On the existence of odd perfect numbers

Moreno Borrallo, Juan

January 4, 2021
e-mail: juan.morenoborrallo@gmail.com
"Entia non sunt multiplicanda praeter necessitatem" (Ockam, W.)
"Te doy gracias, Padre, porque has ocultado estas cosas a los sabios y entendidos y se las has revelado a la gente sencilla" (Mt 11,25)

Abstract

In this brief paper it is proved the inexistence of odd perfect numbers using elementary methods. From the definition of a perfect number P, and operating with the set of proper divisors less than \sqrt{P}, the existence of some odd perfect number is linked to the existence of solution of a particular egyptian fraction with an special restriction. Proving that such an egyptian fraction with that restriction can not exist, it is concluded that no odd perfect number does exist.

2010MSC: 11A99

1 Introduction

In number theory, a perfect number is a positive integer equal to the sum of its positive proper divisors, excluding itself. In about 300 BC Euclid showed that if $2^{p}-1$ is prime then $2^{p-1}\left(2^{p}-1\right)$ is perfect. Two millennia later, Euler proved that all even perfect numbers are of this form. This is known as the Euclid-Euler theorem.

However, it is not known whether there are any odd perfect numbers, although there are a good number of well-known results regarding the conditions that it should satisfy. In this sense, in 1888, Sylvester stated that "... a prolonged meditation on the subject has satisfied me that the existence of any one such [odd perfect number] - its escape, so to say, from the complex web of conditions which hem it in on all sides-would be little short of a miracle".

In this paper it is proved the inexistence of odd perfect numbers using only elementary methods, and none of the previous "complex web of conditions" that previous papers have found. As a result, this paper has no references.

The final conclusion of this paper can be expressed with the following:

Theorem. No odd perfect number can exist.

2 Proof of the inexistence of odd perfect numbers

Firstly, we need some basic definitions and well-known lemmas; we skip the proof for the shake of briefness:

1. A perfect number must be composite, as the sum of all proper divisors of any prime number excluding itself is 1 .
2. A perfect number can not be a square; therefore, a perfect number can not be expressed as the product of two equal factors.
3. Every composite number C expressed as the product of two distinct factors a and b, such that $a<b$, has the property that $a<\sqrt{C}$ and $b>\sqrt{C}$, $b=\frac{C}{a}$.
4. All the proper divisors of any odd composite number C are odd.

Let P be some perfect number.

Let $R=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ be the set of proper divisors of P less than \sqrt{P} excluding 1, and $S=\left\{\frac{P}{d_{1}}, \frac{P}{d_{2}}, \ldots \frac{P}{d_{n}}\right\}$ be the set of proper divisors of P greater than \sqrt{P} excluding P. As P is a perfect number,

$$
\begin{equation*}
1+d_{1}+d_{2}+\ldots+d_{n}+\frac{P}{d_{n}}+\ldots+\frac{P}{d_{2}}+\frac{P}{d_{1}}=P \tag{1}
\end{equation*}
$$

Operating,

$$
\begin{gathered}
1+d_{1}+d_{2}+\ldots+d_{n}=P-\frac{P}{d_{1}}-\frac{P}{d_{2}}-\ldots-\frac{P}{d_{n}} \\
1+d_{1}+d_{2}+\ldots+d_{n}=P\left(1-\frac{1}{d_{1}}-\frac{1}{d_{2}}-\ldots-\frac{1}{d_{n}}\right) \\
\frac{1+d_{1}+d_{2}+\ldots+d_{n}}{1-\frac{1}{d_{1}}-\frac{1}{d_{2}}-\ldots-\frac{1}{d_{n}}}=P
\end{gathered}
$$

As $1+d_{1}+d_{2}+\ldots+d_{n}$ is an integer, it follows that $\frac{1}{1-\frac{1}{d_{1}}-\frac{1}{d_{2}}-\ldots-\frac{1}{d_{n}}}$ must be integer. It is trivial to show $\sqrt{P}<1+d_{1}+d_{2}+\ldots+d_{n}<P$. Therefore, P is a perfect number only if both $1+d_{1}+d_{2}+\ldots+d_{n}$ and $\frac{1}{1-\frac{1}{d_{1}}-\frac{1}{d_{2}}-\ldots-\frac{1}{d_{n}}}$ are proper divisors of P.

