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Abstract

A shortened English version of new concepts appeared this year in three French papers
about cycles in Generalized Collatz Sequences (GCS) and few new developments.

• Reduced and Compact Subseqs

• Shape Vector as Subseq Rank ρ

• Monoid of Transition Functions ω between elements of compact sequences

• Triplet Operator 〈a, b, c〉 as powerful tool to compose linear functions

• Diophantine Equation pmx− rdy− q = 0 related to each monoid element

• Shape Class as general solution of the diophantine equation

• Cyclic Solution Requirement

• Universal Rotation Function R on q parameters

• Parallel Rotation Function V on ρ ranks

• Cardinality of Equation Classes

• Cycle Layers

• Layer’s Level

• Cycle Barycenter

• Explicit Role of δ in Cyclic Process

• Numerical Cycle Occurence Probability
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Sequences and Subseqs

Definition 1. Let F, G and H be functions. By convention, an FGH chain is assimilated to the
compound H ◦ G ◦ F. Thus FGH(x) = H(G(F(x))).

Definition 2. Let p and r be relatively prime integers where p > r > 1. The reduced form of a
Generalized Collatz Sequence is a sequence of integers where the successor to x is

D(x) = x/r if x mod r = 0
T(x) = bpx/rc otherwise (1)

and the full form is

D(x) = x/r if x mod r = 0
C(x) = rbpx/rc otherwise

The C and T functions combine r− 1 simple functions Ci and Ti where 0 < i < r.

C1(x) = px− 1 T1(x) = (px− 1)/r
C2(x) = px− 2 T2(x) = (px− 2)/r

... ...
Cr−1(x) = px− r + 1 Tr−1(x) = (px− r + 1)/r

Definition 3. A Generalized Collatz subsequence, or "subseq", is a finite part of a Generalized
Collatz Sequence that begins and ends with a non multiple of r. It comes in three varieties:

• full subseq if extracted from a full sequence (C et D)

• reduced subseq if extracted from a reduced sequence (T et D)

• compact subseq if it does not include multiples of r.

Definition 4. The shape vector of a subseq is the sequence of numbers that corresponds to the
chain of functions between the first and the last term of the equivalent reduced subseq, as per

D −→ 0
Ti −→ i (0 < i < r) (2)

Definition 5. The shape class of a subseq is the set of all subseqs having the same shape vector.

Functions Ti and D are followed by any function. So any number in a shape vector
is allowed. This means that shape classes can be numbered by setting the rank ρ in the r
base to the class shape vector.
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Definition 6. Let Ω be the set of transition functions ω between elements of compact subseq. This
together with the composition law ◦ of functions and the identity I define the free monoid (Ω, ◦, I)
whose basis is

{βqd} =
{

TqDd
}

(0 < q < r) (d ≥ 0) (3)

and the set of functions ω is

Ω =

{
m

∏
i=1

βqidi

}
(m > 0) (4)

The sequences (qi)m and (di)m determine a distinct ω function:

ω = βq1d1 βq2d2 ... βqmdm

= Tq1 Dd1 Tq2 Dd2 ... Tqm Ddm (5)

Let X = (x1 x2 ... xm+1) be a compact subseq. A qi0di represents a base element shape
vector where an isolated qi (not followed by 0) is written as qi00.

q10d1 .... q20d2 .............. qm0dm .....
x1 7−→ x2 7−→ x3 · · · xm 7−→ xm+1

xm+1 = ω(x1)

The rank ρ in r base of an ω function is the shape vector produced by concatenation of
successive qi0di but where 00 is not written.

ρ = q10d1 q20d2 ... qm0dm (6)

Composition of Functions

Triplet Operator

To any function of the form f (x) = (ax + c)/b we can associate the triplet 〈a, b, c〉 as an
operator 〈 f 〉 equivalent to f :

〈 f 〉 (x) = 〈a, b, c〉 (x) = f (x)

This implies the following composition law

〈a1, b1, c1〉 〈a2, b2, c2〉 = 〈a1a2, b1b2, b1c2 + c1a2〉 (7)

the neutral element 〈1, 1, 0〉, the inverse 〈a, b, c〉−1 = 〈b, a,−c〉 and 〈ka, kb, kc〉 = 〈a, b, c〉 .
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In the monoid there will be no inverse. Only descending functions are composed but
all their inverse form the monoid of the rising functions. The triplets of the elementary
functions are

