The ∞-manifolds
The ∞-bundles

Antoine Balan
December 28, 2020

Abstract
We introduce the ∞-manifolds and the ∞-bundles which are spaces of
dimension the cardinality of the continuum.

1 The classical tensor calculus
For a differential manifold M [B][K], it is possible to make a tensor calculus
[A][BC][S] with tensor products of the tangent and cotangent spaces. We
tensorize the spaces and introduce local coordinates (x_i). A tensor is then
an expression like:

\[R_{ijkl} \]

It is possible to transform the tensor under coordinates changes \tilde{x}_j by the
matrix:

\[\frac{\partial \tilde{x}_i}{\partial x_j} \]

We obtain new expressions, for example:

\[\tilde{A}^i = \sum_j A^j \frac{\partial \tilde{x}_i}{\partial x_j} \]

2 The ∞-manifolds
It is possible to make a tensor calculus when the index of the tensor is
continuous instead of being discreet. For example, is \tilde{x}^t are the local
coordinates: the tensor \tilde{A}^i transforms under the change of coordinates
\tilde{x}'^t, according to:

\[\tilde{A}^i = \int_{-\infty}^{+\infty} A^t (\frac{\partial \tilde{x}^t}{\partial x'^t}) dt' \]

We have the coherence rule for the change of coordinates:

\[\int_{-\infty}^{+\infty} (\frac{\partial x'^t}{\partial x''^t})(\frac{\partial \tilde{x}'^t}{\partial x''^t}) dt' = \delta(t - t'') \]
With δ, the Dirac function. If $\tilde{x}' = x'$, we obtain the equation:

$$\int_{-\infty}^{+\infty} \delta(t - t')\delta(t' - t'') dt' = \delta(t - t'')$$

The basic space is the Fréchet space of Schwartz functions [M] (smooth real functions with polynomial decreasing at infinity of the functions and all their derivatives). So that we have:

$$x'(f) = f(t) = \delta(t)(f)$$

The functions over this space are functionals over the smooth Schwartz functions. A functional F is derivable if the following limit exists:

$$\lim_{\epsilon \to 0} \frac{F(g + \epsilon h) - F(g)}{\epsilon} = dF_g(h)$$

and if the differential is a distribution over the Schwartz space. The functional F is smooth if we can infinitely iterate the differentials. The derivations are identified with the Schwartz functions and we have:

$$X F(g) = dF_g(X)$$

The differential of a functional is:

$$dF = \int_{-\infty}^{+\infty} \frac{\partial F}{\partial x'} dx' dt$$

We have, under a change of coordinates:

$$\frac{\partial F}{\partial x'} = \int_{-\infty}^{+\infty} \left(\frac{\partial F}{\partial x'} \right) \left(\frac{\partial x'}{\partial \tilde{x}} \right) dt'$$

The metric g is a 2-tensor such that:

$$g(X, Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g_{t't'} X' Y' dt' dt$$

The metric is a riemannian metric [J] if the quadratic form is definite positiv. The inverse of the metric $g_{t't'}$ is $g^{t't'}$ such that:

$$\int_{-\infty}^{+\infty} g_{t't'} g^{t't'} dt' = \delta(t - t'')$$

Definition:

The manifolds which are modeled over the Schwartz space are called the ∞-manifolds.
3 The ∞-bundles

Definition:
The ∞-bundles over an ∞-manifold M are projectiv modules over the ring of smooth functionals of M.

The connections over an ∞-bundle are defined by the fact that they are linear and the Leibniz condition:

$$\nabla_X(F.s) = X(F.s) + F.\nabla_X(s)$$

with F a smooth functional over M, and s an element of the ∞-bundle. The Levi-Civita connection can be defined by the condition of zero torsion and that it conserves the riemannian metric.

References

