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We propose the system of self-consistent equations for vortex plasma in the framework of hydrodynamic
two-fluid model. These equations describe both longitudinal flows and the rotation and twisting of vortex
tubes taking into account internal electric and magnetic fields generated by fluctuations of plasma parameters.
The main peculiarities of the proposed equations are illustrated with the analysis of electron and ion sound
waves.
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I. INTRODUCTION

The hydrodynamic description of plasma is based on
two-fluid model, which includes Euler and continuity
equations written separately for the electron and ion
components, as well as Maxwell’s equations for the elec-
tromagnetic field.1,2 This model describes well the low-
frequency properties of plasma, but it does not describe
the vortex motion and associated disturbances of the
electromagnetic field. In recent decades, much attention
has been paid to the description of fluid dynamics by
vector fields including vectors of fluid speed and vortic-
ity, which satisfy symmetric Maxwell-type equations.3–11

In particular, a similar approach is used to describe
the plasma motion within the framework of a hydrody-
namic two-fluid model.12–15 However, in all mentioned
works3–15 an additional equation for the vortex motion
is obtained by taking the ”curl” operator from the Euler
equation and therefore the resulting equation is not in-
dependent. Recently, we have developed an alternative
approach based on droplet model of fluid introduced by
Helmholtz,16 and obtained a closed system of Maxwell-
type equations for the vortex fluid taking into account
the rotation and twisting of vortex tubes.17 Here we ap-
ply these equations to develop the hydrodynamic descrip-
tion of vortex plasma.

II. HYDRODYNAMIC EQUATIONS FOR VORTEX
FLOWS IN TWO-FLUID MODEL OF PLASMA

Recently we have shown17 that the ideal fluid can be
described by closed system of Maxwell-like equations for
variables corresponding to the longitudinal motion and
rotational vortex flows. In particular the free isentropic
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flow is described by the following symmetric equations:

1

s

dv

dt
+∇u+∇×w = 0,

1

s

du

dt
+∇ · v = 0,

1

s

dw

dt
+∇ξ −∇×v = 0,

1

s

dξ

dt
+∇ ·w = 0.

(1)

Here s is the speed of sound, v is the velocity of the fluid,
u is the enthalpy per unit mass, w is the variable char-
acterizing the rotation of the vortex tubes and ξ is the
variable characterizing the twisting of vortex tubes.17 As
usual, we assume the following expression for the mate-
rial time derivative:

d

dt
=

∂

∂t
+ (v · ∇) . (2)

In the commonly used hydrodynamic approach,
plasma is represented as a mixture of two fluids in which
the particles have different masses and charges. We
will consider only low-frequency excitations of neutral,
fully ionized, nonradiative plasma, which propagate in
the form of sound waves. In this approximation, the in-
ternal electric and magnetic fields are generated due to
deviations of plasma parameters from equilibrium val-
ues. In fact these fields are quasi-static and also move
together with the plasma. This representation is close to
the concept of a frozen-in field applied in the description
of Alfvén waves.18–20 Here on the base of system (1) we
construct self-consisted two-fluid model of vortex plasma.
The hydrodynamic equations for electron and ion fluids
with internal electromagnetic field can be obtained using
the following substitutions12 for variables in the system
(1):

v⇒ vα + aαAα,

u⇒ uα + aαϕα,

w⇒ wα + aαMα,

ξ ⇒ ξα + aαφα.

