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Abstract

The cosmological constant problem is examined by taking an Einstein–
scalar with a Higgs-type potential and scrutinizing the infrared struc-
ture induced by finite temperature effects. A variant optimal per-
turbation theory is implemented in the recently proposed quantum-
gravitational framework. The optimized renormalized mass, i.e., the
renormalized mass determined by the variant optimal perturbation
theory, of the scalar field turns out to be on the order of the tempera-
ture. This shifts the cosmological constant problem to compatibility of
the consequent perturbative analysis. The compatibility is guaranteed
essentially by renormalization group invariance of physical quantities.
We point out the resummation behind the invariance.



1 Introduction

The cosmological constant (CC) problem [1] (see, e.g., [2–6] for reviews)
arises from the loop effects of Standard Model (SM) particles, such as the
Higgs particle. Since the electroweak scale is much higher than, say, the
temperature of the cosmic microwave background (CMB), it is a standard
practice to apply the zero-temperature setup to formulate and tackle the
problem. However, since the CC as a vacuum energy is an infrared effect
and thus governed by the low energy sector, the infrared structure of the
theory must be important and its meticulous description is desirable. The
fact that the CC is a vacuum energy also implies that quantization and
renormalization of gravity must be involved in its systematic treatment. In
particular, the solution of the problem would require renormalization of the
vacuum energy. In this work we show that, when properly taken into account
in the quantum gravitational setup, the finite temperature effects allow one
to avoid the CC fine-tuning problem.

Are there indications that the finite temperature effects may a priori be
important for CC analysis, despite the fact that the electroweak scale is
much higher than the CMB temperature? First of all, it should definitely be
possible, and is natural, to obtain zero-temperature results as a vanishing-
temperature limit of the corresponding finite-temperature results. A hint
of an indication comes from zero-temperature loop analysis, which typically
yields logarithmic factors such as ln m

µ
, where m is the mass of the field and

µ the renormalization scale. For the benefit of convergence, it is necessary
to choose µ ∼ m. By the same token it will be necessary to take µ ∼ m ∼ T
once the temperature enters. In the present work this scaling is achieved in
the course of improving the perturbative analysis by optimal perturbation
theory (OPT)1 as well as standard thermal resummation: we show that there
is an OPT procedure that enforces the scaling.

In the body we reformulate the CC problem as a zero-temperature limit
of the finite temperature counterpart. A potential obstruction to any finite-
temperature perturbative analysis is the well-known infrared problem. (Re-
views can be found in [10–14].) For a high temperature, say, that of the QCD
era, a well-known example is the ‘Linde problem’ [15], which has been an ac-
tive topic of research; see [16] [17] and references therein. An effective field

1OPT is based on the variational principle. Other thermal physics techniques based on
the variational principle include screened perturbation theory [7] [8] and 2PI formalism [9].
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theory approach combined with lattice computation was proposed to deal
with the problem [18]. The focus of the present work is a low temperature,
the temperature of CMB. (Nevertheless, some of the textbook results ob-
tained for a high temperature can be borrowed for reasons to be explained.)
We show that the finite-temperature effects are in fact crucial: in partic-
ular, once the convergence property of the perturbation series is improved
through a variant OPT [19], the optimized renormalized mass of the Higgs
turns out to be essentially the temperature,2 thus removing the root of the
CC fine-tuning problem.

With the renormalized mass determined, the following task still remains:
the zero-temperature theories, such as the zero-temperature Standard Model,
have been quite successful. There, the renormalized masses turn out to be
close to the pole masses, usually within a few percent. In the case of the
SM Higgs field, for instance, the renormalized mass is close to 125 GeV,
the pole mass value. If one now wants to take the renormalized mass to be
around the CMB temperature, which is much smaller than the pole mass,
one must yet maintain compatibility with the zero-temperature analysis: the
resulting perturbation theory should preserve the success of the original zero-
temperature theory. In the body, after examining vast freedom in choosing
renormalization conditions, we invoke renormalization group invariance of
physical quantities to affirm this. We note that a certain resummation is
behind the invariance.