By the lemma 3 , one of the two expression is less than \sqrt{P}, and therefore belongs to R, and the other is greater than \sqrt{P} and belongs to S. As $1+d_{1}+d_{2}+\ldots+d_{n}$ is greater than the greatest element of R, subsequently we can state that

$$
\begin{gather*}
\left(\frac{1}{1-\frac{1}{d_{1}}-\frac{1}{d_{2}}-\ldots-\frac{1}{d_{n}}}\right)=d_{k} \in R \tag{2}\\
1+d_{1}+d_{2}+\ldots+d_{n}=\frac{P}{d_{k}} \in S \tag{3}
\end{gather*}
$$

Now we are in position to prove the following useful
Lemma 5. If P is some odd perfect number, then $\frac{d_{n}}{d_{k}}<3$
Proof.

From (3), and operating,

$$
\begin{gathered}
1+\sum_{j=1}^{n} d_{j}=\frac{P}{d_{k}} \\
P=d_{k}\left(1+\sum_{j=1}^{n} d_{j}\right)
\end{gathered}
$$

As by definition we have that $d_{n}<\sqrt{P}$, just substituting we can set that

$$
\begin{gather*}
d_{n}<\sqrt{d_{k}\left(1+\sum_{j=1}^{n} d_{j}\right)} \\
d_{n}^{2}<d_{k}\left(1+\sum_{j=1}^{n} d_{j}\right) \\
\frac{d_{n}}{d_{k}}<\frac{1+\sum_{j=1}^{n} d_{j}}{d_{n}} \tag{4}
\end{gather*}
$$

Other hand, taking (1) and dividing by \sqrt{P}, we get that

$$
\begin{gathered}
\frac{1}{\sqrt{P}}+\frac{d_{1}}{\sqrt{P}}+\frac{d_{2}}{\sqrt{P}}+\ldots+\frac{d_{n}}{\sqrt{P}}+\frac{P}{d_{n} \sqrt{P}}+\ldots+\frac{P}{d_{2} \sqrt{P}}+\frac{P}{d_{1} \sqrt{P}}=\sqrt{P} \\
\frac{1}{\sqrt{P}}+\frac{d_{1}}{\sqrt{P}}+\frac{d_{2}}{\sqrt{P}}+\ldots+\frac{d_{n}}{\sqrt{P}}+\frac{\sqrt{P}}{d_{n}}+\ldots+\frac{\sqrt{P}}{d_{2}}+\frac{\sqrt{P}}{d_{1}}=\sqrt{P}
\end{gathered}
$$

As $\forall d_{j} \frac{\sqrt{P}}{d_{j}}>1$, and $1+\sum_{j=1}^{n} d_{j}>\sqrt{P}$, then we get inmediately that $n<$ $\sqrt{P}-1$; otherwise, the sum of all the terms would be greater than \sqrt{P} and P would not be a perfect number. Thus, we can affirm that

$$
\begin{equation*}
n \leq \sqrt{P}-2 \tag{5}
\end{equation*}
$$

Also, we can state that $d_{n} \geq 2 n+1$, as the minimum gap between consecutive elements of S is 2 , and the minimum possible value of d_{1} is 3 .

Additionally, the maximum sum of elements of S with the minimum gap between them is

$$
d_{n}+\left(d_{n}-2\right)+\left(d_{n}-4\right)+\ldots+\left(d_{n}-2(n-1)\right)
$$

Therefore, we can establish that

$$
\begin{gathered}
1+\sum_{j=1}^{n} d_{j} \leq d_{n}+\left(d_{n}-2\right)+\left(d_{n}-4\right)+\ldots+\left(d_{n}-2(n-1)\right) \\
1+\sum_{j=1}^{n} d_{j} \leq n d_{n}-\left((n-1)^{2}+(n-1)\right)
\end{gathered}
$$