〈D〉 = 〈1, r, 0〉 〈Ci〉 = 〈p, 1,−i〉 〈Ti〉 = 〈p, r,−i〉

and those of the base elements are〈
βqidi

〉
=
〈

p, rdi+1,−qi

〉
To improve the notations in arrays let put〈

βqidi

〉
= 〈p, ri,−qi〉 where (8)

ri = rdi+1 (9)

The only formula needed to compose the functions of a chain as a block is

n

∏
i=1
〈ai, bi, ci〉 = 〈a, b, c〉

a = a1 a2 a3 a4 · · · an

b = b1 b2 b3 b4 · · · bn

c =

+ c1 a2 a3 a4 · · · an
+ b1 c2 a3 a4 · · · an
+ b1 b2 c3 a4 · · · an
+ b1 b2 b3 c4 · · · an

...
. . .

...
+ b1 b2 b3 b4 · · · cn

(10)

Diophantine Equation

With 〈p, ri,−qi〉 the formula gives us 〈ω〉 where the number of divisions d = m + ∑ di

〈ω〉 =
m

∏
i=1
〈p, ri,−qi〉 =

〈
pm, rd,−q

〉

q =

+ q1 p p p · · · p
+ r1 q2 p p · · · p
+ r1 r2 q3 p · · · p
+ r1 r2 r3 q4 · · · p

...
. . .

...
+ r1 r2 r3 r4 · · · qm

(11)
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and the corresponding diophantine equation

pmx− rdy− q = 0 (12)

whose q parameter can be written in a concise way

q =
m

∑
i=1

qi pm−irσi (13)

by posing σi =
i

∑
k=1

(1 + dk−1) where d0 = −1 (14)

The (di)m sequence is thus replaced by the (σi)m sequence. For example:

(di)5 = (2 3 0 2 1) → (di + 1)5 = (3 4 1 3 2) → (σi)5 = (0 3 7 8 11)

q = q1 p4 + q2 p3r3 + q3 p2r7 + q4 pr8 + q5r11

General Solution of the equation

There’s necessarily a solution as p and r are relatively prime. In the general solution
(rdk + x0, pmk + y0) where k is a relative integer we obtain (pmk + y0) mod r = 0 at the
frequency of once on r. These k values will not be used because y cannot be multiple of r.

By solving Bezout’s equation

pmu + rdv = 1

we have a minimal solution y0 = −qv mod pm which can be a multiple of r. In this case,
we should take the minimum value y0 of opposite sign by decreasing or adding pm. We
then derive x0 from the equation and calculate the k0 value of the test k mod r = k0 to
eliminate the non-permitted k.

n ρ 〈ω〉 bk + x ak + y full compact
..
54 2000 〈4, 81,−2〉 81k− 40, 4k− 2 (-40 -162 -54 -18 -6 -2) (-40 -2)
55 2001 〈16, 81,−35〉 81k + 68 16k + 13 (68 270 90 30 10 39 13) (68 10 13)
56 2002 〈16, 81,−62〉 81k− 67 16k− 14 (-67 -270 -90 -30 -10 -42 -14) (-67 -10 -14)
57 2010 〈16, 81,−17〉 81k− 4 16k− 1 (-4 -18 -6 -2 -9 -3 -1) (-4 -2 -1)
58 2011 〈64, 81,−95〉 81k + 23 64k + 17 (23 90 30 10 39 13 51 17) (23 10 13 17)
59 2012 〈64, 81,−122〉 81k + 50 64k + 38 (50 198 66 22 87 29 114 38) (50 22 29 38)
60 2020 〈16, 81,−26〉 81k− 49 16k− 10 (-49 -198 -66 -22 -90 -30 -10) (-49 -22 -10)
..
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Cyclic Solution

The cyclic solution x = y is however quite simple:

x = q/(pm − rd) (15)

and the requirement for a numerical cycle as well:

q mod δ = 0 where δ = pm − rd (16)

In a numerical cycle the numbers rotate and so do the functions. The question is, can
there be a function rotation cycle when the divisibility requirement by δ does not allow a
numerical cycle? The answer is yes and the implications are substantial.

Universal Cycles and Derived Cycles

We need to reverse the idea that functional cyclicity derives from numerical cyclicity. In
the algebraic elucidation all is ordered and numbered. All is regulated except the δ|q
possibility. All q belong to a cycle (qi)m resulting from rotation of i in the 〈p, ri,−qi〉
components. It also corresponds to rotation of i in the TiDi of shape vectors and thus
implies (ρi)m rank cycles.