With the renormalized mass being of the order of the temperature, the CC
problem is avoided: the CMB temperature in terms of eV is 6.6 × 10−4 eV.
Approximating this as 10−12 GeV, the vacuum energy contribution associated
with the thermal mass of a Higgs-type field is ∼ 10−48 GeV 4. This is roughly
of the same order as the observed CC value ∼ 10−48 GeV 4.

2 Freedom in subtraction scheme

In section 3, we put forth an OPT that leads to the renormalized mass of
the order of the temperature. This raises a question on consistency of the
resulting perturbative analysis, since the new renormalized mass is much

2It has been revealed in the recent works of [20, 21] that quantum corrections can
qualitatively change the classical solution. In the present work we see a similar novelty: the
finite temperature non-perturbative effects dictate, small temperatures notwithstanding,
the renormalized mass.
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(a) (b)

Figure 1: Diagrams for one-loop self-energy: (a) one-loop correction for prop-
agator (b) its counter-term

smaller than the actual physical mass. Although in nature the modification
amounts to finite renormalization and thus must not affect the physics, it
will be useful to take a close look at how the perturbative analysis modifies
in the new scheme. As we now demonstrate by considering two-loop renor-
malization of the propagator of a real scalar theory with a quartic potential,
the key to preserving the success of the zero-temperature lies in vast freedom
in choosing subtraction schemes.

Let us consider the following scalar system in a flat background

S = −
∫
d4x

[1

2
∂µζ∂

µζ +
1

2
m2ζ2

]
−
∫
d4x

λ

4!
ζ4. (1)

The two-point proper vertex is defined as

Γ(2) ≡ k2 +m2 − Σ(k) (2)

where Σ denotes self-energy. At one-loop, Σ can be computed by considering
the diagrams in Fig. 1: the one-loop two-point divergence introduces the
counter-term:

: −m
2

4

λ

(4π)2

(1

ε
+ cm

)
ζ2 (3)

where ε ≡ 4−D
2

and D denotes the spacetime dimension; cm is a constant to be
determined by one’s subtraction scheme. For instance, the modified minimal
subtraction (MS) corresponds to setting cm = 0. Fixing the renormalized
mass according to the OPT principle of minimal sensitivity (as we will in
section 3) is in contrast to the usual practice in zero-temperature: there, one
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Figure 2: Diagrams for two-loop self-energy

fixes cm by one’s subtraction scheme, and then the renormalized mass by the
pole mass condition,

k2 +m2 − Σ(k)
∣∣∣
k2=−m2

P

= 0 (4)

where mP denotes the physical pole mass. In the new scheme, it is the
coefficient cm that is determined by the pole mass condition, while the renor-
malized mass is fixed by the OPT.

As stated in the introduction, the advantage of the new scheme is obvious:
it realizes the scaling mentioned in the introduction and thereby allows one
to avoid the CC fine-tuning problem. To see the disadvantage, let us note
that the pole mass condition in the new scheme yields

cmm
2 ∼ m2

P −m2 (5)

and thus implies a larger value of cm, compared with the standard approach
where the pole mass condition typically leads to m2 ' m2

P . In general, for
mass-related quantities it will not be possible at tree-level to achieve suitable
agreement with experimental values, since the renormalized mass is pre-fixed:
it will be necessary to go to one-loop where one has the freedom of adjusting
the finite parts. The two-loop-relevant diagrams are given in Fig. 2. The
circle in the last diagram in Fig. 2 represents the counter-term for the one-
loop four-point diagram (not explicitly shown). Adding all up, the total
two-loop self-energy Σ(2) is

Σ(2) = m2λ
2µ4ε

(4π)4

[ 1

2ε2
+

1

4ε
(−1 + cm + 3cλ)−

p2

24m2ε
+ · · ·

]
(6)

where cλ denotes the finite part of the counter-term of the one-loop four-point
amplitude and p the momentum entering through one end of the diagrams.
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The ε-pole terms will have to be removed by two-loop counter-terms. Let
us focus on the finite parts. The constant cm will also appear in the finite
parts represented by the ellipses.3 By imposing the pole mass condition and
solving it, say, interactively for cm, it will be possible to determine its two-
loop correction. Since Σ(2) has an additional λ and ~ compared with one-loop,
the large value of cm cannot disturb the series in any significant way. After all,
the new perturbation can be viewed as finite renormalization. We will point
out later that a certain resummation is behind this finite renormalization.

