Proof of Goldbach Conjecture
Shan Wang
$693660048 @ q q \cdot c o m$
Abstract
In this paper, the author explores the proof of Goldbach Conjecture.

Objective:

If $\{1$ is also a prime number $\}$ is true, then any even number greater than 0 can be written as the sum of two prime numbers.

Method:
Triangular lattice
Result:
An even a can be written as $\mathrm{T}(\mathrm{a})$ sums of two prime numbers
$\mathrm{T}(\mathrm{a}) \sim(((\mathrm{a} / 2) / 2-(\mathrm{a} / 2) / \ln (\mathrm{a} / 2)) *(((\mathrm{a}-1) / 2-(\mathrm{a}-1) / \ln (\mathrm{a}-1))-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1)))-$ $((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1)) *(((\mathrm{a}-3) / 2-(\mathrm{a}-3) / \ln (\mathrm{a}-3))-((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-$
$2))))^{*}(((\mathrm{a} / 4) / 2-(\mathrm{a} / 4) / \ln (\mathrm{a} / 4)) *(((3 * \mathrm{a} / 4) / 2-(3 * \mathrm{a} / 4) / \ln (3 * \mathrm{a} / 4))-((\mathrm{a} / 2) / 2-$
$(\mathrm{a} / 2) / \ln (\mathrm{a} / 2)))) /((((\mathrm{a} / 4) / 2-(\mathrm{a} / 4) / \ln (\mathrm{a} / 4)) *(((3 * \mathrm{a} / 4) / 2-(3 * \mathrm{a} / 4) / \ln (3 * \mathrm{a} / 4))-((\mathrm{a} / 2) / 2-$
$(\mathrm{a} / 2) / \ln (\mathrm{a} / 2))))+(((\mathrm{a} / 2) / 2-(\mathrm{a} / 2) / \ln (\mathrm{a} / 2))-((\mathrm{a} / 4) / 2-(\mathrm{a} / 4) / \ln (\mathrm{a} / 4))) *((\mathrm{a} / 2-\mathrm{a} / \ln (\mathrm{a}))-$ $\left.\left.\left.\left((3 * \mathrm{a} / 4) / 2-\left(3^{*} \mathrm{a} / 4\right) / \ln (3 * \mathrm{a} / 4)\right)\right)\right)\right)+((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1)) *((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-$ $1)+1) / 2-((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-2)) *((\mathrm{a} / 2-2) / 2-(\mathrm{a} / 2-2) / \ln (\mathrm{a} / 2-2)+1) / 2+\mathrm{a} / \ln (\mathrm{a})-\mathrm{a} / 4$

Conclusions:
If $\{1$ is also a prime number $\}$ is true, then any even number greater than 0 can be written as the sum of two prime numbers.
If $\{1$ is also a prime number $\}$ is true, then any even number greater than 2 can be written as the sum of two different prime numbers.
If $\{1$ is also a prime number $\}$ is false, then any even number greater than 5 can be written as the sum of two different prime numbers.

Key words: Goldbach; Euler.

1 Structure

1.1 Concept

Set of natural numbers is denoted as $\mathrm{N}, \mathrm{N}=\{\mathrm{n}\}$.
If one variable belongs to N , then it is denoted as n .
If two variables belong to N , then they are denoted as n 1 and n 2 .
Set of even numbers is denoted as $A, A=\{a \mid a=2 * n\}$.
If one variable belongs to A , then it is denoted as a.
If two variables belong to A , then are denoted as a1 and a2.

Set of odd numbers is denoted as $\mathrm{B}, \mathrm{B}=\{\mathrm{b} \mid \mathrm{b}=2 * \mathrm{n}+1\}$.
If one variable belongs to B, then it is denoted as b.
If two variables belong to B , then they are denoted as b 1 and b 2 .
Set of odd composite numbers is denoted as C
$\mathrm{C}=\{\mathrm{c} \mid \mathrm{c}=(2 * \mathrm{n} 1+1) *(2 * \mathrm{n} 2+1), \mathrm{n} 1$ is not 0 and n 2 is not 0.$\}$
If one variable belongs to C , then it is denoted as c .
If two variables belong to C , then they are denoted as c 1 and c 2 .
Set of prime numbers is denoted as D
$D=\{d \mid d$ belongs to B and d does not belong to $C\}$
If one variable belongs to D, then it is denoted as d.
If two variables belong to D , then they are denoted as d 1 and d 2 .
1.2 N (a)
$\mathrm{a}=\mathrm{a} / 2+\mathrm{a} / 2, \mathrm{a}>0$.
If $\mathrm{a} / 2$ belongs to A , then $\mathrm{a}=[(\mathrm{a} / 2-1)-2 \mathrm{n})]+[(\mathrm{a} / 2+1)+2 \mathrm{n}]$
$\mathrm{n}<(\mathrm{a}-2) / 4, \operatorname{Card}(\mathrm{n})=\mathrm{a} / 4$.
$(\mathrm{a} / 2+1)-2 \mathrm{n}$ is denoted as $\mathrm{bL},(\mathrm{a} / 2+1)+2 \mathrm{n}$ is denoted as bR .