Rotational cyclicity is a universal algebraic property. It is occasionally reflected in a
derived numerical cycle when q/δ is an integer.

The mod* notation

It’s a kind of modulo in multiplicative context. As well as x = rk + q where q < r implies
q = x mod r as the rest of the division, similarly x = rkq where q is not multiple of r
implies q = x mod* r as a non-multiple residue of r. Used to stylishly define functions like
cyclical R, where mod* r replace an inappropriate r−vr(pq−(pq mod r)δ) expression.

The N function to rotate (xi)m

The usual N function can be defined as N(x) = T(x)mod* r. The function N is not cyclic
in itself, but may have a cyclic behavior Nm(x) = x when x is an integer q/δ. Then the
function N rotates the xi in the numerical cycle (xi)m.

The R function to rotate (qi)m

The general rotation function to rotate qi values contains the parameter δ which changes
with count m of multiplications and count d of divisions. It’s explicitly stated

R(q) = (pq− (pq mod r)δ)mod* r (17)
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This can result in the following lines of Pascal code

q := (p ∗ q− ((p ∗ q) mod r) ∗ delta) div r;
while (q mod r) = 0 do q := q div r;

being used with the example 64x− 81y− q = 0 where exist eight cycles R3(q) = q.

( 37 55 79 ) ( 46 67 95 ) ( 58 83 122 ) ( 74 110 158 )
( 49 71 106 ) ( 53 82 115 ) ( 62 94 131 ) ( 65 98 142 )

The V function to rotate (ρi)m

The shape vectors related to the q-values in the previous eight cycles are as follows:

( 1110 1101 1011 ) ( 1120 1201 2011 ) ( 1220 2201 2012 ) ( 2220 2202 2022 )
( 1210 2101 1012 ) ( 2110 1102 1021 ) ( 2120 1202 2021 ) ( 2210 2102 1022 )

The cyclic function V outlined by Vm(ρ) = ρ is easily expressed in Pascal code by

repeat
v := Concat (v, v[1]);
Delete (v, 1, 1)

until v[1] <> ’0’;

Equation Classes Cardinality

There is no limit to the amount of equations having the same m number of multiplications
because there is no upper limit to the number of divisions.

Definition 7. Let’s write Kd[n] the class of equations having the same number n of divisions.

Definition 8. Let’s write Kdm[d, m] the subclasses of Kd[d] having m multiplications.

The geometrical representation of Kdm[d, m] classes as a network enables cardinality
calculation easy:

card Kd[d] = (r− 1)rd (18)

card Kdm[d, m] =

(
d− 1
m− 1

)
(r− 1)m (19)

In the following figure each circle represents a Kdm[d, m] class at abcissa d and ordinate m.
Each circle contains card Kdm[d, m] with a number n = r − 1. Diagonal lines represent Ti
and horizontal lines represent D. How to get these amounts? The problem is as simple as
how many possible numbers in base r with m non-zero digits and d−m zeros?
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Figure 1: Amount of equations in Kdm classes with n = r− 1.

Subseqs of equal length

How many full subseqs of length L having distinct shape vector? Simply add the amounts
in the diagonals where d + m = L− 1.

n, n, n(n + 1), n(2n + 1), n(n2 + 3n + 1)...
r− 1, r− 1, r(r− 1), (2r− 1)(r− 1), (r2 + r− 1)(r− 1)...

It seems complex but dividing by n = r− 1 we get the following (uk) sequences

u0 = 0, u1 = 1
uk = uk−1 + nuk−2 (20)

These are Lucas sequences Uk(P, Q) where P = 1 and Q = 1− r including sequences of
Fibonacci for r = 2 and Jacobsthal for r = 3.

Linking of Cycles

Let q = Q(ρ) be the q parameter in the equation of rank ρ. Adding D at the end of a chain
or ’0’ at the end of a shape vector ρ does not change q.

Q(rk × ρ) = Q(ρ) (21)

8



Thus all q-values in a Kdm class are found in those with same m but higher d. In addition
by applying the R rotation function with new δ to all q-values of the previous class we get
all values of the new class. The monoid Ω is structured in layers starting from an initial
q-value in Kdm[m, m]. Some of the following topics have not yet been addressed in French.

Cycle Layers

Definition 9. A cycle layer is the set of all algebraic cycles reachable using only rotation functions
starting from a q-value in Kdm[m, m].

The amount of cycles in a layer has no limit.