3 Variant OPT-induced renormalized mass

The crux of the variant optimal perturbation theory (OPT) can be captured
by considering a scalar system in a flat spacetime. Since the UV divergences
originate locally from a short distance, they are insensitive to global geome-
try. For this reason, the zero-temperature UV regularization can be employed
in a finite-temperature theory. As for quantities depending on the infrared
structure, the prime example of which is vacuum energy, one must consider
in principle the actual background. The difference between using the curved
background and the flat one lies in the finite parts. (However, the finite parts
are adjusted by the renormalization conditions anyway; we refer to [22] for
further discussion.)

In thermal field theory, convergence of perturbative analysis is improved
by resummation. The convergence can be further enhanced with a touch of
non-perturbative techniques, such as OPT. The OPT implemented in this
work is a relatively minor, but nonetheless crucial, variation of the widely-
studied one. In the widely-used OPT, an artificial mass term is subtracted
out after adding. This is one way of ensuring artificial-mass independence of
the full closed results. In our case, the renormalized mass itself serves as the
OPT parameter to be fixed by the OPT principle of minimal sensitivity.

3Since the issue under consideration belongs to the mass, one may well set cλ = 0
in the spirit of the MS. Similarly, the two-loop analogues of cm, cλ (and the finite part
associated with the wavefunction renormalization) can be set to zero. In other words, too
much freedom in choosing the finite parts can be a burden: the freedom remaining after
determining cm can be fixed just as in a convenient subtraction scheme, such as the MS,
to facilitate next steps, e.g., solving the renormalization group equations.
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The gravity-scalar system that we consider is

S =
1

κ2

∫
d4x
√
−g R−

∫
d4x
√
−g
(1

2
gµν∂µζ∂νζ + V (ζ)

)
(7)

where κ2 = 16πG with G being Newton’s constant. The potential V (ζ) is

V (ζ) =
λ

4!

(
ζ2 +

6

λ
ν2
)2
. (8)

Note the notation change as compared with section 2: the mass has been de-
noted by ν. One conceptual hurdle is the justification of the complete-square
form of the potential instead of the usual V = 1

2
ν2ζ2 + 1

4!
λζ4. The value of

CC depends, of course, on whether one uses the complete-square form or the
form without the constant piece. A shift of potential by a constant is imma-
terial in flat spacetime quantum field theory. The same is not true, however,
in the quantum gravitational context. Whether one should use the complete-
square form or the more usual form is not part of the CC problem. A closely
related question, whose answer is not currently known [23], is why the mini-
mum value of the classical Higgs potential should be taken to be zero. It is
an independent problem that must ultimately be answered experimentally.
Our goal here is to show that in the setup dictated largely by convergence
of thermal perturbation theory, the fine tuning-problem is not present; this
goal can be achieved more conveniently with the complete-square form.

To set the stage for the refined BFM [22,24–26], we shift the fields as

gµν → hµν + g̃µν , ζ → ζ̂ + ζ̃ (9)

with
g̃µν ≡ gc µν + ϕµν , ζ̃ ≡ ζc + ξ (10)

where gc µν , ζc denote the classical solutions, ϕµν , ξ the background fields,

and hµν , ζ̂ the fluctuation fields. The loop analysis is based on the following
two-point functions (see [26] for the conventions). For the metric,

< hµν(x1)hρσ(x2) > = P̃µνρσ ∆̃(x1 − x2) (11)

where the tensor P̃µνρσ is given by

P̃µνρσ ≡
κ̄2

2

(
g̃µρg̃νσ + g̃µσg̃νρ −

1

2
g̃µν g̃ρσ

)
; (12)
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where κ̄2 ≡ 2κ2 and satisfies

P̃µνκ1κ2P̃
κ1κ2

ρσ = P̃µνρσ. (13)

∆̃(x1−x2) is Green’s function for a (massless) scalar theory in the background
metric g̃µν :

< ζ̂(x1)ζ̂(x2) > = ∆̃(x1 − x2). (14)

The explicit form of ∆̃ for a massive scalar theory will be given and utilized
in section 3.2 where the curved space analysis of the matter-involving sector
is conducted.

