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Abstract

Actions for strings and p-branes moving in octonionic-spacetime back-
grounds and endowed with octonionic-valued metrics are constructed.
An extensive study of the bosonic octonionic string moving in flat back-
grounds, and its quantization, is presented. A thorough discussion follows
pertaining whether or not the analysis leading to the D = 26 critical di-
mension of the ordinary bosonic string is valid in the octonionic case. A
remarkable numerical coincidence is found (without invoking supersym-
metry) in that the total number of (real) degrees of freedom of 3 fermion
generations (involving massless Weyl fermions in 4D) is 16× 4× 3 = 192,
and which matches the number of 8×24 = 192 real dimensions (degrees of
freedom) corresponding to the 24 transverse octonionic dimensions associ-
ated with the octonionic-worldsheet of a bosonic octonionic-string moving
in D = 26 octonionic dimensions.
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1 Introduction : Octonions

Exceptional, Jordan, Division, Clifford and Noncommutative algebras are deeply
related and essential tools in many aspects in Physics, see for instance [1], [2],
[3], [5]. [7], [6], [8], [16], [13]. It is the belief of many authors that the octonions
will ultimately be seen as the key to a unified field theory in physics [4], [21],
[6], [23], [20].

A complexification of ordinary gravity (not to be confused with Hermitian-
Kahler geometry ) has been known for a long time. Complex gravity requires
that gµν = g(µν)+ig[µν] so that now one has gνµ = (gµν)∗, which implies that the
diagonal components of the metric gz1z1 = gz2z2 = gz̃1z̃1 = gz̃2z̃2 must be real. A
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treatment of a non-Riemannan geometry based on a complex tangent space and
involving a symmetric g(µν) plus antisymmetric g[µν] metric component was first
proposed by Einstein-Strauss [9] (and later on by [11] ) in their unified theory
of Electromagentism with gravity by identifying the EM field strength Fµν with
the antisymmetric metric g[µν] component.

Borchsenius [10] formulated the quaternionic extension of Einstein-Strauss
unified theory of gravitation with EM by incorporating appropriately the SU(2)
Yang-Mills field strength into the degrees of a freedom of a quaternionc-valued
metric. Oliveira and Marques [12] later on provided the Octonionic Gravita-
tional extension of Borchsenius theory involving two interacting SU(2) Yang-
Mills fields and where the exceptional group G2 was realized naturally as the
automorphism group of the octonions.

The Noncommutative and Nonassociative algebra of octonions discovered by
Cayley and Graves is determined from the relations

e2
o = eo, eo em = em eo = em, em en = − δmn eo + fmnp ep, (1.1)

with m,n, p = 1, 2, 3, · · · , 7 and where the fully antisymmetric structure con-
stants fmnp are taken to be 1 for the combinations (123), (516), (624), (435), (471), (673), (672)
corresponding to 7 quaternionic subalgebras of the octonions and which are as-
sociated to the 7 lines of the projective Moufang plane.

The octonionic conjugation operation, em → −em, allows to define the
quadratic form of a real octonion X = xoeo +

∑m=7
m=1 xmem as

X̄ X = (xo)
2 +

m=7∑
m=1

(xm)2 (1.2)

Whereas, the quadratic form of a complex octonion is defined by

Re(X̄ X) = (xo + iyo)
2 +

m=7∑
m=1

(xm + iym)2 ∈ C (1.3)

Note that the real part of a complex octonion X is Xo = xo + iyo and must
not be confused with the real parts of the complex entries defining the complex
octonion.

Every nonzero real octonion has a unique inverse, namely

X−1 =
X̄

X̄ X
(1.4)

The non-vanishing associator is defined by

{X,Y,Z} = (XY)Z−X(YZ) (1.5)

In particular, the associator of the imaginary units is

{el, em, en} = 2 dlmnp ep, dlmnp = εlmnprst frst (1.6)
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The Hermitian product is defined in terms of the ordinary complex conjugate
∗ and the quadratic form (1.3) as

< X,Y > ≡ ( X∗, Y ) = (ao−ibo) (co+ido) +

m=7∑
m=1

(am−ibm) (cm+idm)

(1.7)

< X,X > ≡ ( X∗, X ) = (ao−ibo) (ao+ibo) +

m=7∑
m=1

(am−ibm) (am+ibm) =

a2
o + b2o +

m=7∑
m=1

(a2
m + b2m) (1.8)

The purpose of this work is to advance further the Octonionic Geometry
(Gravity) of [12] by enlarging the ordinary spacetime coordinates to octonionic-
valued coordinates furnishing a natural realization of a Noncommutative and
Nonassociative spacetime. We construct next the actions for strings and p-
branes in octonionic-spacetime backgrounds endowed with octonionic-valued
metrics. An extensive study of the bosonic octonionic string moving in flat
backgrounds, and its quantization, is presented.