If $\mathrm{a} / 2$ belongs to B , then $\mathrm{a}=(\mathrm{a} / 2-2 \mathrm{n})+(\mathrm{a} / 2+2 \mathrm{n})$
$\mathrm{n}<\mathrm{a} / 4, \operatorname{Card}(\mathrm{n})=(\mathrm{a}+2) / 4$.
$a / 2-2 n$ is denoted as $b L, a / 2+2 n=b 2$ is denoted as $b R$.
$\operatorname{Card}(\mathrm{n})$ is one function of a , it is denoted as $\mathrm{N}(\mathrm{a})$.

$1.3 \mathrm{e}=\mathrm{bR}-\mathrm{bL}$

Set one increasing positive even sequence, it corresponds to $\{\mathrm{a} \mid \mathrm{a}>0\}$.

Set e on the same side of it incrementally.

Triangular lattice

Any cell corresponds to (a, e) and (bL, bR)

1.4 Analysis

If f belongs to A , then $\{(\mathrm{a}, \mathrm{e}) \mid \mathrm{a}=\mathrm{f}\}$ is denoted as $\{\mathrm{L}=\mathrm{f}\}$.

If g belongs to B, then $G=\{(b L, b R) \mid b L=g$ or $b R=g\}$ is denoted as $\{R=g\}$.
e is one function of a when g is invariable, any odd composite number in $(0, \mathrm{a})$ corresponds to one cell in $\{\mathrm{L}=\mathrm{a}\}$. Equation is $\mathrm{e}=(\mathrm{a}-\mathrm{g})-\mathrm{g} \mid, \mathrm{a}>\mathrm{g}$.
$\mathrm{e}=|(\mathrm{a}-1)-1|, \mathrm{a}>1$.

$1.5 \mathrm{U}(\mathrm{a})-\mathrm{T}(\mathrm{a})=\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})$
If bL or bR belongs to C , then color the cell.

If bL and bR belong to C , then color it black.

The number of prime numbers in $(0, a]$ is denoted as $I(a), I(a) \sim a / \ln (a)$.
The number of odd composite numbers in $(0, a]$ is denoted as $S(a), S(a) \sim a / 2-a / \ln (a)$. The number of black cells in $\{\mathrm{L}=a\}$ is denoted as $\mathrm{U}(\mathrm{a})$, the number of colored non black cells in $\{\mathrm{L}=\mathrm{a}\}$ is denoted as $\mathrm{V}(\mathrm{a})$.
The number of colorless cells in $\{\mathrm{L}=\mathrm{a}\}$ is denoted as $\mathrm{T}(\mathrm{a})$
Objective is denoted as $\{\operatorname{Any} \mathrm{T}(\mathrm{a})>0, \mathrm{a}>0$.
$\mathrm{V}(\mathrm{a})+\mathrm{T}(\mathrm{a})+\mathrm{U}(\mathrm{a})=\mathrm{N}(\mathrm{a}), \mathrm{V}(\mathrm{a})=\mathrm{S}(\mathrm{a})-2 * \mathrm{U}(\mathrm{a})$.
2 Prove
$\mathrm{W}=\{(\mathrm{bL}, \mathrm{bR}) \mid \mathrm{bL}$ belongs to $(0, \mathrm{a} / 2]$, bR belongs to $[\mathrm{a} / 2, \mathrm{a})$.
$\operatorname{Card}(b L, b R)$ is denoted as $W(a), W(a)=N(a)^{\wedge} 2$.