3.1 Flat spacetime analysis

As stated in the beginning, the crux of our OPT is captured by considering a
scalar system in a flat spacetime. We employ the MS subtraction scheme in
the present section. We will come back to the deviation from the MS scheme
in section 3.3.

The starting point of the OPT-improved thermal resummation can be
taken as the following renormalized action

S(ζ) = −
∫
d4x

1

2
∂µζ∂

µζ −
∫
d4x

(1

2
M2ζ2 +

λ

4!
ζ4
)
−
∫
d4x

3ν4

2λ

(15)

with

M2(T ) ≡ ν2 +
λ

24
T 2 (16)

Shift the field
ζ → ζ̂ + ζ̃ (17)

where ζ̂ , ζ̃ denote the fluctuation field and background field, respectively.
Since we are interested in the potential as opposed to the action, the back-
ground field ζ̃ can be treated as a constant. Then the potential can be
effectively computed by considering the field-dependent mass term

M2(T )→ M̃2(T, ζ̃) = ν2 +
λ

24
T 2 +

λ

2
ζ̃2 (18)
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and integrating out the fluctuation field ζ̂. A remark is in order before
proceeding to determination of the OPT-induced renormalized mass. We
stated earlier that although we consider a CMB-order temperature, the high-
energy expansion can be utilized. The temperature being high or low is
relative to the mass and we will show below that our OPT implies M̃ ∼ ~1/2T
(~ will be kept implicit). One can now tell why the high-energy expansion is
justified: since the auxiliary mass M̃ satisfies M̃/T ∼ ~1/2, the intermediate

analysis corresponds to that of high temperature: M̃
T
<< 1.

The two-loop calculation of the effective potential was conducted long
ago, e.g., in [27], [28], and [29]. For our goal, it is necessary to keep tract
of the field-independent terms as well. Also, the M - and M̃ - dependence is
important. Let us focus on the one-loop potential; after carefully following
these terms, one gets

Vopt(ζ̃) =
3ν4

2λ
− π2T 4

90
− M̃4

32π2
ln
µ̄eγE

4πT
+

1

24
M̃2T 2

+
1

2

(
ν2 +

λ

24
T 2
)
ζ̃2 − 1

12π
M̃3T +

1

4!
λζ̃4 +O

(M̃6

T 2

)
(19)

where µ̄ ≡ µ
(

4π
eγE

)1/2
is a scaling parameter of dimensional regularization

(with the MS scheme). The field equation associated with (22), ∂
∂ζ̃
Vopt = 0,

yields

λ

6
ζ̃2 +M2 − λ

(4π)2
M̃2 ln

µ̄eγE

4πT
+

1

24
λT 2 − 1

12π
M̃3T = 0 (20)

up to terms of two-loop order. The solution is

ζ̃2(M) ' −6M2

L
+

1

4π2

(
−π2T 2 + 3

√
2 πT

√
−M2 − 3M2 ln

µ̄eγE

4πT

)
. (21)

With this, one gets the following onshell potential:

Vopt =
3ν4

2λ
− π2T 4

90
− M̃4

32π2
ln
µ̄eγE

4πT
+

1

24
M̃2T 2

+
1

2
M2ζ̃2(M)− 1

12π
M̃3T +

1

4!
λζ̃4(M) +O

(M̃6

T 2

)
. (22)

By solving the following PMS condition for ν2

∂Vopt

∂ν2
= 0 (23)
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one gets4

ν2 = − 5

72
λT 2. (24)

which leads to

ζ2 = −T
2

12
. (25)

Once the potential (22) is evaluated with this value, one gets

Vopt = −π
2

90
T 4 ∼ T 4 (26)

which then allows one to avoid the fine-tuning problem.