A thorough discussion follows pertaining whether or not the analysis leading
to the D = 26 critical dimension of the ordinary bosonic string is valid in
the octonionic case. A remarkable numerical coincidence is found (without
invoking supersymmetry) in that the total number of (real) degrees of freedom
of 3 fermion generations (involving massless Weyl fermions in 4D) is 16×4×3 =
192, and which matches the number of 8× 24 = 192 real dimensions (degrees of
freedom) corresponding to the 24 transverse octonionic dimensions associated
with the octonionic-worldsheet of a bosonic octonionic-string moving in D = 26
octonionic dimensions.

2 Octonionic p-branes

2.1 Branes in Octonionic Spacetime Backgrounds

Next we shall construct actions for p-branes moving in octonionic spacetime
backgrounds Zµ(σa) = Zµo (σa)eo + Zµi (σa)ei; a = 0, 1, 2, · · · , p, and endowed
with octonionic-valued metrics gµν . Given an spacetime interval defined as

(ds)2 = Re ( dZµ gµν dZ
ν ) (2.1)

the real part of the pullback of the spacetime metric onto the p+ 1-dim world-
volume yields the embedding metric hab = Re(∂aZ

µgµν∂bZ
ν). The real part

3



of a triple octonionic product (2.1) is unambiguously defined despite the nonas-
sociativity. It is the key relation

Re( (xy) z ) = Re( x (yz) ) = Re( xyz ) =

xo yo zo − xo ym zm − xm yo zm − xm ym zo − xl ym zn flmn (2.2)

where the Einstein summation convention of repeated indices is implied, and
which allows us to uniquely, and unambiguously, evaluate the real part of the
triple product Re (∂aZ

µ gµν ∂bZ
ν ) despite the nonassociativity of the octo-

nions. The real parts of a quartic, and higher products, are not. In the most
general case, the octonionic metric gµν does not need to be Hermitian; i.e. it
does not need to have the form gµν = go(µν)eo + gi[µν]ei. The reason being that

by taking the real part of the triple products in eq-(2.1) one ensures that (ds)2

is real-valued.
If the octonionic-valued metric gµν is chosen to be Hermitian (gµν)† = gµν ,

and ḡµν = gµ̄ν̄ , after a careful inspection, one arrives at the following relations

gµν = go(µν)eo + gi[µν]ei

goµν = goνµ = goµ̄ν̄ = goν̄µ̄

giµν = −giνµ = −giµ̄ν̄ = giν̄µ̄ (2.3)

Due to these relations among the components of gµν and gµ̄ν̄ , it is not necessary
to include the terms dZµ̄ gµ̄ν̄ dZ

ν̄ in eq-(2.1).
By the same token, one may also include an interval of the form

(ds)2 = Re ( dZµ gµν̄ dZ
ν̄ ) (2.4)

If the octonionic-valued metric is chosen to be Hermitian : gµν̄ = go(µν̄)eo +

gi[µν̄]ei, and ḡµν̄ = gµ̄ν , after a careful inspection it leads to the following Her-
miticity conditions

goµν̄ = goν̄µ = goµ̄ν = goνµ̄

giµν̄ = − giν̄µ = − giµ̄ν = giνµ̄

Once again, due to these relations among the components of gµν̄ and gµ̄ν , it is
not necessary to include the terms dZµ̄ gµ̄ν dZ

ν in eq-(2.4). In both cases the
real components of the metric is symmetric in its indices, while the imaginary
components are antisymmetric.

To sum up, when gµν and the spacetime coordinates Zµ = Zµo eo +Zµi ei are
both octonionic-valued , one can construct a more general p-brane action of the
form

SDNG = − Tp

∫
dp+1σ

√
|det hab| =

− Tp

∫
dp+1σ

√
|det Re ( ∂aZµ gµν ∂bZν )| (2.5)
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where Tp is the p-brane tension of physical dimension (mass)p+1, and the span
of the p-brane indices are a, b = 0, 1, · · · , p.

Thus, the real part of the pullback of the octonionic target space Hermitian
metric gµν is explicitly given by

hab = ∂aZ
µ
o g

o
µν ∂bZ

ν
o − ∂aZ

µ
o g

i
µν ∂bZ

ν
i − ∂aZ

µ
i g

o
µν ∂bZ

ν
i

− ∂aZ
µ
i g

i
µν ∂bZ

ν
o − fijk ∂aZ

µ
i g

j
µν ∂bZ

ν
k (2.6)

with i, j = 1, 2, · · · , 7, and repeated indices are summed over. The determinant
of the above expression for hab is very complicated since hab is comprised of
the sum of many different terms. Inserting this complicated expression for
the det(hab) into eq-(2.4) furnishes the DNG action for a p-brane moving in
an octonionic spacetime background and endowed with an octonionic-valued
Hermitian metric. A similar action can be constructed based on the metric gµν̄