(3)
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Here the index α ∈ {e, i}, where e stands for electrons
and i stands for ions; ϕα and Aα are scalar and vec-
tor electric potentials; φα and Mα are scalar and vector
magnetic potentials respectively; the parameter aα is

aα =
qα

mαsα
, (4)

where qα is particle charge, mα is particle mass, sα is
corresponding speed of sound. Assuming the following
definitions for internal field strengths

Eα = − 1

sα

(
∂

∂t
+ (vα·∇)

)
Aα −∇ϕα −∇×Mα,

Bα = − 1

sα

(
∂

∂t
+ (vα·∇)

)
Mα −∇φα +∇×Aα,

(5)

and taking the following gauge conditions:

1

sα

(
∂

∂t
+ (vα·∇)

)
ϕα +∇ ·Aα = 0,

1

sα

(
∂

∂t
+ (vα·∇)

)
φα +∇ ·Mα = 0,

(6)

from the system (1) we get

1

sα

(
∂

∂t
+ (vα·∇)

)
vα +∇uα +∇×wα = aαEα,

1

sα

(
∂

∂t
+ (vα·∇)

)
uα +∇ · vα = 0,

1

sα

(
∂

∂t
+ (vα·∇)

)
wα +∇ξα −∇×vα = aαBα,

1

sα

(
∂

∂t
+ (vα·∇)

)
ξα +∇ ·wα = 0.

(7)

Moreover, to close the system (7) we suppose that the
internal fields satisfy the following equations:

∇ ·Eα = 4πe (ni − ne) ,

∇ ·Bα = 4πe (gi − ge) ,(
∂

∂t
+ (vα·∇)

)
Bα + sα∇×Eα =

−4πe (niwi − newe) ,(
∂

∂t
+ (vα·∇)

)
Eα − sα∇×Bα =

−4πe (nivi − neve) ,

(8)

where e = |qe| is the charge of electron. The plasma
particle concentration nα and parameter gα are related
to the plasma parameters uα and ξα by the following
relations:

nα =
n0α
sα

uα,

gα =
n0α
sα

ξα.
(9)

Thus, in this model, the electron and ion components of
the plasma are characterized by the following set of scalar
and vector parameters:

Pα ∈ {nα, gα,vα,wα,Eα,Bα} . (10)

III. LINEARIZED EQUATIONS FOR SOUND WAVES

Let us consider small fluctuations of plasma parame-
ters near the equilibrium state

nα = n0α + ñα,

vα = ṽα,

gα = g̃α,

wα = w̃α,

n0i = n0e = n0,

(11)

which propagate as the different types of sound waves.
Neglecting the convective derivative in the systems (7)
and (8) we obtain the following linearaized equations for
these sound waves:

1

sα

∂ṽα
∂t

+
sα
n0
∇ñα +∇×w̃α = aαẼα,

1

n0

∂ñα
∂t

+∇ · ṽα = 0,

1

sα

∂w̃α

∂t
+
sα
n0
∇g̃α −∇×ṽα = aαB̃α,

1

n0

∂g̃α
∂t

+∇ · w̃α = 0,

(12)

and

∇ · Ẽα = 4πe (ñi − ñe) ,

∇ · B̃α = 4πe (g̃i − g̃e) ,

∂B̃α

∂t
+ sα∇×Ẽα = −4πen0 (w̃i − w̃e) ,

∂Ẽα
∂t
− sα∇×B̃α = −4πen0 (ṽi − ṽe) .

(13)

From the systems (12) and (13) we have the following
wave equations for the electron and ion concentrations(

∂2

∂t2
− s2i∆ + ω2

ip

)
ñi = ω2

ipñe,(
∂2

∂t2
− s2e∆ + ω2

ep

)
ñe = ω2

epñi.

(14)

Here ∆ is Laplace operator, ωip is the ion plasma fre-
quency and ωep is the electron plasma frequency:

ω2
ip =

4πn0e
2

mi
, (15)

ω2
ep =

4πn0e
2

me
. (16)

Let us define the following second-order differential op-
erators

�i =
∂2

∂t2
− s2i∆, (17)
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�e =
∂2

∂t2
− s2e∆. (18)

Then the equations (14) can be separated as:{(
�e + ω2

ep

) (
�i + ω2

ip

)
− ω2

ipω
2
ep

}
ñi = 0, (19)

{(
�e + ω2

ep

) (
�i + ω2

ip

)
− ω2

ipω
2
ep

}
ñe = 0. (20)