The complete two-loop offshell form of the potential will be presented
in [30]. There one encounters a novelty: the potential develops an imaginary
part, signaling instability of the vacuum.5 More on this in the conclusion.

3.2 Curved space analysis

Whereas what we referred to as the second-layer perturbation in [22] is nec-
essary for the pure gravity sector computation, there exists, for the matter
sector, a powerful shortcut based on the first-layer perturbation, the “one-
stroke” method. In the present work the first-layer perturbation will be used
exclusively. From the results obtained, it becomes evident that the qualita-
tive conclusion of the flat space analysis remains unchanged.

Graviton sector

Let us recall the zero-temperature case first. In [25] and [22], we conducted
the computation in a brute-force manner by employing the second-layer per-
turbation and viewing the classical CC as the graviton mass term. As shown,

4A similar result of ν2 ∼ λT 2 was obtained in [31] (see also [32] and [33]) by considering
renormalization group and choosing appropriate renormalization conditions. More on this
in section 3.3.

5Strictly speaking, the potential itself remains real even at two-loop. However, this is
because the source of the imaginary parts, M̃3, does not contribute even at two-loop. Due
to the expected contribution of M̃3 term (and the terms with higher odd-integer powers
of M̃ that should appear in higher-loop computations), it is expected that the complexity
of the potential will become manifest at three-loop and on.
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e.g., in [22], the result is a divergent CC term

∼
∫ √

−g̃. (27)

Strictly speaking, for a flat background, the one-loop results vanish in di-
mensional regularization in the absence of the classical CC treated as the
graviton mass term. For consistency with the observed value of the CC, the
classical (i.e., renormalized) CC will have to be set to ∼ T 4 in the renormal-
ization program described below, and thus will not qualitatively affect the
proposed resolution of the CC problem.

The results of n-loop with n ≥ 2 vanish, irrespective of the finite temper-
ature contribution, due to the tracelessness of Pµνρσ and (13). An arbitrary
n-loop graph with n ≥ 2 contains a product of vertices that can be written
as

< hα1α2hα3α4hα5α6 · · ·hβ1β2hβ3β4hβ5β6 · · · > (28)

where the upper and lower indices are fully contracted. Contractions of the
fields lead to

P̃µ1ν1ρ1σ1P̃µ2ν2ρ2σ2 · · · (29)

where again, all the indices are contracted one way or another with g̃µν ’s.
Whenever a pair of P̃ ’s have a pair of the indices contracted, the explicit
expression for P̃ given in (12) can be used. One can also use (13) to reduce
the total number of P̃ ’s until only one P̃ remains at the end. Since all of
the indices must be contracted, the final expression must be ∼ P̃µν

µν , and
therefore vanishes. One important implication of this analysis is that it is
not necessary to conduct resummation or OPT in the gravity sector.

Matter-involving sector

The matter-sector diagrams can be subdivided, depending on whether or not
they involve a graviton loop. The matter-involving vertices do not, unlike the
pure graviton vertices, come with 1

κ2
. Since the graviton propagator comes

with κ2, the diagrams leading in κ are those with a matter loop, which are
our focus.

There exists a highly effective “one-stroke” method of computing the matter-
involving part of the effective action, in which the flat spacetime analysis can
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(a) (b)

Figure 3: Resummation behind the new scheme: (a) a connected diagram in
MS scheme (b) resummation required in the new scheme

be entirely carried over. For this, note the explicit form of ∆̃(x1 − x2) can
be written as

∆̃(x1 − x2) =

∫
d4k

(2π)4
1√
−g̃(x1)

eik·(x1−x2)

ikµkν g̃µν(x1)
. (30)

Defining “flattened” momentum and coordinates as

Kα ≡ ẽµα kµ , Xβ ≡ ẽ
β
ν x

ν , ẽµαẽ
ν
β g̃µν = ηαβ (31)

where the underlined indices are flattened, one gets the flattened propagator:

∆̃(X1 −X2) =

∫
d4K

(2π)4
eiKγ(X1−X2)

γ

iKαKβη
αβ

. (32)

When computing a diagram, one can pull out all of the background fields and
contract the fluctuation fields. The propagators can then be transformed to
the above. Afterward, the steps become parallel to those corresponding to
the flat cases. The matter part of the effective action can thus be computed
exactly in the same manner in which it is computed in the flat case.