S′DNG = − Tp

∫
dp+1σ

√
|det Re ( ∂aZµ gµν̄ ∂bZν̄ )|, a, b = 0, 1, · · · , p

(2.7)
And in the most general case, one can combine both metrics gµν ,gµν̄ into the
more general action

S′′DNG = − Tp

∫
dp+1σ

√
|det Re ( ∂aZµ gµν ∂bZν + ∂aZµ gµν̄ ∂bZν̄ )|

(2.8)
When the metric is real (gµν → gµν), and the spacetime coordinates are real

( Zµ → Xµ) one recovers for the determinant of hab the usual expression given
by the sums of the squares of Nambu-Poisson-brackets

hab = ∂aX
µ gµν ∂bX

ν ⇒

det(hab) = {Xµ1 , Xµ2 , · · · , Xµp+1} {Xν1 , Xν2 , · · · , Xνp+1} gµ1ν1 gµ2ν2 · · · gµp+1νp+1

(2.9a)
where the Nambu-Poisson brackets are defined as

{Xµ1 , Xµ2 , · · · , Xµp+1} ≡ εa1a2···ap+1 ∂a1X
µ1 ∂a2X

µ2 · · · ∂ap+1
Xµp+1 (2.9b)

In general, in a curved background one has gµν = gµν(Xρ). Because the embed-
ding spacetime coordinates Xρ(σ1, σ2, · · · , σp+1) are functions of the p-brane’s
p+ 1-dimensional world-volume coordinates, one cannot pull the metric factors
inside the Nambu-Poisson brackets in eq-(2.9). Only when the background met-
ric is independent of the Xρ coordinates that one can pull the metric factors
inside the brackets leading to

det(hab) = {Xµ1 , Xµ2 , · · ·Xµp+1} {Xµ1
, Xµ2

, · · · , Xµp+1
} (2.10)

and the DNG action becomes
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SDNG = − Tp

∫
dp+1σ

√
|det ( ∂aXµ ∂bXν ηµν )| =

− Tp

∫
dp+1σ

√
( {Xµ1 , Xµ2 , · · · , Xµp+1}NPB )2 (2.11)

A Polyakov-Howe-Tucker octonionic p-brane action Sp based on the metric
gµν is of the form

Sp = − Tp
2

∫
dp+1σ

√
|det(hab)| hab Re ( ∂aZ

µ gµν ∂bZ
ν ) +

Tp
(p− 1)

2

∫
dp+1σ

√
|det(hab)| (2.12)

where a, b = 0, 1, · · · , p and hab is an auxiliary real-valued world-volume metric.
Eliminating hab via its equations of motion and inserting it back into the action
(2.12) yields the DNG action (2.4). A similar action can be constructed based
on the metric gµν̄

S′p = − Tp
2

∫
dp+1σ

√
|det(hab)| hab Re ( ∂aZ

µ gµν̄ ∂bZ
ν̄ ) +

Tp
(p− 1)

2

∫
dp+1σ

√
|det(hab)| (2.13)

And a more general action combining both metrics gµν ; gµν̄ is of the form

S′′p = − Tp
2

∫
dp+1σ

√
|det(hab)| hab Re ( ∂aZ

µ gµν ∂bZ
ν + ∂aZ

µ gµν̄ ∂bZ
ν̄ ) +

Tp
(p− 1)

2

∫
dp+1σ

√
|det(hab)| (2.14)

All the actions described in this subsection are invariant under diffeomorphisms
σa → σ′a(σb) of the p+ 1-dim world volume swept by the p-branes.

2.2 The Bosonic Octonionic String in Flat Backgrounds

For simplicity, let us study the action (2.12) for a bosonic string (p = 1) mov-
ing in a flat target octonionic spacetime bacground whose octonionic-valued
coordinates are Zµ, µ = 1, 2, · · · , D. When the spacetime background met-
ric is real-valued and flat one has for metric gµν = goµνeo = ηµνeo. We
shall study two cases based on two choices for the metric ηµν . One choice
is ηµν = diag(−1,+1,+1, · · · ,+1) corresponding to the usual Lorentzian space-
time metric, and the second choice for ηµν can have an arbitrary signature.
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Given gµν = goµνeo = ηµνeo, the interval (ds)2 (2.1) becomes, after expanding
into the real and imaginary components of Zµ, the following

(ds)2 = ηµν ( dZµo dZ
ν
o − dZµi dZ

ν
i ), i = 1, 2, · · · , 7; µ, ν = 1, 2, · · · , D

and such that the corresponding equations of motion for Zµ(τ, σ), obtained from
the action (2.20) in the conformal gauge hab = eφηab(a, b = 0, 1), are given by

