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"Entia non sunt multiplicanda praeter necessitatem" (Ockam,
W.)

"Te doy gracias, Padre, porque has ocultado estas cosas a los
sabios y entendidos y se las has revelado a la gente sencilla” (Mt
11,25)

Abstract

In this brief paper it is proved the inexistence of odd perfect numbers
using elementary methods. From the definition of a perfect number P ,
and operating with the set of proper divisors less than

√
P , the existence

of some odd perfect number is linked to the existence of solution of a
particular egyptian fraction with an special restriction. Proving that such
an egyptian fraction with that restriction can not exist, it is concluded
that no odd perfect number does exist.
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1 Introduction
In number theory, a perfect number is a positive integer equal to the sum of
its positive proper divisors, excluding itself. In about 300 BC Euclid showed
that if 2p − 1 is prime then 2p−1 (2p − 1) is perfect. Two millennia later, Euler
proved that all even perfect numbers are of this form. This is known as the
Euclid–Euler theorem.

However, it is not known whether there are any odd perfect numbers, although
there are a good number of well-known results regarding the conditions that
it should satisfy. In this sense, in 1888, Sylvester stated that “... a prolonged
meditation on the subject has satisfied me that the existence of any one such
[odd perfect number]—its escape, so to say, from the complex web of conditions
which hem it in on all sides—would be little short of a miracle”.

In this paper it is proved the inexistence of odd perfect numbers using only
elementary methods, and none of the previous “complex web of conditions”
that previous papers have found. As a result, this paper has no references.

The final conclusion of this paper can be expressed with the following:

Theorem. No odd perfect number can exist.

2 Proof of the inexistence of odd perfect num-
bers

Firstly, we need some basic definitions and well-known lemmas; we skip the
proof for the shake of briefness:

1. A perfect number must be composite, as the sum of all proper divisors of
any prime number excluding itself is 1.

2. A perfect number can not be a square; therefore, a perfect number can
not be expressed as the product of two equal factors.

3. Every composite number C expressed as the product of two distinct factors
a and b, such that a < b, has the property that a <

√
C and b >

√
C,

b = C
a .

4. All the proper divisors of any odd composite number C are odd.

Let P be some perfect number.
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Let R = {d1, d2, ..., dn} be the set of proper divisors of P less than
√
P excluding

1, and S =
{

P
d1
, P
d2
, ... Pdn

}
be the set of proper divisors of P greater than

√
P

excluding P . As P is a perfect number,

1 + d1 + d2 + ...+ dn +
P

dn
+ ...+

P

d2
+

P

d1
= P (1)

Operating,
1 + d1 + d2 + ...+ dn = P − P

d1
− P

d2
− ...− P

dn

1 + d1 + d2 + ...+ dn = P

(
1− 1

d1
− 1

d2
− ...− 1

dn

)
1 + d1 + d2 + ...+ dn

1− 1
d1

− 1
d2

− ...− 1
dn

= P

As 1 + d1 + d2 + ... + dn is an integer, it follows that 1
1− 1

d1
− 1

d2
−...− 1

dn

must be

integer. It is trivial to show
√
P < 1 + d1 + d2 + ... + dn < P . Therefore, P

is a perfect number only if both 1 + d1 + d2 + ...+ dn and 1
1− 1

d1
− 1

d2
−...− 1

dn

are
proper divisors of P .

By the lemma 3, one of the two expression is less than
√
P , and therefore belongs

to R, and the other is greater than
√
P and belongs to S. As 1+d1+d2+ ...+dn

is greater than the greatest element of R, subsequently we can state that(
1

1− 1
d1

− 1
d2

− ...− 1
dn

)
= dk ∈ R (2)

1 + d1 + d2 + ...+ dn =
P

dk
∈ S (3)

Now we are in position to prove the following useful

Lemma 5. If P is some odd perfect number, then dn

dk
< 3

Proof.

From (3), and operating,

1 +

n∑
j=1

dj =
P

dk

P = dk

1 +

n∑
j=1

dj


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As by definition we have that dn <
√
P , just substituting we can set that

dn <

√√√√√dk

1 +

n∑
j=1

dj



d2n < dk

1 +

n∑
j=1

dj


dn
dk

<
1 +

∑n
j=1 dj

dn
(4)

Other hand, taking (1) and dividing by
√
P , we get that

1√
P

+
d1√
P

+
d2√
P

+ ...+
dn√
P

+
P

dn
√
P

+ ...+
P

d2
√
P

+
P

d1
√
P

=
√
P

1√
P

+
d1√
P

+
d2√
P

+ ...+
dn√
P

+

√
P

dn
+ ...+

√
P

d2
+

√
P

d1
=

√
P

As ∀dj
√
P

dj
> 1, and 1 +

∑n
j=1 dj >

√
P , then we get inmediately that n <

√
P − 1; otherwise, the sum of all the terms would be greater than

√
P and P

would not be a perfect number. Thus, we can affirm that

n ≤
√
P − 2 (5)

Also, we can state that dn ≥ 2n+ 1, as the minimum gap between consecutive
elements of S is 2, and the minimum possible value of d1 is 3.