The same type of equations we obtain for the remaining
variables. If we denote the generalized plasma parameter
as

P̃α ∈
{
ñα, g̃α, ṽα, w̃α, Ẽα, B̃α

}
, (21)

then the generalized sound wave equation can be written
as {(

�e + ω2
ep

) (
�i + ω2

ip

)
− ω2

ipω
2
ep

}
P̃α = 0. (22)

These waves have the following dispersion relation(
ω2 − s2ek2 − ω2

ep

) (
ω2 − s2i k2 − ω2

ip

)
−ω2

ipω
2
ep = 0, (23)

where ω is the frequency and k is the wave vector
(k = |k|). The schematic plots illustrating this disper-
sion relation are represented in FIG. 1. If k = 0, then we
have two roots of equation (23)

ω = 0,

ω = ω∗ =
√
ω2
ep + ω2

ip.
(24)

If k →∞ we have two asymptotes

ω = sek, (25)

and

ω = sik. (26)

The upper curve in FIG. 1 corresponds to the electron
sound, while the lower curve corresponds to the ion
sound. The group velocity of ion sound in the long wave
limit (k → 0) is

vig =
dω

dk
=

√
s2eω

2
ip + s2iω

2
ep

ω2
ep + ω2

ip

. (27)

IV. ELECTRON SOUND WAVES

Let us suppose that ion fluid is motionless

ni = n0i = n0e = n0,

vi = 0,

gi = 0,

wi = 0,

(28)

FIG. 1. The schematic plots of dispersion curves for sound
waves.

FIG. 2. The schematic plot of dispersion curve for electron
sound waves.

while electron fluid makes small oscillations near the
equilibrium state

ne = n0 + ñe,

ve = ṽe,

ge = g̃e,

we = w̃e.

(29)

Then we have the following linearized equations

∂ṽe
∂t

+
s2e
n0
∇ñe + se∇×w̃e = − e

me
Ẽe,

1

n0

∂ñe
∂t

+∇ · ṽe = 0,

1

n0

∂g̃e
∂t

+∇ · w̃e = 0,

∂w̃e

∂t
+
s2e
n0
∇g̃e − se∇×ṽe = − e

me
B̃e,

(30)
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and

∇ · Ẽe = −4πeñe,

∇ · B̃e = −4πeg̃e,

∂B̃e

∂t
+ se∇×Ẽe = 4πen0w̃e,

∂Ẽe
∂t
− se∇×B̃e = 4πen0ṽe.

(31)

This simple model corresponds, for example, to the case
of electron fluid in ideal metal.

From the system (30) taking into account (31) we ob-
tain the following generalized equations for sound waves
in electron fluid: (

�e + ω2
ep

)
P̃e = 0. (32)

The corresponding dispersion relation is

ω2 − s2ek2 − ω2
ep = 0. (33)

The schematic plot of dispersion relation (33) is repre-
sented in FIG. 2.

V. ELECTRON SOUND WAVES IN AN EXTERNAL
MAGNETIC FIELD

Let us consider electron fluid in a homogeneous exter-
nal magnetic field applied in Z direction

B0 = B0ez, (34)

where ez is the unit vector in Z direction. The sys-
tem of hydrodynamic equations (30) taking into account
Lorentz force is written as

∂ṽe
∂t

+
s2e
n0
∇ñe+se∇×w̃e= −

e

me
(Ẽe+

1

c
ṽe×B0),

1

n0

∂ñe
∂t

+∇ · ṽe = 0,

1

n0

∂g̃e
∂t

+∇ · w̃e = 0,

∂w̃e

∂t
+
s2e
n0
∇g̃e − se∇×ṽe = − e

me
B̃e,

(35)

and

∇ · Ẽe = −4πeñe,

∇ · B̃e = −4πeg̃e,

∂B̃e

∂t
+ se∇×Ẽe = 4πen0w̃e,

∂Ẽe
∂t
− se∇×B̃e = 4πen0ṽe.