∂2Zµ

∂τ2
− ∂2Zµ

∂σ2
= 0 (2.15)

Following a similar procedure, as in the standard string theory text books [24],
for a closed string, the left/right moving sector solutions to the equations of
motion (2.15) admit the following mode expansions

Zµleft(τ, σ) =
1

2
zµ +

1

2
l2s pµ(τ−σ) + i

ls
2

n=∞∑
n=−∞,n6=0

1

n
aµn e

−2ni(τ−σ) (2.16)

Zµright(τ, σ) =
1

2
zµ +

1

2
l2s pµ(τ+σ) +i

ls
2

n=∞∑
n=−∞,n6=0

1

n
ãµn e

−2ni(τ+σ) (2.17)

where ls is the string length, and the first two terms are the zero modes (center
of mass coordinates) of the string. The general solution Zµ = Zµleft + Zµright
obeys the boundary conditions Zµ(τ, σ + π) = Zµ(τ, σ).

To ensure that the coordinates Zµ are real octonionic-valued, the complex-
octonionic-valued coefficients, which will turn into the creation, annihilation
operators âµ−n, â

µ
n, respectively, upon quantization, must obey the following con-

ditions

aµ−n = (aµn)∗, ãµ−n = (ãµn)∗, n > 0 (2.18)

involving the ordinary complex conjugation i → −i, and which must not be
confused with the octonionic conjugation ei → −ei. A complex-octonion is
described by z = zoeo+ziei; i = 1, 2, · · · , 7 and where zo = xo+ iyo, zi = xi+ iyi
are complex-valued entries such that z + z∗ = 2xoeo + 2xiei is a real octonion.
The center of mass coordinate and momentum zµ,pµ are real octonionic-valued
so that the zero modes obey the relation aµ0 = ãµ0 = 1

2 l
2
sp

µ.
The complex-conjugate conditions (2.18) imposed on the coefficients turns,

upon quantization, into the following conditions on the operators

âµ−n = (âµn)†, ãµ−n = (ãµn)†, n > 0 (2.19)

For an open string obeying the Neumann boundary conditions ∂σZµ = 0 at
σ = 0, π, the mode expansion is
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Zµ(τ, σ) = zµ + l2s pµτ + i ls

n=∞∑
n=−∞,n6=0

1

n
aµn e

−niτ cos(nσ) (2.20)

where the zero mode in this case obeys aµ0 = lsp
µ. For Dirichlet boundary

conditions, Zµ = 0 at the end-points σ = 0, π, one may set zµ = pµ = 0 and
replace the cosine for a sine in eq-(2.20).

There are no matrix representations of the octonions due to the non-
associativity, however Dixon has shown how many Lie algebras can be obtained
from the left/right action of the octonion algebra on itself [6]. By an algebra
acting on itself, one does not mean that quantum mechanical operators and
states are expressed in the same algebra. An example of an algebra action on
itself is the Clifford algebra. The left/right action of the octonion algebra on
itself are isomorphic to the matrix algebra R(8) of 8× 8 real matrices.

For instance, from the structure constants of the octonion algebra one can
associate to the left action of ei on eo and ej

eLi [eo] = ei eo = ei, eLi [ej ] = ei ej = fijk ek (2.21)

the following 8 × 8 antihermitian matrix ML
i : eLi ↔ ML

i , and whose entries
are given by

(ML
i )jk = fijk, i, j, k = 1, 2, · · · , 7; (ML

i )00 = 0, (ML
i )0k = δik, (ML

i )k0 = −δik
(2.22)

The matrix representation of the left action of eo is given by the unit 8×8 matrix.
It is important to emphasize that because the associative matrix product × is
not the same as the non-associative octonionic product ·, one has that ML(ei)×
ML(ej) 6= ML(ei · ej) = fijkM

L(ek).
Equipped with the above 8 × 8 matrix realization of the left action of

the algebra of octonions on itself, the complex-octonionic-valued coefficients
aµn ≡ aµn,oeo + aµn,iei, and ãνn ≡ ãµn,oeo + ãµn,iei associated with the octonionic
closed string can now be represented explicitly in terms of 8 × 8 matrices.
Upon quantization, the complex-octonionic valued coefficients turn into the
raising/lowering operators in the first quantization (creation/annihilation op-
erators) denoted by hats as shown next.