If bL and bR belong to C , then the cell is denoted as (cL, cR).
$\mathrm{X}=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ and cR belong to $(0, \mathrm{a} / 2-1]$.$\} ;$
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{X}(\mathrm{a}), \mathrm{X}(\mathrm{a})=\mathrm{S}(\mathrm{a} / 2-1) *(\mathrm{~S}(\mathrm{a} / 2-1)+1) / 2$.
$\mathrm{Y}=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(0, \mathrm{a} / 2]$ and cR belongs to $[\mathrm{a} / 2, \mathrm{a}-1]$.$\} ;$
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{Y}(\mathrm{a}), \mathrm{Y}(\mathrm{a})=\mathrm{S}(\mathrm{a} / 2)^{*}(\mathrm{~S}(\mathrm{a}-1)-\mathrm{S}(\mathrm{a} / 2-1))$.
$\mathrm{Z}=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ and cR belong to $\mathrm{Y}, \mathrm{bL}+\mathrm{bR}$ belongs to $(0, \mathrm{a}]$.$\} ;$
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{Z}(\mathrm{a}), \mathrm{Z}(\mathrm{a})=\mathrm{H}(\mathrm{a}) * \mathrm{Y}(\mathrm{a})$.

$2.1 \mathrm{H}(\mathrm{a}) \sim \mathrm{H}(\mathrm{a}-2)$

Maximum error is denoted as $\operatorname{Or}(a), \operatorname{Or}(a) \sim 0$ when $a>a 0$.
$\mathrm{M}=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}+\mathrm{cR}$ belongs to $(0, \mathrm{a}]\}, \operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{M}(\mathrm{a})$.
$\mathrm{M}(\mathrm{a})=\mathrm{X}(\mathrm{a})+\mathrm{Y}(\mathrm{a}), \mathrm{U}(\mathrm{a})=\mathrm{M}(\mathrm{a})-\mathrm{M}(\mathrm{a}-2)$.
Let $\mathrm{U}(\mathrm{a})=\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a}), \mathrm{H}(\mathrm{a}) \sim(\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})-\mathrm{X}(\mathrm{a})+\mathrm{X}(\mathrm{a}-2)) /(\mathrm{Y}(\mathrm{a})-\mathrm{Y}(\mathrm{a}-2))$.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{a} / 4-\mathrm{a} / \ln (\mathrm{a})-((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1)) *((\mathrm{a} / 2-1) / 2-(\mathrm{a} / 2-1) / \ln (\mathrm{a} / 2-1)+1) / 2+((\mathrm{a} / 2-$
2)/2-(a/2-2)/ln(a/2-2))*((a/2-2)/2-(a/2-2)/ln(a/2-2)+1)/2)/(((a/2)/2-(a/2)/ln(a/2))*(((a-
1)/2-(a-1)/ln(a-1))-((a/2-1)/2-(a/2-1)/ln(a/2-1)))-((a/2-1)/2-(a/2-1)/ln(a/2-1))*(((a-3)/2-1.20)
(a-3)/ln(a-3))-((a/2-2)/2-(a/2-2)/ln(a/2-2))))
Let $\mathrm{U}(\mathrm{a})=\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})+1, \mathrm{H}(\mathrm{a}) \sim(\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})+1-\mathrm{X}(\mathrm{a})+\mathrm{X}(\mathrm{a}-2)) /(\mathrm{Y}(\mathrm{a})-\mathrm{Y}(\mathrm{a}-2))$.
Let $\mathrm{U}(\mathrm{a})=\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})+2, \mathrm{H}(\mathrm{a}) \sim(\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})+2-\mathrm{X}(\mathrm{a})+\mathrm{X}(\mathrm{a}-2)) /(\mathrm{Y}(\mathrm{a})-\mathrm{Y}(\mathrm{a}-2))$.
2.2 H(a) $\sim J(a) /(J(a)+K(a))$

Maximum error is denoted as $\mathrm{Oe}(\mathrm{a}), \mathrm{Oe}(\mathrm{a}) \sim(\mathrm{W}(\mathrm{a})-(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a}))) / \mathrm{W}(\mathrm{a}) \sim 1 / 2$.
$\mathrm{J}=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(0, \mathrm{a} / 4]$ and cR belongs to $(\mathrm{a} / 2,3 * \mathrm{a} / 4]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{J}(\mathrm{a}), \mathrm{J}(\mathrm{a})=\mathrm{S}(\mathrm{a} / 4) *(\mathrm{~S}(3 * \mathrm{a} / 4)-\mathrm{S}(\mathrm{a} / 2))$.
$\mathrm{K}=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to (a/4, $\mathrm{a} / 2]$ and cR belongs to ($3 * \mathrm{a} / 4, \mathrm{a}]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{K}(\mathrm{a}), \mathrm{K}(\mathrm{a})=(\mathrm{S}(\mathrm{a} / 2)-\mathrm{S}(\mathrm{a} / 4))^{*}\left(\mathrm{~S}(\mathrm{a})-\mathrm{S}\left(3^{*} \mathrm{a} / 4\right)\right)$.
$\mathrm{J}(\mathrm{a}) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})) \sim(((\mathrm{a} / 4) / 2-(\mathrm{a} / 4) / \ln (\mathrm{a} / 4)) *(((3 * \mathrm{a} / 4) / 2-(3 * \mathrm{a} / 4) / \ln (3 * \mathrm{a} / 4))-((\mathrm{a} / 2) / 2-$

