symmetry like x-vt        
and ct-vx/c, but he instead tweaked the t and x          
parts of the temporal transforms. Einstein [4] by        
using the two famous postulates of relativity       

arrived at a similar form as (3) except for use of           
variable instead of l(v). Lorentz in [2] (v)  φ        

explicitly assumed l to differ from 1 in        
second-order only like 𝛾, Above all equations are        
claimed to preserve the lightspeed and leave the        
formulation of electrodynamics covariant i.e. they      
retain the shape and form of waves and laws, and          
so are conformal transforms. Also, it is obvious if         
we use l=1/𝛾 in (3) it reduces to Voigt’s transform          
(1) and if we use l=1 in (3) we arrive at the            
modern-day Lorentz transforms (LT) of (4), named       
so by Poincare in [3]. 
 

′ (x−vt), T ′ (t−vx/c2),  Y ′ ,  Z ′X = γ  = γ  = y  = z  (4) 

 
Voigt was the earliest user of the above classes of          
covariant or conformal transforms, but the other       
three pioneers in their respective papers provided       
their own different arguments to fix l=1 to get (4).          
Two of them Lorentz and Einstein were physicists        
and Poincare was a mathematician, who very early        
discovered the mathematical elegance of (4) as       
they formed a group. We are interested to know         
the exact physical reasons of these pioneers for        
arriving at l=1 apart from mathematical necessity.       
Later in 1906 while proposing a Lorentz covariant        
gravitational theory, Poincare briefly introduced     
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the idea of four-dimensional spacetime, which is       
elaborated by another mathematician Minkowski     
in 1908 [5], incited by symmetrical coupling of x         
and t, a feature of all the above transforms.         
However LT of (4) also offers the invariance of         
spacetime interval and phase for l=1, 
 
S’2  - c2T’2 = l2 (s2  - c2 t2  ),  𝜙’ =l2 𝜙  (5) 
  
where S’, s are spatial vectors and 𝜙’, 𝜙 are phases           
in the two frames. Thus conformal equations (1) to         
(3) do not preserve the interval and phase as they          
homogeneously and isotropically scale them by a       
common factor l. However, this non-invariance      
least deterred Minkowski to say in 1908 that ‘the         
transformations which play the main role in the        
principle of relativity were first examined by Voigt in         
1887’ because the key to formulate the Minkowski        
space in these equations is the symmetrical coupling        
of x and t that helps to establish the space-time          
equivalence, not the invariance. Also, non-invariance      
of interval does not mean the lightspeed is not         
preserved for (3), nor it means the violation of the          

first postulate if l like lorentzian factor 𝛾 is a function           
of second orders in v/c as is the case for VT.           

Moreover, l=1 also does not mean LT preserves the         
values of interval and phases across the frames as         
LT still scales them as is shown later. It seems after           
the popularity of LT when physicists came to know         
about similar transforms by Voigt, it was found while         
VT succeeds to produce many convincing results such        
as it conserves the energy and mass, reproduces the         
realtivistc velocity-addition, the oblate shape of      
sphere, aberration angle, but misses on certain       
aspects such as time dilation, Doppler by a factor         

l=1/𝛾, and thus on Doppler frequencies, mass, etc by a          

factor 𝛾 [6]. This success of VT was attributed to          
their resemblance with LT, and its failures to the         
non-invariance of the interval, but wrongly so       
because the exact cause of the failures of VT was          
very different as we shall see. In this connection, it          
is important to carefully review and analyze the        
arguments of the three pioneers in favor of l=1,         
from the physical point of view.  
 

2. The earliest arguments for l to be one 

Lorentz was the first to deduce l=1 based on his          
calculation for longitudinal mass of electrons      
moving in the Ether that is an obsolete concept. He          
first derives the expressions for axial and       
transverse electromagnetic masses for electrons in      
the ether as a function of v and other variables, and           
then on the basis of his expression for the axial          
mass, which shows a 𝛾3 dependence, he concludes        
dl/dv=0, and hence the constancy of l [2]. Finally,         
he uses his awareness that l can only have a second           
or even order dependence, and l should reduce to         
one for v=0, so l=1. Recall, Voigt also used l=1/𝛾,          
showing a second-order dependence in v/c.      
Lorentz's decision for l=1 seems to have least        
concern for invaraince and more related to       
extracting the correct dependence of electron’s      
mass on v/c. 
 