(36)

Directly from the equations (35) and (36) we obtain

FIG. 3. The schematic plots of dispersion curves for electron
sound waves in an external magnetic field.

(
�e + ω2

ep

)
g̃e = 0, (37)

and (
�e + ω2

ep

)
B̃e = 0. (38)

For the speed components we have(
�e + ω2

ep

)
ṽez = 0,((

�e + ω2
ep

)2
+ ω2

ec

∂2

∂t2

)
ṽex = 0,((

�e + ω2
ep

)2
+ ω2

ec

∂2

∂t2

)
ṽey = 0.

(39)

Here ωec is electron cyclotron frequency

ωec =
e

cme
B0, (40)

where c is speed of light in a vacuum. For electron con-
centration we obtain(

�e + ω2
ep

)((
�e + ω2

ep

)2
+ ω2

ec

∂2

∂t2

)
ñe = 0. (41)

For the components of electric field we have(
�e + ω2

ep

)
Ẽez = 0,(

�e + ω2
ep

)((
�e + ω2

ep

)2
+ ω2

ec

∂2

∂t2

)
Ẽex = 0,

(
�e + ω2

ep

)((
�e + ω2

ep

)2
+ ω2

ec

∂2

∂t2

)
Ẽey = 0,

(42)

and for rotation variable we get(
�e + ω2

ep

)2((
�e + ω2

ep

)2
+ ω2

ec

∂2

∂t2

)
w̃ez = 0,

(
�e + ω2

ep

)((
�e + ω2

ep

)2
+ ω2

ec

∂2

∂t2

)
w̃ex = 0,

(
�e + ω2

ep

)((
�e + ω2

ep

)2
+ ω2

ec

∂2

∂t2

)
w̃ey = 0.

(43)
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Thus for different variables of the electron sound waves
propagating in an external homogeneous magnetic field
we obtain the following set of the dispersion relations:(

ω2 − s2ek2 − ω2
ep

)
= 0, (44)

(
ω2 − s2ek2 − ω2

ep

)2 − ω2ω2
ec = 0. (45)

If k = 0, then we get three roots of the equations (44)
and (45)

ω = ωep, (46)

ω = ω+ =

√
ω2
ec + 4ω2

ep

2
+
ωec
2
, (47)

ω = ω− =

√
ω2
ec + 4ω2

ep

2
− ωec

2
. (48)

If k →∞ we have the following asymptote

ω = sek. (49)

The schematic plots illustrating the dispersion relations
(44) and (45) are represented in FIG. 3.

VI. CONCLUSION

Thus, we propose the system of self-consistent equa-
tions (7) and (8), which describes the vortex plasma
within the framework of two-fluid hydrodynamic model.
It is shown that the internal electric and magnetic fields
generated by fluctuations of the mechanical parameters
of the plasma can be taken into account separately for
the electronic and ionic components. These fields satisfy
modified Maxwell-like equations (8), which show that the
fields are incorporated in plasma and propagate at the
speed of sound.

Linearized equations (12) and (13) form a closed sys-
tem that describes sound waves, in which variables
nα and vα describe longitudinal expansion-compression
waves, and variables gα and wα describe vortex twisting
waves.17 System (12)-(13) is reduced to fourth-order wave
equations (22), in which the spectrum of eigenwaves has
two branches corresponding to the hybridization of elec-
tron and ion sound waves. Note that the dynamics of Eα
and Bα fields is described by the same wave equations.

In the case of the model of stationary ions, which cor-
responds to the model of electron fluid in ideal metal, we
have purely electron sound waves for all plasma param-
eters with the known dispersion law (33). In addition, it
was shown that in an external magnetic field the spec-
trum of eigenwaves splits and except the usual electronic

sound waves for the variables ge and Be, we have a super-
position of electron sound waves and electron-cyclotron
sound waves for the rest parameters of plasma.

The proposed equations can be potentially applied to
describe turbulent plasma motion4 in external electro-
magnetic field.
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