$(\mathrm{a} / 2) / \ln (\mathrm{a} / 2))))+(((\mathrm{a} / 2) / 2-(\mathrm{a} / 2) / \ln (\mathrm{a} / 2))-((\mathrm{a} / 4) / 2-(\mathrm{a} / 4) / \ln (\mathrm{a} / 4))) *((\mathrm{a} / 2-\mathrm{a} / \ln (\mathrm{a}))-$
$((3 * \mathrm{a} / 4) / 2-(3 * \mathrm{a} / 4) / \ln (3 * \mathrm{a} / 4)))))$
2.3 $\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\mathrm{p} 2) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\mathrm{p} 2+\mathrm{q} 1+\mathrm{q} 2)$

Maximum error is denoted as O2(a), O2(a)~1/4.
$\mathrm{P} 1=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(0, \mathrm{a} / 8]$ and cR belongs to $(3 * \mathrm{a} / 4,7 * \mathrm{a} / 8]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{p} 1, \mathrm{p} 1=\mathrm{S}(\mathrm{a} / 8) *(\mathrm{~S}(7 * \mathrm{a} / 8)-\mathrm{S}(3 * \mathrm{a} / 4))$.
$\mathrm{P} 2=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(\mathrm{a} / 4,3 * \mathrm{a} / 8]$ and cR belongs to $(\mathrm{a} / 2,5 * \mathrm{a} / 8]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{p} 2, \mathrm{p} 2=(\mathrm{S}(3 * \mathrm{a} / 8)-\mathrm{S}(\mathrm{a} / 4)) *(\mathrm{~S}(5 * \mathrm{a} / 8)-\mathrm{S}(\mathrm{a} / 2))$.
$\mathrm{Q} 1=\left\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}\right.$ belongs to $(\mathrm{a} / 8, \mathrm{a} / 4]$ and cR belongs to $\left.\left(7^{*} \mathrm{a} / 8, \mathrm{a}\right]\right\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{q} 1, \mathrm{q} 1=(\mathrm{S}(\mathrm{a} / 4)-\mathrm{S}(\mathrm{a} / 8))^{*}(\mathrm{~S}(\mathrm{a})-\mathrm{S}(7 * \mathrm{a} / 8))$.
$\mathrm{Q} 2=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(3 * \mathrm{a} / 8, \mathrm{a} / 2]$ and cR belongs to $(5 * \mathrm{a} / 8,3 * \mathrm{a} / 4]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as q 2 , $\mathrm{q} 2=(\mathrm{S}(\mathrm{a} / 2)-\mathrm{S}(3 * \mathrm{a} / 8))^{*}(\mathrm{~S}(3 * \mathrm{a} / 4)-\mathrm{S}(5 * \mathrm{a} / 8))$.
$2.4 \mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 6) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 6+\mathrm{q} 1+\ldots+\mathrm{q} 6)$
Maximum error is denoted as O6(a), O6(a)~1/8.
$\mathrm{P} 3=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(0, \mathrm{a} / 16]$ and cR belongs to $(7 * \mathrm{a} / 8,15 * \mathrm{a} / 16]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{p} 3, \mathrm{p} 3=\mathrm{S}(\mathrm{a} / 16) *(\mathrm{~S}(15 * \mathrm{a} / 16)-\mathrm{S}(7 * \mathrm{a} / 8))$.
$\mathrm{P} 4=\left\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}\right.$ belongs to $(\mathrm{a} / 8,3 * \mathrm{a} / 16]$ and cR belongs to $\left.\left(3 * \mathrm{a} / 4,13^{*} \mathrm{a} / 16\right]\right\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{p} 4, \mathrm{p} 4=(\mathrm{S}(3 * \mathrm{a} / 16)-\mathrm{S}(\mathrm{a} / 8))^{*}(\mathrm{~S}(13 * \mathrm{a} / 16)-\mathrm{S}(3 * \mathrm{a} / 4))$.
$\mathrm{P} 5=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(\mathrm{a} / 4,5 * \mathrm{a} / 16]$ and cR belongs to $(5 * \mathrm{a} / 8,11 * \mathrm{a} / 16]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{p} 5, \mathrm{p} 5=\left(\mathrm{S}\left(5^{*} \mathrm{a} / 16\right)-\mathrm{S}(\mathrm{a} / 4)\right)^{*}\left(\mathrm{~S}\left(11^{*} \mathrm{a} / 16\right)-\mathrm{S}\left(5^{*} \mathrm{a} / 8\right)\right)$.