Poincare was introduced to the above group of        
transforms through Lorentz’s paper. The     
mathematician not only advocated the case for l=1        
more forcefully than anyone else but also slightly        
corrected the original transform, and named them       
after Lorentz. However, his reasons for l to be 1, as           
expected, were purely mathematical [3], as he       
writes, “The sum of all these transformations,       
together with the set of all rotations of space, must          
form a group; but for this to occur, we need l=1; so            
one is forced to suppose l=1 and this is a          
consequence that Lorentz has obtained by another       
way”, in his June abstract to the proceedings. A         
month later in section 4 of his detailed submission         
to the same proceedings, by carrying different       
operations on the frames, he produces two       
constraints on l for (3) to be a group, l(v)=l(-v) and           
l(v).l(-v)=1, yielding l=1. However Poincare is not       
the only one to reach these two constraints on l,          
Einstein later obtains them in reverse order using        
two operations of reflection and back transform       
[4]. However, on careful analysis it can be seen that          
Einstein has either ignored the inverted transform       
(IT) altogether or has treated IT identical to        
backward transform (BT). To see this, let us obtain         
three different transforms from the forward      
transform (FT) of (3), and name them as reflected         

 



 

transform (RT), BT, and IT to understand Einstein's        
logic. Set v=-v in (3) to get RT,  
 

x′=l(-v)𝛾(x+vt), t′=l(-v)𝛾(t+vx/c2),  

y′=l(-v)y,  z′=l(-v)z,  (6) 
 
By considering a rod along y’ in the moving frame,          
Einstein argues that its length can not depend on         
the frame’s direction of motion to rightly deduce,  
 

l(v)=l(-v) (7) 
 
Next is BT that can be derived in a similar fashion           
as FT of (3) are derived, 
 
x = l𝛾(x’+vt’), t′=l𝛾(t’+vx’/c2),  y= ly’,  z =lz’,  (8)  
 
where we have used (7). For the  IT, invert (3),  
 
x = 𝛾(x’+vt’)/l, t′=𝛾(t’+vx’/c2 )/l,  y=y’/l,  z=z’/l (9)  
 
Einstein uses BT in (8) on the transformed        
coordinates of (3) and argues to restore original        
coordinates (x,y,z,t) in the rest frame, the following        
relation must hold true. 
 

l = 1/l , (10) 
 
or l=1. However, had Einstein used IT of eq (9) to           
transform back to the rest frame, they would have         
restored the original coordinates without the      
constraint of (10). Thus, (10) also implies that roles         
of BT and IT are interchanged forcing them to be          
identical, but there is no reason to do so especially          
when they are obtained very differently: BT is        
obtained by following a similar derivation for the        
other frame as was done for FT, and IT is just the            
inversion of (3). They both apply to different        
physical scenarios. Did they realize there are two        
ways to map back, one is using BT and the other           
using IT, and so a physical justification is required         
to decide on which one to apply in which scenario?          
Perhaps they were aware of the availability of two         
transforms to map back but saw it as an ambiguity          
to be resolved by setting l=1, without realizing the         

BT and IT addressed two different physical       
scenarios. This merging of BT and IT simplifies the         
usage of LT greatly as RT being a special case of (3)            
is not separate from (3), and by reducing BT to IT it            
effectively leaves eq (3) alone to cater to all the          
physical scenarios, bringing great ease for the user.        
LT as a group is one of the most elegant tools in the             
hands of physicists. It is so simple to use that          
sometimes the user bewilders at its simplicity       
fearing if he is doing any mistake but LT works.          
Besides mathematical elegance, l=1 also set the       
right factor for time dilation which VT missed, and         
that is behind the successful physics of LT. 
 