3.3 Consistency of new subtraction scheme

With the renormalized mass around the CMB temperature, one should make
sure that that framework preserves the success of the zero-temperature theory
such as that seen in zero-temperature SM. The new perturbation has been
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illustrated in section 2 by taking a simple scalar theory. In the case of the SM,
each sector in the SM, i.e., the Higgs, gauge, and fermion, the renormalization
process should be modified from that of the standard renormalization scheme,
e.g., MS. More specifically, in the modified scheme, the pole mass value must
be realized by adjusting the finite parts of the divergent integrals that are
chosen differently from those in the standard renormalization scheme: in
analysis with MS, the pole mass condition is part of the MS scheme, and the
renormalized mass is not determined prior to the pole mass condition. It is
the pole mass condition that determines the renormalized mass. In contrast,
in the new scheme the renormalized mass is determined, as demonstrated in
section 3.1, by the OPT. The finite parts are to be determined by the physical
pole mass condition. What it implies is that it is necessary to go to the one-
loop level to achieve the accuracy of amplitudes obtained in MS. In order
to match the values of, e.g., the tree amplitudes computed in MS, one must
insert one-particle-irreducible diagrams to the internal lines. (We anticipated
that one-loop insertion will normally be sufficient.) The insertions amount
to a certain resummation. The situation is generally illustrated in Fig. 3. In
light of this, it is also worth noting that the ν2 ∼ T 2 scaling was previously
obtained in [31] by choosing appropriate renormalization conditions.

4 Conclusion

Since some of the Standard Model particles, such as the Higgs, are massive,
the matter contributions to the CC are naively expected to be larger than
that of the graviton. The variant OPT reveals, however, that the ultimate
determining factor of the CC is the temperature. We believe that this iden-
tifies the cosmological constant problem at its root. This leads to necessity
of employing a new renormalization scheme. In the new scheme, one needs
to go a few orders higher and perform a certain resummation to achieve the
same level of proximity to the values of the physical observables as in the
zero-temperature standard schemes. Given what it brings, this seems to a
relatively small price to pay.

We end with three ramifications of our results and future directions. The
results obtained in this work suggest that, earlier in the thermal history of
the Universe, the value of the CC should have been larger. In other words
the CC becomes time-dependent through the temperature, and the present
small value must be due to the age of the Universe [23]. More quantitatively,
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the following is the basis for this anticipation. In [25] it was shown that there
exists a time-dependent solution that approaches the minimal value of the
potential. By using the one-parameter family of the potentials labeled by the
temperature, one can repeat the analysis with the present finite temperature
potential. One can then analyze the resulting quantum-level action, and it
should be possible, at the time-dependent solution level, to establish a CC
that decreases to a small value. One may introduce a renormalized CC,
Λren. To be consistent with the fact that the observed value of the CC
is small, one will have to take Λren to be small. It will be of interest to
pursue this line of study. Another ramification, not unrelated to the first,
is that the large value of the CC becomes natural when the temperature is
on the order of the EW scale. (This may be something profound, and have
implications for the hierarchy problem in the SM.) Since the Universe was at
higher temperatures in the previous eras, it will be a meaningful endeavor to
explore whether one could come up with a streamlined description covering
the entire temperature range, say, from the near-Planck era to the present.
With the recent progress in the OPT literature, the present results indicate
toward an affirmative answer. Lastly, as we will report in [30], the potential
is expected to develop a imaginary part. We interpret this as an indication of
the vacuum decay from a finite temperature to zero temperature. Just as an
analogous decay induced by a bounce worm hole solution plays an important
role in black hole information [34] [35], the present vacuum is likely to have
interesting cosmological implications that deserve further study.
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