Additionally, the maximum sum of elements of S with the minimum gap between
them is

dn + (dn − 2) + (dn − 4) + ...+ (dn − 2 (n− 1))

Therefore, we can establish that

1 +

n∑
j=1

dj ≤ dn + (dn − 2) + (dn − 4) + ...+ (dn − 2 (n− 1))

1 +

n∑
j=1

dj ≤ ndn −
(
(n− 1)

2
+ (n− 1)

)
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Subsequently, we get that

1 +
∑n

j=1 dj

dn
≤

ndn −
(
(n− 1)

2
+ (n− 1)

)
dn

1 +
∑n

j=1 dj

dn
≤ n−

(
(n− 1)

2
+ (n− 1)

)
dn

Substituting n by the inequality obtained in (5), we get that

1 +
∑n

j=1 dj

dn
≤

√
P − 2−

((√
P − 2− 1

)2
+
(√

P − 2− 1
))

dn

1 +
∑n

j=1 dj

dn
≤

√
P − 2−

((√
P − 3

)2
+
(√

P − 3
))

dn
(6)

Operating with the numerator of the third term of the right handside of (6), we
get that (√

P − 3
)2

+
(√

P − 3
)
= P + 9− 6

√
P +

√
P − 3 =

= P − 5
√
P + 6

As by definition dn <
√
P , we can affirm that

P − 5
√
P + 6

dn
≥

√
P − 5 +

6√
P

Therefore, substituting at (6), we get that

1 +
∑n

j=1 dj

dn
≤

√
P − 2−

(√
P − 5 +

6√
P

)
1 +

∑n
j=1 dj

dn
≤ 3− 6√

P

Subsequently,
1 +

∑n
j=1 dj

dn
< 3

1 +

n∑
j=1

dj < 3dn
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Finally, substituting in (4), we get the desired result

dn
dk

< 3

Operating with (2), we get that, if P is some odd perfect number, then

1− 1

d1
− 1

d2
− ...− 1

dn
=

1

dk

2

dk
+

1

d1
+

1

d2
+ ... = 1 (7)

Now, we are going to prove that the Egyptian fraction of (7) with the constraint
of dn

dk
< 3 set by Lemma 5 can not exist, and subsequently that the existence of

odd perfect numbers is not possible.

Let us define set S = {1, 2, ..., n}. Operating with (7), we get that∑n
j=1
j ̸=k

(∏
s∈S
s ̸=j

ds

)
+ 2

∏
s∈S
s ̸=k

ds∏
s∈S ds

=

∏
s∈S ds∏
s∈S ds

n∑
j=1
j ̸=k

∏
s∈S
s ̸=j

ds

+ 2
∏
s∈S
s ̸=k

ds =
∏
s∈S

ds (8)

It is easy to see that this implies the following:

Lemma 6. For each dj∈S , we have that

dj |
∏
s∈S
s ̸=j

ds

This property, considered jointly with Lemma 5, has the following direct impli-
cation:

Lemma 7. dk is some composite number .

Proof. If dk were some prime number, as by Lemma 6 dk |
∏

s∈S
s ̸=k

ds and all the
proper divisors of P are distinct, then some ds ̸=k must be some odd composite
number multiple of dk. As the minimum possible multiple of dk distinct of dk
is 3dk, then we have that some ds ̸=k ≥ 3dk. However, as we have from Lemma
5 that dn < 3dk, there can not exist any ds ̸=k ≥ 3dk. Subsequently, dk must be
composite.
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Lemma 6 and Lemma 7 considered jointly imply that dk = didj , where di and
dj can be either prime numbers or composite numbers, but in any case such
that 3di ≤ dk and 3dj ≤ dk.

Now, we are in a position to prove the final

Lemma 8. If dk ≤ dn < 3dk, it can not exist any solution to the egyptian
fraction 2

dk
+ 1

d1
+ 1

d2
+ ... = 1.

Proof. For each dj∈S , dividing each of the terms of (8) by all ds ̸=k,j , we get
that

djdk = 2dj + dk + djdk

 n∑
i=1
i ̸=k,j

1

di

 (9)

Operating with (9), we get that

dj (dk − 2) = dk

1 + dj

 n∑
i=1
i ̸=k,j

1

di




dj =

dk

(
1 + dj

(∑n
i=1
i ̸=k,j

1
di

))
dk − 2

As dk and dk − 2 are odd integers, it follows that gcd (dk, dk − 2) = 1. As each
dj is some odd positive integer, then necessarily for each dj we have one of the

following two options: either dk = 3, or dk − 2 divides 1 + dj

(∑n
i=1
i ̸=k,j

1
di

)
. For

each dj we can discard the first option, as 3 is a prime number and by Lemma
7 dk is some composite number. Looking at the second option left, it can be
noticed that

∑n
i=1
i ̸=k,j

1
di

< 1, because precisely the original egyptian fraction set

in (7) states that
(∑n

i=1
i ̸=k,j

1
di

)
+ 1

dj
+ 2

dk
= 1. But this implies that, if dk − 2

divides 1 + dj

(∑n
i=1
i ̸=k,j

1
di

)
, then necessarily

dk − 2 < 1 + dj

dk − 3 < dj
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As dk − 3 is an even number, then

dk − 2 ≤ dj (10)

As this must be true for each dj , we reach a contradiction between the bound
set in (10) and Lemma 7; according to the bound, dk cannot be some compos-
ite number of two other divisors di and dj and must be some prime number.
Subsequently, it follows that the egyptian fraction in (7) with the inequality of
Lemma 5 can not exist.

As both the egyptian fraction in (7) and the inequality of Lemma 5 are necessary
for an odd perfect number to exist, then if follows that the existence of odd
perfect numbers is not possible.

Q.E.D. ¡D.G.!

8