However, this remarkable mathematical elegance     
of LT comes at a little cost of its physical elegance           
because l=1 also leads to the invariance of        
spacetime interval, causing some physical     
discrepancy. Voigt however was either consciously      
or unconsciously aware of this fact as he retained         
the separate identity of IT and BT. Further, he         
chose a value of l=1/𝛾 that generates the correct         
interval relationship between the two frames, but       
the same choice took VT away from the right factor          
needed for the time dilation. 
 
3. Interval invariance discrepancy 
Time dilation is validated experimentally and can       
also be deduced from LT in (5) using x=vt for a           
clock placed in the moving frame, 
 

t’ = t/𝛾 = t  √1 /c− v2 2 (11) 

 
Eq (11) relates the time of the clocks of the two           
frames which were set to t’=t=0 when their origins         
overlapped. Also recall, the demand on (3) to be a          
group leads to l=1, which in turn leads to the          
merger of BT and IT, and also from (5) to          
spacetime interval invariance for LT, 
  

s’2 - c2 t’2 = s2  - c2t2 , (12) 
 
Next, consider a light ray that originated at the         
origin of the moving frame at t=t’=0 and detected at          
time t in the rest frame at s = ct. When the clock of              

 



 

the rest frame shows t, the corresponding time in         
the moving frame clock is t’=t/𝛾 by (11), so the ray           
has traversed s’=ct’/𝛾. Constructing the spacetime      
interval relationship based on (11) gives us,  
 

s’2-c2 t’2=(1/𝛾)2(s2-c2 t2 ) (13) 
 
But, the interval invariance of LT (12) contradicts        
the one deduced from its own clock-time of (13).         
Eq (12) is the result of mathematical demand on         
(3) to be a group and (13) comes from the          
experimentally verified physics of time-dilation     
given by (11). Which one will physicists choose, a         
mathematical-demand on LT or the demand put by        
the Physics? However, if the issue of different        
physical scenarios of IT and BT that we raised in          
section 2 is solved then for sure it will help to pave            
a way to resolve this contradiction. Principally,       
there are three distinct physical scenarios each       
having two subcategories related by respective IT.       
Let us list them in the context of the above example           
of viewing or detecting the emitted photons. 
1. The source of photons lies in the moving frame,          
which are detected in either of rest or moving         
frame. Then we wish to know the corresponding        
position and time of the photons in the other         
frame. Subcase one, suppose photons are detected       
in the rest frame, so we have s,t, and wish to know            
s’,t’ in the moving frame. This one we have         
discussed above, where FT of (3) is employed.        
Subcase two is the scenario when they are detected         
in the moving frame, so we have s’,t’ and wish to           
calculate s,t. This is the inverse problem of case         
one, so the inverse of (3) is employed. In both          
subcases, the moving frame observer is not       
viewing the photons coming from the rest frame,        
which is devoid of the source, so the same clock          
relationship of (11) applies here. Thus, (3) or the IT          
of (3) suffice here. Erroneous use of BT in this case           
led to the constraint l=1. 
2. Contrast the above with the cases when rays         
originate in the rest frame and are detected in         
either of the frames. This is the case of BT given in            
eq (8) for transforming from moving frame to the         
rest and Inverse of BT for transforming back. In         

this scenario, the clock time relation is given by         
t=t’/𝛾, easily obtainable from backward LT, and the        
intervals are related by s’2-c2t’2 = 𝛾(s2-c2t2).  
3. Third is the trivial case where an experiment         
done in one frame is repeated in the other using an           
identical copy of the setup. The results of the         
experiment have to be identical for the two frames         
from the first postulate, and therefore coordinates,       
interval frequency, phase, etc are mapped by an        
identity matrix: s’=s, t’=t, s’2-c2t’2 = s2-c2t2, 𝜈’=𝜈, and         
𝜙’=𝜙, etc. where 𝜈 is the frequency and 𝜙 is the           
phase-acquired. It seems the interval and phase       
invariance which is only valid for the third scenario         
is enforced by LT over the first two scenarios as          
well, though this is a small price to pay for the           
large benefit of the four-vector-based covariant      
formulation it offers by operating in the Minkowski        
spacetime domain. Is it so? Does LT preserve the         
values of interval and phase across frames or just         
their forms? Let’s examine.  
 