Subsequently, we get that

$$
\begin{aligned}
\frac{1+\sum_{j=1}^{n} d_{j}}{d_{n}} & \leq \frac{n d_{n}-\left((n-1)^{2}+(n-1)\right)}{d_{n}} \\
\frac{1+\sum_{j=1}^{n} d_{j}}{d_{n}} & \leq n-\frac{\left((n-1)^{2}+(n-1)\right)}{d_{n}}
\end{aligned}
$$

Substituting n by the inequality obtained in (5), we get that

$$
\begin{gather*}
\frac{1+\sum_{j=1}^{n} d_{j}}{d_{n}} \leq \sqrt{P}-2-\frac{\left((\sqrt{P}-2-1)^{2}+(\sqrt{P}-2-1)\right)}{d_{n}} \\
\frac{1+\sum_{j=1}^{n} d_{j}}{d_{n}} \leq \sqrt{P}-2-\frac{\left((\sqrt{P}-3)^{2}+(\sqrt{P}-3)\right)}{d_{n}} \tag{6}
\end{gather*}
$$

Operating with the numerator of the third term of the right handside of (6), we get that

$$
\begin{gathered}
(\sqrt{P}-3)^{2}+(\sqrt{P}-3)=P+9-6 \sqrt{P}+\sqrt{P}-3= \\
=P-5 \sqrt{P}+6
\end{gathered}
$$

As by definition $d_{n}<\sqrt{P}$, we can affirm that

$$
\frac{P-5 \sqrt{P}+6}{d_{n}} \geq \sqrt{P}-5+\frac{6}{\sqrt{P}}
$$

Therefore, substituting at (6), we get that

$$
\begin{gathered}
\frac{1+\sum_{j=1}^{n} d_{j}}{d_{n}} \leq \sqrt{P}-2-\left(\sqrt{P}-5+\frac{6}{\sqrt{P}}\right) \\
\frac{1+\sum_{j=1}^{n} d_{j}}{d_{n}} \leq 3-\frac{6}{\sqrt{P}}
\end{gathered}
$$

Subsequently,

$$
\begin{aligned}
& \frac{1+\sum_{j=1}^{n} d_{j}}{d_{n}}<3 \\
& 1+\sum_{j=1}^{n} d_{j}<3 d_{n}
\end{aligned}
$$

Finally, substituting in (4), we get the desired result

$$
\frac{d_{n}}{d_{k}}<3
$$

Operating with (2), we get that, if P is some odd perfect number, then

$$
\begin{gather*}
1-\frac{1}{d_{1}}-\frac{1}{d_{2}}-\ldots-\frac{1}{d_{n}}=\frac{1}{d_{k}} \\
\frac{2}{d_{k}}+\frac{1}{d_{1}}+\frac{1}{d_{2}}+\ldots=1 \tag{7}
\end{gather*}
$$

Now, we are going to prove that the Egyptian fraction of (7) with the constraint of $\frac{d_{n}}{d_{k}}<3$ set by Lemma 5 can not exist, and subsequently that the existence of odd perfect numbers is not possible.

Let us define set $S=\{1,2, \ldots, n\}$. Operating with (7), we get that

$$
\begin{align*}
& \frac{\sum_{\substack{j=1 \\
j \neq k}}^{n}\left(\prod_{\substack{s \in S \\
s \neq j}} d_{s}\right)+2 \prod_{\substack{s \in S \\
s \neq k}} d_{s}}{\prod_{s \in S} d_{s}}=\frac{\prod_{s \in S} d_{s}}{\prod_{s \in S} d_{s}} \\
& \sum_{\substack{j=1 \\
j \neq k}}^{n}\left(\prod_{\substack{s \in S \\
s \neq j}} d_{s}\right)+2 \prod_{\substack{s \in S \\
s \neq k}} d_{s}=\prod_{s \in S} d_{s} \tag{8}
\end{align*}
$$

It is easy to see that this implies the following:
Lemma 6. For each $d_{j \in S}$, we have that

$$
d_{j} \mid \prod_{\substack{s \in S \\ s \neq j}} d_{s}
$$

This property, considered jointly with Lemma 5, has the following direct implication:

Lemma 7. d_{k} is some composite number.
Proof. If d_{k} were some prime number, as by Lemma $6 d_{k} \mid \prod_{\substack{s \in S \\ s \neq k}} d_{s}$ and all the proper divisors of P are distinct, then some $d_{s \neq k}$ must be some odd composite number multiple of d_{k}. As the minimum possible multiple of d_{k} distinct of d_{k} is $3 d_{k}$, then we have that some $d_{s \neq k} \geq 3 d_{k}$. However, as we have from Lemma 5 that $d_{n}<3 d_{k}$, there can not exist any $d_{s \neq k} \geq 3 d_{k}$. Subsequently, d_{k} must be composite.

Lemma 6 and Lemma 7 considered jointly imply that $d_{k}=d_{i} d_{j}$, where d_{i} and d_{j} can be either prime numbers or composite numbers, but in any case such that $3 d_{i} \leq d_{k}$ and $3 d_{j} \leq d_{k}$.

Now, we are in a position to prove the final
Lemma 8. If $d_{k} \leq d_{n}<3 d_{k}$, it can not exist any solution to the egyptian fraction $\frac{2}{d_{k}}+\frac{1}{d_{1}}+\frac{1}{d_{2}}+\ldots=1$.

Proof. For each $d_{j \in S}$, dividing each of the terms of (8) by all $d_{s \neq k, j}$, we get that

$$
\begin{equation*}
d_{j} d_{k}=2 d_{j}+d_{k}+d_{j} d_{k}\left(\sum_{\substack{i=1 \\ i \neq k, j}}^{n} \frac{1}{d_{i}}\right) \tag{9}
\end{equation*}
$$

Operating with (9), we get that

$$
\begin{gathered}
d_{j}\left(d_{k}-2\right)=d_{k}\left(1+d_{j}\left(\sum_{\substack{i=1 \\
i \neq k, j}}^{n} \frac{1}{d_{i}}\right)\right) \\
d_{j}=\frac{d_{k}\left(1+d_{j}\left(\sum_{\substack{i=1 \\
i \neq k, j}}^{n} \frac{1}{d_{i}}\right)\right)}{d_{k}-2}
\end{gathered}
$$

As d_{k} and $d_{k}-2$ are odd integers, it follows that $\operatorname{gcd}\left(d_{k}, d_{k}-2\right)=1$. As each d_{j} is some odd positive integer, then necessarily for each d_{j} we have one of the following two options: either $d_{k}=3$, or $d_{k}-2$ divides $1+d_{j}\left(\sum_{\substack{i=1 \\ i \neq k, j}}^{n} \frac{1}{d_{i}}\right)$. For each d_{j} we can discard the first option, as 3 is a prime number and by Lemma $7 d_{k}$ is some composite number. Looking at the second option left, it can be noticed that $\sum_{\substack{i=1 \\ i \neq k, j}}^{n} \frac{1}{d_{i}}<1$, because precisely the original egyptian fraction set in (7) states that $\left(\sum_{\substack{i=1 \\ i \neq k, j}}^{n} \frac{1}{d_{i}}\right)+\frac{1}{d_{j}}+\frac{2}{d_{k}}=1$. But this implies that, if $d_{k}-2$ divides $1+d_{j}\left(\sum_{\substack{i=1 \\ i \neq k, j}}^{n} \frac{1}{d_{i}}\right)$, then necessarily

$$
d_{k}-2<1+d_{j}
$$

$$
d_{k}-3<d_{j}
$$

As $d_{k}-3$ is an even number, then

$$
\begin{equation*}
d_{k}-2 \leq d_{j} \tag{10}
\end{equation*}
$$

As this must be true for each d_{j}, we reach a contradiction between the bound set in (10) and Lemma 7 ; according to the bound, d_{k} cannot be some composite number of two other divisors d_{i} and d_{j} and must be some prime number. Subsequently, it follows that the egyptian fraction in (7) with the inequality of Lemma 5 can not exist.

As both the egyptian fraction in (7) and the inequality of Lemma 5 are necessary for an odd perfect number to exist, then if follows that the existence of odd perfect numbers is not possible.
Q.E.D. ¡D.G.!