Firstly, after a careful analysis based on the Heisenberg algebra [Pµ(τ, σ),Zν(τ, σ′)] =
−iηµνδ(σ−σ′)eo, (h̄ = c = 1) where Pµ = T Żµ is the octonionic canonical mo-
mentum conjugate to Zµ, and T is the string tension T = 1

πl2s
, one learns that the

canonical commutation relations among the real and 7 imaginary components
of the complex-octonionic oscillators are given by

[âµm,o, â
ν
n,o] =

m

8
δm+n,0 η

µν , [ˆ̃a
µ

m,o, ˆ̃a
ν

n,o] =
m

8
δm+n,0 η

µν (2.23)

[âµm,i, â
ν
n,j ] = − m

8
δm+n,0 η

µν δij , [ˆ̃a
µ

m,i, ˆ̃a
ν

n,j ] = − m

8
δm+n,0 η

µν δij (2.24)
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[âµm,o, â
ν
n,j ] = 0, [ˆ̃a

µ

m,o, ˆ̃a
ν

n,j ] = 0 (2.25)

Roughly speaking, one may interpret the oscillator-operator-components âµm,o, â
µ
m,i, · · ·

as a “coloring” process of the ordinary oscillators âµm, ˆ̃a
µ

m by attaching 1 + 7 = 8
internal SU(3) color indices to each oscillator.

From the above commutators of the real and 7 imaginary components of the
oscillators (2.23-2.25), after a very laborious algebra, one obtains the canonical
commutation relations of the complex-octonionic oscillators

[âµm, âνn] = m δm+n,0 η
µν 18×8, [ˆ̃a

µ

m, ˆ̃a
ν

n] = m δm+n,0 η
µν 18×8

[âµm, ˆ̃a
ν

n] = 0 (2.26a)

where 18×8 is the unit 8×8 matrix and which corresponds to the identity element
eo of the octonion algebra. The normalization factors of 1

8 in (2.23, 2.24) result
from the 8-dimensional octonion algebra and are introduced so that factors of
8 do not appear in eqs-(2.26a). The 8× 8 matrix realization of the right action
of the algebra of octonions on itself leads to the same commutation relations.

To sum up,

[Pµ(τ, σ),Zν(τ, σ′)] = − iηµν δ(σ − σ′) eo, h̄ = c = 1 ⇔

[âµm, âνn] = m δm+n,0 η
µν eo, [ˆ̃a

µ

m, ˆ̃a
ν

n] = m δm+n,0 η
µν eo (2.26b)

after one recurs to the Fourier decomposition of

δ(σ − σ′) =
1

π

∞∑
n=−∞

e−2in(σ−σ′) (2.26c)

In the case of the open string, the generalized Virasoro operators are given by
the following sum of the normal ordered products of the 8× 8 matrix operators

Lm =

n=∞∑
n=−∞

: âµm−n âνn ηµν : (2.27)

As usual, the normal ordering prescription assigns the lowering operators to
the right of the raising operators. Due to a normal ordering ambiguity in the
definition of L0 one must include a constant c in the definition of L0 as follows

L0 =
1

2
aµ0 aν0 +

n=∞∑
n>0

aµ−n aνn ηµν + c (2.28)

The closed string involves the addition of the tilde oscillators so the Virasoro
operators are Lm, L̃m.

In ordinary QM, the commutator
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[AB,CD] = ABCD−CDAB = A[B,C]D + C[A,D]B + [A,C]BD + CA[B,D]
(2.29)

is well defined. However, when the operators are octonionic-valued, the quartic
products in the middle terms are not well defined due to the non-associativity.
To resolve this ambiguity we choose a nesting operation of the form A(B(CD))−C(D(AB))
in order to evaluate the quartic products. In doing so, given the definitions
(2.27,2.28) of the Virasoro operators as bilinears in the oscillators, and the com-
mutators (2.23-2.26), the generalized Virasoro algebra becomes

[Lm,Ln] = (m− n) Lm+n +
c

12
m(m2 − 1) δm+n,0 eo, eo ↔ 18×8 (2.30)

where the central charge is c = D. For the specific details of the very laborious
calculation of the Virasoro algebra commutators in the ordinary string see [25].
A different nesting operation like ((AB)C)D− ((CD)A)B requires the 8 × 8
matrix representation of the right action of the the octonion algebra on itself.
It leads to the same Virasoro commutators.

The action of the raising/lowering operators on the ground state requires also
a nesting procedure due to the nonassociativity of the octonions. For example,
in the open string, one may have the state

|Ψ〉 = aµ4†
n4

( aµ3†
n3

( aµ2†
n2

( aµ1†
n1
|0〉 ) ) ), {n1, n2, n3, n4} > 0 (2.31)

And so forth by including the action of more raising operators acting on the left
The lowering (annihilation) operators acting on the ground state yield zero.

Before proceeding with the quantization process, some important remarks
about Octonionic Quantum Mechanics are in order. The physical interpretation
of the Octonionic Quantum Mechanics has posed many problems [21]. An im-
portant problem has to do with the possible product states, which is crucial for
the algebraic explanation of the unobservability of colored states. Such octo-
nionic Hilbert space can be divided into an observable subspace corresponding
to the usual complex Hilbert space of quantum mechanics and an unobservable
subspace corresponding to the nonassociative components of the underlying oc-
tonionic algebra [21].