$\mathrm{P} 6=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(3 * \mathrm{a} / 8,7 * \mathrm{a} / 16]$ and cR belongs to $(\mathrm{a} / 2,9 * \mathrm{a} / 16]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{p} 6, \mathrm{p} 6=(\mathrm{S}(7 * \mathrm{a} / 16)-\mathrm{S}(3 * \mathrm{a} / 8))^{*}(\mathrm{~S}(9 * \mathrm{a} / 16)-\mathrm{S}(\mathrm{a} / 2))$.
$\mathrm{Q} 3=\left\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}\right.$ belongs to $(\mathrm{a} / 16, \mathrm{a} / 8]$ and cR belongs to $\left.\left(15^{*} \mathrm{a} / 16, \mathrm{a}\right]\right\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{q} 3, \mathrm{q} 3=(\mathrm{S}(\mathrm{a} / 8)-\mathrm{S}(\mathrm{a} / 16))^{*}(\mathrm{~S}(\mathrm{a})-\mathrm{S}(15 * \mathrm{a} / 16))$.
$\mathrm{Q} 4=\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}$ belongs to $(3 * \mathrm{a} / 16, \mathrm{a} / 4]$ and cR belongs to $(13 * \mathrm{a} / 16,7 * \mathrm{a} / 8]\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{q} 4, \mathrm{q} 4=(\mathrm{S}(\mathrm{a} / 4)-\mathrm{S}(3 * \mathrm{a} / 16))^{*}\left(\mathrm{~S}(7 * \mathrm{a} / 8)-\mathrm{S}\left(13^{*} \mathrm{a} / 16\right)\right)$.
$\mathrm{Q} 5=\left\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}\right.$ belongs to $(5 * \mathrm{a} / 16,3 * \mathrm{a} / 8]$ and cR belongs to $\left.\left(11^{*} \mathrm{a} / 16,3^{*} \mathrm{a} / 4\right]\right\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{q} 5, \mathrm{q} 5=(\mathrm{S}(3 * \mathrm{a} / 8)-\mathrm{S}(5 * \mathrm{a} / 16))^{*}(\mathrm{~S}(3 * \mathrm{a} / 4)-\mathrm{S}(11 * \mathrm{a} / 16))$.
$\mathrm{Q} 6=\left\{(\mathrm{cL}, \mathrm{cR}) \mid \mathrm{cL}\right.$ belongs to $(7 * * \mathrm{a} / 16, \mathrm{a} / 2]$ and cR belongs to $\left.\left(9 * \mathrm{a} / 16,5^{*} \mathrm{a} / 8\right]\right\}$;
$\operatorname{Card}(\mathrm{cL}, \mathrm{cR})$ is denoted as $\mathrm{q} 6, \mathrm{q} 6=\left(\mathrm{S}(\mathrm{a} / 2)-\mathrm{S}\left(7^{*} \mathrm{a} / 16\right)\right)^{*}\left(\mathrm{~S}\left(5^{*} \mathrm{a} / 8\right)-\mathrm{S}\left(9^{*} \mathrm{a} / 16\right)\right)$.
2.5 O126(a) $<1 / 64$ when $\mathrm{a}>\mathrm{a} 0$
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 14) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 14+\mathrm{q} 1+\ldots+\mathrm{q} 14)$
Maximum error is denoted as O14(a), O14(a)~1/16.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 30) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 30+\mathrm{q} 1+\ldots+\mathrm{q} 30)$
Maximum error is denoted as O30(a), O30(a)~1/32.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 62) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 62+\mathrm{q} 1+\ldots+\mathrm{q} 62)$
Maximum error is denoted as O62(a), O62(a)~1/64.
$\mathrm{H}(\mathrm{a}) \sim(\mathrm{J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 126) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 126+\mathrm{q} 1+\ldots+\mathrm{q} 126)$
Maximum error is denoted as O126(a), O126(a)<1/64 when $a>a 0$.

