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"Entia non sunt multiplicanda praeter necessitatem" (Ockam,
w.)

"Te doy gracias, Padre, porque has ocultado estas cosas a los
sabios y entendidos y se las has revelado a la gente sencilla” (Mt
11,25)

Abstract

In this brief paper it is proved the inexistence of odd perfect numbers
using elementary methods. From the definition of a perfect number P,
and operating with the set of proper divisors less than /P, the existence
of some odd perfect number is linked to the existence of solution of a
particular egyptian fraction with an special restriction. Proving that such
an egyptian fraction with that restriction can not exist, it is concluded
that no odd perfect number does exist.
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1 Introduction

In number theory, a perfect number is a positive integer equal to the sum of
its positive proper divisors, excluding itself. In about 300 BC Euclid showed
that if 2P — 1 is prime then 2P~1 (2P — 1) is perfect. Two millennia later, Euler
proved that all even perfect numbers are of this form. This is known as the
Euclid-Euler theorem.

However, it is not known whether there are any odd perfect numbers, although
there are a good number of well-known results regarding the conditions that
it should satisfy. In this sense, in 1888, Sylvester stated that “.. a prolonged
meditation on the subject has satisfied me that the existence of any one such
[odd perfect number]—its escape, so to say, from the complex web of conditions
which hem it in on all sides—would be little short of a miracle”.

In this paper it is proved the inexistence of odd perfect numbers using only
elementary methods, and none of the previous “complex web of conditions”
that previous papers have found. As a result, this paper has no references.

The final conclusion of this paper can be expressed with the following:

Theorem. No odd perfect number can exist.

2 Proof of the inexistence of odd perfect num-
bers

Firstly, we need some basic definitions and well-known lemmas; we skip the
proof for the shake of briefness:

1. A perfect number must be composite, as the sum of all proper divisors of
any prime number excluding itself is 1.

2. A perfect number can not be a square; therefore, a perfect number can
not be expressed as the product of two equal factors.

3. Every composite number C' expressed as the product of two distinct factors
a and b, such that a < b, has the property that a < +/C and b > \/C,
b=¢.

a

4. All the proper divisors of any odd composite number C' are odd.

Let P be some perfect number.



Let R = {d;,ds, ...,d, } be the set of proper divisors of P less than VP excluding
1,and S = {d—Pl, %, ...d%} be the set of proper divisors of P greater than /P
excluding P. As P is a perfect number,
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As 1+dy +ds + ... + d, is an integer, it follows that ﬁ must be

=
integer. It is trivial to show VP <1+di+do+..+d, < P. Therefore, P
is a perfect number only if both 1 4+ d; + ds + ... + d,, and 111% are

i —E
proper divisors of P.

By the lemma 3, one of the two expression is less than /P, and therefore belongs
to R, and the other is greater than v/P and belongs to S. As 1+dy +ds+...+d,
is greater than the greatest element of R, subsequently we can state that
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Now we are in position to prove the following useful
Lemma 5. If P is some odd perfect number, then ‘;—: <3

Proof.

From (3), and operating,



As by definition we have that d,, < v/P, just substituting we can set that
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Other hand, taking (1) and dividing by v/P, we get that
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As Vd,; d—I_J > 1, and 1+ Z?Zl d; > VP, then we get inmediately that n <

VP — 1; otherwise, the sum of all the terms would be greater than /P and P
would not be a perfect number. Thus, we can affirm that

n<VP-2 (5)

Also, we can state that d, > 2n + 1, as the minimum gap between consecutive
elements of S is 2, and the minimum possible value of d; is 3.

Additionally, the maximum sum of elements of S with the minimum gap between
them is
dn+(dn—2)+(dp,—4)+ ...+ (d, —2(n—1))

Therefore, we can establish that
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Subsequently, we get that
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Substituting n by the inequality obtained in (5), we get that
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Operating with the numerator of the third term of the right handside of (6), we
get that
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As by definition d,, < v/P, we can affirm that
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Therefore, substituting at (6), we get that
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Finally, substituting in (4), we get the desired result

dn
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Operating with (2), we get that, if P is some odd perfect number, then
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Now, we are going to prove that the Egyptian fraction of (7) with the constraint
of Z—Z < 3 set by Lemma 5 can not exist, and subsequently that the existence of
odd perfect numbers is not possible.

Let us define set S = {1,2,...,n}. Operating with (7), we get that
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It is easy to see that this implies the following:

Lemma 6. For each d;cg, we have that

d; | I ds

s€S
s#J

This property, considered jointly with Lemma 5, has the following direct impli-
cation:

Lemma 7. dj is some composite number.

Proof. If dj, were some prime number, as by Lemma 6 dj, | [[ses ds and all the
s#k

proper divisors of P are distinct, then some ds»; must be some odd composite
number multiple of di. As the minimum possible multiple of d; distinct of dj
is 3dy, then we have that some dsxp > 3d). However, as we have from Lemma
5 that d,, < 3dy, there can not exist any dyx; > 3di. Subsequently, d;, must be
composite.



Lemma 6 and Lemma 7 considered jointly imply that dy = d;d;, where d; and
d; can be either prime numbers or composite numbers, but in any case such
that 3d; < dj, and 3d; < dj.

Now, we are in a position to prove the final

Lemma 8. Ifdy < d, < 3dg, it can not exist any solution to the egyptian
fraction d% + d% + é +..=1.

Proof. For each djcg, dividing each of the terms of (8) by all dsxy j, we get
that

"1
djdy, = 2d; + dy, + djdy, | Y - (9)

1
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Operating with (9), we get that
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As dj, and dj, — 2 are odd integers, it follows that ged (dg,dr — 2) = 1. As each
d; is some odd positive integer, then necessarily for each d; we have one of the

following two options: either dy = 3, or dj, — 2 divides 1 +d; (Z";_l dl> For
i£k,;

each d; we can discard the first option, as 3 is a prime number and by Lemma
7 dji is some composite number. Looking at the second option left, it can be
noticed that > "5—1 % < 1, because precisely the original egyptian fraction set

i#k,j
in (7) states that (Zﬁ;—kl. ;) + g + 4 = 1. But this implies that, if dj, — 2
i#k,j 7
divides 1+ d; <anl ;), then necessarily
i#k,j "

dp—2<1+d;

dy, —3 < d



As dj, — 3 is an even number, then
dp — 2 <d; (10)

As this must be true for each d;, we reach a contradiction between the bound
set in (10) and Lemma 7; according to the bound, dj cannot be some compos-
ite number of two other divisors d; and d; and must be some prime number.
Subsequently, it follows that the egyptian fraction in (7) with the inequality of
Lemma 5 can not exist.

As both the egyptian fraction in (7) and the inequality of Lemma 5 are necessary
for an odd perfect number to exist, then if follows that the existence of odd
perfect numbers is not possible.

Q.E.D. D.G.!