The authors [22] have argued that the use of complex geometry allows to
obtain a consistent formulation of Octonionic Quantum Mechanics. The use of
complex scalar products (or complex geometry as called by Rembielinski ) per-
mits to define a consistent tensor product. In the octonionic formulation of QM
they solve the Hermiticity problem and define an appropriate momentum oper-
ator within Octonionic QM. The nonextendability of the completeness relation
and the norm conservation was also discussed in detail.

The usual axioms of one-particle Quantum Mechanics can be implemented
with projection operators belonging to the exceptional Jordan algebra J3[O] over
the real octonions [21], [23]. It turns out that this is not possible with the usual
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Hilbert space formulation of Quantum Mechanics, because the octonion algebra
is non associative. So one has to go to a more abstract level, starting with
the concept of proposition (yes-no experiment). Propositions correspond in the
usual case to projection operators, and the structure of the propositional system
of Quantum Mechanics is equivalent to the structure of an ortho-complemented
projective geometry. At this point one finds the link with octonions as found
by [21].

Moufang has constructed a projective plane coordinated by octonions, and
which turns out to be non-Desarguian. The authors [21] studied the Quantum
Mechanical properties of this non-Desarguian geometry by using Jordan’s for-
mulation of it in terms of the exceptional Jordan algebra, and explained how
successive compatible experiments can yield a result which is independent of
the order in which they are performed. Hence, on the one-particle level all the
axioms of Quantum Mechanics were fullfilled [21].

The study of the octonionic left/right eigenvalue equation and the construc-
tion of octonionic Hilbert spaces is very subtle [22]. The Exceptional Jordan-
Matrix eigenvalue problem and the characteristic equation associated with the
Jordan-von Neumann-Wigner formulation of Quantum Mechanics in terms of
anti-commutators was studied in detail by [23]. Due to the nonassociativity,
the octonionic Hermitian matrices no longer correspond with Hermitian opera-
tors in Octonionic Quantum Mechanics, so it is not surprising to find non real
left/right eigenvalues for these matrices. A plausible way to recapture the rela-
tion between Hermitian matrices and Hermitian operators by using a complex
projection procedure was proposed by [22].

After this discussion of the subtle issues behind Octonionic QM, let us recall
that the no-ghost theorem of the ordinary open bosonic string in flat back-
grounds leads to the critical dimension D = 26 and to the Regge intercept
a = 1 (resulting from the normal ordering procedure in the definition of level
number operator) [24]. Ghost states are negative-norm states that are due to
the contribution of the timelike component of the flat background Lorentzian
metric ηtt < 0, and which cause problems with causality and unitarity.

The physical states were characterized by the condition Lm|φ〉 = 0 form > 0,
and the mass-shell condition (L0 − a)|φ〉 = 0. The spurious states |ψ〉 are
orthogonal to the physical states 〈ψ|φ〉 = 0. There are also zero-norm states in
D = 26 that are both spurious and orthogonal to themselves and which decouple
from all physical processes [24]. Similar findings occur for the closed string by
including the tilde oscillators (L̃0 − a)|φ〉 = 0; L̃m|φ〉 = 0 for m > 0.

One can borrow these results. mutatis mutandis, for the octonionic bosonic
string and impose the conditions

Lm|Φ〉 = 0, m > 0, (L0 − a)|Φ〉 = 0

L̃m|Φ〉 = 0, m > 0, (L̃0 − a)|Φ〉 = 0 (2.32)

where Lm are the octonionic Virasoro operators that are bilinear in the octo-
nionic raising/lowering operators

∑∞
n=−∞ : âµm−nâνn : ηµν , and can be repre-

sented in terms of 8 × 8 matrices. And a = aeo is the octonionic analog of
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the Regge intercept and can be represented by a18×8. The state |Φ〉 can be
decomposed in an octonionic basis as |Φo〉eo + |Φi〉ei. The spurious states |Ψ〉
are orthogonal to the physical states 〈Ψ|Φ〉 = 0. The problem which arises now
is, firstly, how to define the inner products and the proper octonionic Hilbert
space, before one can define the notion of orthogonality. In ordinary complex-
QM the wave-functions are complex-valued, and the inner product of two states
is given, for example, in one-dimension by

〈Ψ|Φ〉 =

∫ x=∞

x=−∞
dx Ψ∗(x) Φ(x) (2.33a)

In octonionic QM matters are more complicated . One has complex-octonionic-
valued functions of octonionic-valued variables Z given by Ψ(Z) = Ψo(Z)eo +
Ψi(Z)ei, where the components Ψo,Ψi are themselves complex-valued. There
are two integrals of the form

〈Ψ|Φ〉(1) =
1

2

∫
dZ (Ψ∗(Z) Φ(Z)) + o.c 6= 1

2

∫
(dZ Ψ∗(Z)) Φ(Z) + o.c

(2.33b)