2.6 Conclusions

$\mathrm{S}(\mathrm{a})=\mathrm{Ch} *(\mathrm{a} / 2-\mathrm{a} / \ln (\mathrm{a})), \mathrm{Ch} \sim 1$ when $\mathrm{a}>\mathrm{a} 0$.
Error of $\mathrm{S}(\mathrm{a}) \sim \mathrm{a} / 2-\mathrm{a} / \ln (\mathrm{a})$ is denoted as $\mathrm{O}(\mathrm{a}), \mathrm{O}(\mathrm{a}) \sim 0$ when $\mathrm{a}>\mathrm{a} 0$.
When $\mathrm{a}>\mathrm{a} 1,(\mathrm{~J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 126) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 126+\mathrm{q} 1+\ldots+\mathrm{q} 126)-(\mathrm{S}(\mathrm{a})-\mathrm{N}(\mathrm{a})-$ $X(a)+X(a-2)) /(Y(a)-Y(a-2))>1 / 64$.
And endorse when a belongs to ($0, \mathrm{a} 1$]
Conclusion: If $\{1$ is also a prime number $\}$ is true, then any even number greater than 0 can be written as the sum of two prime numbers.

When $\mathrm{a}>\mathrm{a} 2,(\mathrm{~J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 126) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 126+\mathrm{q} 1+\ldots+\mathrm{q} 126)-(\mathrm{S}(\mathrm{a})-$ $\mathrm{N}(\mathrm{a})+1-\mathrm{X}(\mathrm{a})+\mathrm{X}(\mathrm{a}-2)) /(\mathrm{Y}(\mathrm{a})-\mathrm{Y}(\mathrm{a}-2))>1 / 64$.
And endorse when a belongs to (2, a2]
Conclusion: If $\{1$ is also a prime number $\}$ is true, then any even number greater than 2 can be written as the sum of two different prime numbers.

When $\mathrm{a}>\mathrm{a} 3,(\mathrm{~J}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 126) /(\mathrm{J}(\mathrm{a})+\mathrm{K}(\mathrm{a})+\mathrm{p} 1+\ldots+\mathrm{p} 126+\mathrm{q} 1+\ldots+\mathrm{q} 126)-(\mathrm{S}(\mathrm{a})-$ $\mathrm{N}(\mathrm{a})+2-\mathrm{X}(\mathrm{a})+\mathrm{X}(\mathrm{a}-2)) /(\mathrm{Y}(\mathrm{a})-\mathrm{Y}(\mathrm{a}-2))>1 / 64$.
And endorse when a belongs to (5, a2]
Conclusion: If $\{1$ is also a prime number $\}$ is false, then any even number greater than 5 can be written as the sum of two different prime numbers.

```
2.7 T(a)
J(a)/(J(a)+K(a))~(J(a)+P(a))/(J(a)+K(a)+P(a)+Q(a))
T(a)~(Y(a)-Y(a-2))*J(a)/(J(a)+K(a))+X(a)-X(a-2)-S(a)+N(a)
T(a)~(((a/2)/2-(a/2)/ln(a/2))*(((a-1)/2-(a-1)/ln(a-1))-((a/2-1)/2-(a/2-1)/ln(a/2-1)))-
((a/2-1)/2-(a/2-1)/ln(a/2-1))*(((a-3)/2-(a-3)/ln(a-3))-((a/2-2)/2-(a/2-2)/ln(a/2-
2))))*(((a/4)/2-(a/4)/ln}(\textrm{a}/4))*(((3*\textrm{a}/4)/2-(3*\textrm{a}/4)/\operatorname{ln}(3*\textrm{a}/4))-((\textrm{a}/2)/2
(a/2)/ln(a/2))))/((((a/4)/2-(a/4)/ln(a/4))*(((3*a/4)/2-(3*a/4)/ln(3*\textrm{a}/4))-((a/2)/2-
(a/2)/ln(a/2))))+((((a/2)/2-(a/2)/ln(a/2))-((a/4)/2-(a/4)/ln(a/4)))*((a/2-a/ln(a))-
((3*a/4)/2-(3*a/4)/ln(3*a/4)))))+((a/2-1)/2-(a/2-1)/lnn(a/2-1))*((a/2-1)/2-(a/2-1)/ln(a/2-
1)+1)/2-((a/2-2)/2-(a/2-2)/ln(a/2-2))*((a/2-2)/2-(a/2-2)/ln(a/2-2)+1)/2+a/ln(a)-a/4
```