Definition 10. The seed of a cycle layer is the smallest q-value of the layer.

For example, the cycle (94 185 122) is obtained by Rδ[−179], the cycle (94 131 62) by
Rδ[−17], finally (62 58 65) by Rδ[37]. The seed is q0 = 58. The same, more simply, in
terms of shape vectors ρ obtained by V is

(12020 20201 20120) −→ (1202 2021 2120) −→ (212 122 221)

The seed is ρ0 = 122. With r = 3 and m = 3 there are four layers, the ρ-seeds being

{111, 112, 122, 222}

Definition 11. The layer’s level λ is the mean value of qi in the shape vector ρ

λ = m−1
m

∑
i=1

(qi) (22)

With r > 5 and m = 4 these five ρ-seeds have the same level λ = 2

{1115, 1124, 1133, 1223, 2222}

Cycle Barycenter

The µ function and the balance center µ0 of a cycle were proposed in the first paper.
The definitions are slightly modified to suited the new context of Generalized Collatz
Sequences.

Definition 12. The µ function and the balance center µ0 are defined by

µ(x) = (p− rx)−1 (23)
µ0 = µ(d/m) (24)
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Here is the source of these definitions showed first in a restricted context. In some
cases the qi values of the shape vector ρ = (qi0di)m are a constant value c. Further on we
will introduce the mean value q̄ as a constant λ level. But for now we just suppose that
the parameter r is shifted to x such that d = m. Then

〈ω〉 =
〈

pm, rd,−q
〉
= 〈p, x,−c〉m (25)

= 〈pm, xm,−c(pm − xm)/(p− x)〉 from 〈 f 〉m formula

=
〈

pm, rd,−c(pm − rd)/(p− rd/m))
〉

since xm = rd

=
〈

pm, rd,−cδµ0

〉
(26)

Here is a known example to grasp the meaning of µ0. Let (p, r) be (3, 2). These are the
negative Collatz-Kakutani sequences with δ = 139 and c = 1 . The Kdm[11, 7] contains the
well known cycle (xk)7 = (qk/139)7 = (17 25 37 55 41 61 91). Now suppose that d is
changed to dk, or m is changed to mk, so that

xk = µ(dk/7) = µ(11/mk)

Consistent with µ0 = µ(11/7) ≈ 35.6997 indicated by • we have

(dk)7 ≈ (10.8948 10.9590 • 11.0033 11.0335 11.0123 11.0394 11.0577)
(mk)7 ≈ (7.0676 7.0261 • 6.9979 6.9789 6.9922 6.9750 6.9635)

The following equations being verified this shows that µ0 is the equilibrium point.

m

∑
k=1

11− dk =
m

∑
k=1

7−mk = 0

The µ0 value is the cycle barycenter of the minimum layer where c = 1. For a layer
with c = 2 the barycenter is 2µ0 as this example illustrates.

V(k)(ρ) = (1110 1101 1011) −→ R(k)(q) = (37 55 79)

V(k)(ρ) = (2220 2202 2022) −→ R(k)(q) = (74 110 158)

Definition 13. The barycenter q0 of an algebraic cycle in any layer is the minimum barycenter
multiply by the layer’s level. Ditto for the related x0 which is the barycenter of (xi)m when the
cycle exists.

q0 = λδµ0

x0 = q0/δ = λµ0

10



Now we need to show how is derived this general definition for non-constant qi. We
have

q =
m

∑
i=1

qi pm−irσi (27)

=
m

∑
i=1

qi q̂i where q̂i = pm−irσi (28)

= [ q1 q2 .. qm ] [ q̂1 q̂2 .. q̂m ]> (29)

The second matrix changes with division amount d while the first matrix is constant
throughout the layer. If we add all q-values in a cycle the rotation of i generates a matrix
with constant values.

m

∑
i=1

Ri(q) = [ mλ mλ .. mλ ] [ q̂1 q̂2 .. q̂m ]> (30)

q0 = m−1
m

∑
i=1

Ri(q) = λ[ 1 1 .. 1 ] [ q̂1 q̂2 .. q̂m ]> (31)

q0 = λδµ0 always (32)
x0 = q0/δ = λµ0 conditional (33)

How can the barycenter λµ0 be useful? In the context (p, r) = (3, 2) for example, we
can say that no cycle (xi)m can exist if d > 2m, since |λµ0| < 1.