4. LT preserves the forms and not the values 
Interval swept by the lightray or photon is not         
suitable to test the preservation of value because        
for lightlike intervals both (5) and (13) produce        
zero in both frames. Similarly, the causality is        
preserved under (13) also, in the sense a lightlike         
spacelike or timelike interval gets transformed to       
their types in the other frame. Thus values of         
interval need not be preserved for preserving       
causality. Like a lightlike interval, the spatial and        
temporal part of the accumulated phases while       
propagating an interval also add to zero. Therefore        
with photons, we have to resort to a strategy of          
focussing on spatial and temporal parts of interval        
separately. Consider a photon originating in the       
moving frame at the common origin at t=t’=0 and         
found at (x,t) in the rest frame, generating (x,ct) the          
two components of the spacetime interval. Use LT        
to transform it to x’=γ(1-v/c)x, ct’=γ(1-v/c).ct,      
confirming LT does scale the value of the interval.         
Similarly, the values of spatial and temporal parts        
of phase are scaled by LT by a common factor          
(1-v/c)2 for reduced interval and frequency. Thus       
LT does not preserve the values but the forms of          

 



 

interval or phase. However, this does not solve the         
basic contradiction of invariance of LT not agreeing        
with its clock relation (11). The real cause of this          
discrepancy is that the LT does not map the clock          
times in the two frames, what they map are the          
positions, and this technique of working in the split         
time domain or Minkowski domain enables LT for        
covariant formulation in spacetime but makes it       
difficult to interpret them. Also, as shown below        
this contradiction can not be fixed in the        
Minkowski domain i.e. while retaining the      
symmetric coupling in x,t. However, both these       
problems of agreement with clock time and of        
interpretation are resolved by translating the      
results from Minkowski to clock domain. 
 
Efforts to fix the problem in Minkowski domain 
From eq (13), it may sound easy to fix this          
invariance contradiction by taking l=1/𝛾 in (3), but        
that gives us the VT of (1). Voigt arrived at a           
transform that preserved the lightspeed and also       
rightly mapped the spacetime intervals without      
falling for invariance that too so early in the         
pre-relativity era. By taking x=vt, it can be seen         
they fail on the correct time dilation factor, yielding         
t’=t/𝛾2. That’s why VT, despite succeeding on many        
fronts including conservation laws, yields an extra       
factor wherever temporal part is of concern such        
as doppler frequency. The cause of the failure of VT          
is not the non-invariance of intervals, but the fact         
that fixing the latter resulted in disturbing the time         
dilation. We need to fix both, however, while        
retaining the basic structure of symmetric coupling       
between x and t, we can never achieve all the three           
conditions of preserving the light speed, correct       
time-dilation, and interval-invariant relation. Thus,     
joining the pioneers, we provide one more reason        
why  l=1 is the best option for (3). 
 
5. Real domain solution and reinterpretation 
The clock and inariance discrepancy arises from       
ignoring two facts about LT. First, LT does not map          
the clock times, it maps the positions and        
recalculates the time associated with that position       
in the other frame. Let us call his recalculated time          

as split time, and so obtained (X’,T’) to lie in the           
Minkowski domain, opposed to the real domain       
which is obtained by mapping the clock times and         
recalculating the positions. Thus, when we      
calculated intervals based on LT’s own clock time        
relationship of (11), it contradicted its own       
interval-invariance. Second, at any instant, the      
particles exist at different positions in different       
frames (DPDF) in the real domain, not at        
overlapped positions in different frames (OPDF).      
Thus, when LT maps or overlaps the position in         
one frame to the other and calculates the time for          
occupying that position, due to DPDF it results in         
mixing of the past and future and also the invarince          
of interval and phase in the Minkowski domain, but         
this does not imply these two effects also happen in          
the real domain. To understand, let us transform        
the LT in (4) to the real domain from the          
Minkowski one and see if the discrepancy still        
remains. The real domain transform (RDT) that       
maps the clock times and calculates positions       
accordingly are derived in [7], 
 

 , , ,m(x t)  x′ = e − v myy′ = e2 mzz′ = e2 (14) 

, e t t′ =   (15) 
 

where, e=1/𝛾, , (x’,t’) are real  / [1 x/(c t) ]m = 1 − v 2      

domain parameters related to (X’,T’) of (4) in the         
Minkowski domain. Voila, various apparent     
discrepancies, synchronization term, and the     
relativity of simultaneity (RoS) which were visible       
in the Minkowski domain disappear in the real        
domain. (14-15) provides the FT for the first scene         
together with its IT. Similarly, BT related to        
backward LT, for the other scenarios mentioned in        
section 3, is listed in [7].  
 