〈Ψ|Φ〉(2) =
1

2

∫
dZ (Ψ̄(Z) Φ(Z)) + o.c 6= 1

2

∫
(dZ Ψ̄(Z)) Φ(Z) + o.c (2.33c)

where Ψ̄ involves the octonionic conjugation (o.c) ei → −ei, while Ψ∗ involves
the ordinary complex conjugation i → −i. The integrals depend on the ar-
rangements of the products due to the nonassociativity. One must add as well
the octonionic conjugates (o.c) to the above integrals because the real part of a
complex-octonion is given by 1

2 (X + X̄) ≡ (xo + iyo) is a complex number. In
this way the values of the integrals are complex-valued when Ψ 6= Φ.

There is yet a third integral (leading to a third inner product) involving Ψ† ≡
Ψ∗oeo − Ψ∗i ei ( 6= Ψ∗) that is based on the transpose of the real antisymmetric
8 × 8 matrix representation of the imaginary octonion units ei, and which is
tantamount of replacing ei → −ei, followed by the ordinary complex conjugation
of the 8 components of Ψ : Ψ∗o,Ψ

∗
i

〈Ψ|Φ〉(3) =
1

2

∫
dZ (Ψ†(Z) Φ(Z)) + o.c 6= 1

2

∫
(dZ Ψ†(Z)) Φ(Z) + o.c

(2.33d)
These integrals simplify considerably when Z→ x. Another subtlelty is how to
generalize the notion of the Lorentz group SO(1, D − 1) (and Poincare group)
to a D-dimensional octonionic space comprised of D octonionic coordinates
Zµ, µ = 1, 2, · · · , D, and how to describe the notion of particles, one-particle
states, · · ·.

Due to the many subtleties and difficulties of Octonionic QM (Nonassociative
QM will be discussed in the next section) we find it very difficult to verify if
the no-ghost theorem for the ordinary bosonic string can be extended to the
bosonic octonionic string case, and whether or not there will be a judicious
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value for the critical octonionic-spacetime dimension D, and the analog of the
Regge intercept a. Besides, there is no reason why D = 26 and a = 1 should
also turn out to be the critical values in the octonionic bosonic string case.

Before proceeding, there is a very interesting numerical coincidence (without
invoking supersymmetry) related to D = 26 worth exploring and mentioning.
Imagine having the embedding of an octonionic-worldsheet onto an octonionic-
spacetime background. This requires a rigorous study of Octonionic Analysis
because now the worlsheet coordinates τ, σ are also octonionic-valued. The
massless modes in standard QFT correspond to oscillations in the transverse
dimensions 26− 2 = 24. An octonionic 26-dim spacetime has 8× 26 real dimen-
sions, so the 24 transverse octonionic dimensions to the octonionic worldsheet
amounts to 8×24 = 192 real dimensions (degrees of freedom). Each fermion gen-
eration has 16 fermions (leptons, quarks of three colors and their anti-particles).
A massless Weyl (chiral) fermion in 4D has 2 complex components (4 real com-
ponents). Hence the total number of (real) degrees of freedom of 3 fermion
generations (involving massless Weyl fermions in 4D) is 16 × 4 × 3 = 192, and
which matches the number of 8×24 = 192 real dimensions (degrees of freedom)
corresponding to the 24 transverse octonionic dimensions associated with the
octonionic-worldsheet of a bosonic octonionic-string moving in D = 26 octo-
nionic dimensions.

Gresnigt [26] has shown that the non-trivial braid groups that can be rep-
resented using the four normed division algebras are B2 and Bc3, exactly those
required to represent a single generation of fermions in terms of simple three
strand ribbon braids. These braided fermion states can be identified with the
basis states of the minimal left ideals of the complex Clifford algebra Cl(6),
generated from the nested left actions of the complex octonions on itself. Thus,
the ribbon spectrum can be related to octonion algebras.

In [14] we have shown that the algebra J3[C⊗O] ⊗ Cl(4,C), given by the
tensor product of the complex exceptional Jordan J3[C⊗O] and the complex
Clifford algebra Cl(4,C), can describe all of the spinorial degrees of freedom
of three generations of fermions in four-spacetime dimensions. More recently,
Singh [15] has combined the seminal work of Adler’s Trace dynamics with divi-
sion algebras as a path towards quantum gravity and unification. Based on these
findings, it is warranted to explore further the above numerical coincidence in
connection to the algebra of octonions, bosonic octonionic strings, braids, com-
plex exceptional Jordan and Clifford algebras.