To see how interval invariance discrepancy      
appears in the Minkowski domain and disappears       
when translated to the real domain and also to         
understand the relation between LT and its       
counterpart RDT, consider a photon that originated       
at the common origin in the moving frame at t’=t=0          
and detected at (x,t) in the rest frame. Use x=ct and           
RDT gives x’=ex and t’=et in the moving frames. It          

 



 

means RDT mapped t with the correct clock time in          
the moving frame t’=et and calculated the position        
of the photon at t’ in the moving frame which gives           
x’=et’. Now use LT in (3) to get X’=x(c-v)/ec,         
T’=t(c-v)/ec in the split domain. Use these X’, T’ to          
compute the position of the photon in the moving         
frame at t’=et to get real-time position x’=ex in the          
moving frame, confirming from LT the results of        
RDT, eq (7) and the DPDF i.e. the photon is not at            
the overlapped position X’ when it is detected in         
the rest frame but it is at x’. LT however in its            
scheme of split domain discards the journey of the         
photon after (X’,T’) till (x’,t’) to retain its        
group-status and the interval and phase invariance,       
twhich does not meanthe invariance of values but        
the forms. This mathematical trick gives LT       
extraordinary mathematical capabilities to realize     
four-vector-based covariant formulation by mixing     
spacetime in the Minkowski domain, but also       
makes it difficult to interpret them. So caution is         
advised while interpreting them literally. 
 
The RDT is a useful tool to provide the correct          
interpretation of LT as it translates back the results         
of LT from split to the real domain. They are shown           
in [8] to preserve the lightspeed, shape of the         
lightsphere, and rightly predict time-dilation,     
length-contraction, aberration angle, the Doppler     
shift for the correctly mapped phases 𝜙’=e2m𝜙, and        
they are free from the interval-invariance      
discrepancy as they correctly generate (12).      
However, they lack mathematical elegance for the       
covariant formulation, but they readily reduce to       
LT, using x’=e2mX’ and t’=e2 mT’, which suits the best         
for the purposen. One of the greatest impacts of         
RDT is on the current interpretation of LT based on          
the relativity of simultaneity and synchronization      
[8,9]. RDT offers the relativity of spatial       
concurrence (RSC) as the explanation. It also       
predicts many stunning phenomena like relativistic      
non localization of the particle [8-11].  
 
5. Conclusion 
LTs that form a group offer a huge mathematical         
advantage in terms of four vector-based covariant       

formulation. This capability of LT is achieved by        
operating in Minkowski or split domain that is by         
not mapping the clock-times, but mapping the       
positions instead and calculating the times      
accordingly. However, this mathematical elegance     
of LT comes at the cost of physical elegance as it           
becomes difficult to interpret them because of the        
mixing of spacetime in the split domain. The        
solution is to translate the outcomes back to the         
real domain for correct interpretation using real       
domain transforms that map the clock times and        
recalculate the positions, which are easy to       
interpret. The interval and phase discrepancy and       
the effects like synchronization term and relativity       
of simultaneity that appear in the split domain,        
disappear in the real domain. Besides, RDT reveals        
many physical phenomena that remained hidden      
behind the mathematical elegance of LT and thus        
not explored so far [7-11]. However, the latter is         
not suitable for four-vector formulation, but they       
can readily reduce to LT that offers that advantage.         
Physicists are appealed to reconsider the current       
interpretation of LT based on the relativity of        
simultaneity. Lastly, LTs do not preserve the       
values of intervals and phases but their form. 
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