We shall see next that depending on the choices of the signature of the
diagonal metric goµν = ηµν , this could lead to different critical dimensions for
the bosonic octonionic string. So far we have studied the Bosonic Octonionic
String moving in flat backgrounds. The motion in curved backgrounds is far
more complicated. To get a picture of what an octonionic spacetime background
endowed with an octonionic metric looks like, let us concentrate in the very
special case of diagonal metrics. Namely gµν = 0 when µ 6= ν, and such that
the nonzero diagonal components are all real-valued

gµµ = go(µµ)eo + gi[µµ]ei = go(µµ)eo, µ = 1, 2, · · · , D (2.34)
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there is no sum over µ in eq-(2.42). Hence, the interval (ds)2 in eq-(2.1) becomes

(ds)2 = ( dZ1
o g

o
11 dZ

1
o − dZ1

i g
o
11 dZ

1
i ) + ( dZ2

o g
o
22 dZ

2
o − dZ2

i g
o
22 dZ

2
i ) + · · · +

( dZDo goDD dZDo − dZDi goDD dZDi ) (2.35)

One may then identify the coordinates

Z1
o ↔ t(1), Z2

o ↔ t(2), · · · , ZDo ↔ t(D) (2.36)

with D temporal directions t(1), t(2), · · · , t(D). And the coordinates

Z1
i ↔ x

(1)
i , Z2

i ↔ x
(2)
i , · · · , ZDi ↔ x

(D)
i ; i = 1, 2, · · · , 7 (2.37)

can be identified with 7×D spatial coordinates. By setting

go11 < 0, go22 < 0, go33 < 0, goDD < 0 (2.38)

the interval (ds)2 (2-35) can be written as the direct sum of D eight-dimensional
spacetimes intervals (ds)2

8, each one of signature (−,+,+,+, · · · ,+),

(ds)2
8 = dt(1) go11 dt

(1) − go11 dx
(1)
i δij dx

(1)
j , go11 < 0 (2.39a)

(ds)2
8 = dt(2) go22 dt

(2) − go22 dx
(2)
i δij dx

(2)
j , go22 < 0, · · · · · · (2.39b)

and

(ds)2
8 = dt(D) goDD dt(D) − goDD dx

(D)
i δij dx

(D)
j , goDD < 0 (2.39c)

This direct sum of D eight-dimensional spacetimes intervals has the appearance
of an 8-fold periodicity : OD ↔ M8 ⊕ M8 ⊕ M8 · · · ⊕ M8. On the other
hand, there is also the correspondence O2 ↔ M (14,2) ↔ SO(14, 2), conformal
group in D = 14. O3 ↔ M (21,3) ↔ SO(21, 3). O4 ↔ M (28,4) ↔ SO(28, 4),
quasi-conformal group in D = 28.

The most renowned case, when all the coordinates of Zµ are spatial (after
a Wick rotation of the temporal variables), is the Wilson’s construction of the
24-dim Leech lattice based on O3 [17]. Dixon [6] has also offered a different
construction of the 24-dim Leech lattice based on the ternary products of O.
The automorphism group of the vertex operator algebra associated with the
states of the 26-dim bosonic string compactification on the 24-dim Leech lattice
is the Monster group [18]. Infinite extensions of the Exceptional algebras based
on the notion of an 8-fold Exceptional Periodicity can be found in [27].

Lets us study the case of a metric with the same signature as the Lorentzian
one

go11 < 0, go22 > 0, go33 > 0, goDD > 0 (2.40)
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and which differs from the signature choice displayed in eq-(2.46). In this new
case, the assignment of the temporal/spatial directions will now differ from the
one displayed by eqs-(2.36, 2.37). And the direct sum of the D eight-dimensional
spacetime intervals leads to an effective 8D diagonal metric with 7D− 6 minus
signs (temporal directions) andD+6 positive signs (spatial directions). Whereas
previously, eqs-(2.36, 2.37, 2.38) furnishedD temporal and 7D spatial directions.
The split signature case occurs when 7D − 6 = D + 6 ⇒ D = 2 which is
very special. In this case the 2D-octonionic-dimensional spacetime is 16-real
dimensional whose metric has a split signature of (8, 8).

To conclude, assuming that one could extend the analysis of the no-ghost
theorem of the ordinary bosonic string to the octonionic case, we found that
depending on the choices of the signature of the diagonal metric goµν = ηµν , one
can have many different choices for the number of temporal/spatial directions,
and leading to direct sums of many different D eight-dimensional “spacetime”
intervals, and consequently, it will considerably affect the overall analysis of the
physical, ghosts and zero-norm states of the bosonic octonionic string. And,
which in turn, would lead to different values for the critical dimensions and the
Regge intercept. One of the most significant findings, in our opinion, has been
the numerical coincidence (without invoking supersymmetry) in the number of
degrees of freedom of three fermion generations and the number of transverse
dimensions of an octonionic string moving in D = 26 octonionic dimensions.
This warrants further investigation.
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