Explicit role of δ in cyclic process

There is no inner connection between δ and q but, with the rotation of q in cycles, δ plays an
external role plain to see with the following matrices shifts yet providing a more accurate
grasp of the R function implying q1.

q =
[

pm−1 pm−2 .. p 1
]
[q1 q2rσ2 .. qmrσm ]> (34)

pq =
[

pm pm−1 .. p2 p
]
[q1 q2rσ2 .. qmrσm ]> (35)

pq + q1rd =
[

pm pm−1 .. p2 p 1
] [

q1 q2rσ2 .. qmrσm q1rd
]>

(36)

pq + q1rd − q1 pm =
[

pm−1 .. p2 p 1
] [

q2rσ2 .. qmrσm q1rd
]>

(37)

(pq− q1δ)mod* r =
[

pm−1 pm−2 .. p 1
] [

q2 q3rσ3−σ2 .. q1rd−σ2
]>

(38)

R(q) =
[

pm−1 pm−2 .. p 1
]
[q2 q3rs2 .. q1rsm ]> (39)
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The rotation of (di)m is less evident than that of (qi)m but not less true. I leave it to check.
Instead, here is the inverse Collatz-Kakutani example in (p, r) = (3, 2) about the cycle
(xi)7 = (17 25 37 55 41 61 91) with (1 + di)7 = (1 1 1 2 1 1 4) thus (σi)7 = (0 1 2 3 5 6 7).

q =
[
36 35 34 33 32 31 30

] [
20 21 22 23 25 26 27

]>
= 2363

3q =
[
37 36 35 34 33 32 31

] [
20 21 22 23 25 26 27

]>
= 7089

3q + 211 =
[
37 36 35 34 33 32 31 30

] [
20 21 22 23 25 26 27 211

]>
= 9137

3q + 211 − 37 =
[
36 35 34 33 32 31 30

] [
21 22 23 25 26 27 211

]>
= 6950

R(q) = (3q− δ)mod* 2 =
[
36 35 34 33 32 31 30

] [
20 21 22 24 25 26 210

]>
= 3475

The new (σi)7 = (0 1 2 4 5 6 10) matches (1 + di)7 = (1 1 2 1 1 4 1) hence the rotated
previous (1 + di)7.

Incidental divisibility

Beside the constant external role of δ in q-parameter cycles there is an independant link
between δ and q in the previous example: δ = 139 divide 2363 giving 17, fulfilling so the
requirement to get a numerical cycle, either q mod δ = 0. Then, forcely, 25× δ = 3475.

Such numerical cycle occurs very rarely, randomly and presumably never with large
integers. Often, in addition, there is no way to predict that a potential q mod δ value will
be more frequent than another. Is it therefore justified to assume the equiprobability of
the potential values, especially since this would allow us to account what is observed:
rarely, randomly and never seen with large numbers ? The issue requires investigation to
go beyond the conditional calculus of probabilities in the first French paper.

Equiprobability violation

With a given m there exist a class Kdm for which

|δ| =
∣∣∣pm − rd

∣∣∣ and |µ0|−1 =
∣∣∣p− rd/m

∣∣∣
are minima. For Kdm classes with greater d the µ0 values are decreasing and eventualy
|λµ0| < 1. This implies that there is no possibility of a numerical cycle and therefore 0
can’t be a potential value of q mod δ. There are a few other indirect ways of knowing
that 0 is excluded or required as a potential value, but nothing can be said about q mod δ
values between 0 and δ. On the other hand, if δ divide a qi in a cycle (qi)m it can be shown
that δ divide all the others qi of that cycle.
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Numerical Cycle Occurence Probability

If all possible values of q mod δ are allowed in a class Kdm and there is no way to predict
the relative frequency of the values, we can assume that they are equal and calculate,
under this condition, what is the occurence probability of a cycle in the class.

Let Pone = |δ|−1 be the probability that a (qi)m cycle results in a numerical (xi)m cycle
and e be the number of cycles of length m (which excludes spirals when d and m are not
relatively prime). The probability Pno that there is no numerical cycle in this class Kdm is

Pno = (1− Pone)
e (40)

The number of cycles when d an m are relatively prime is

e = m−1 card Kdm (41)

If there are spirals we should subtract from card Kdm the elements in the spirals but this is
only a minor correction that can be neglected. So we have

Pno =

(
1− 1
|pm − rd|

)1
d(

d
m)(r− 1)m

(42)

Except when d and m are small we can use the following approximation where 1/N means
a chance on N of at least one cycle.

Pno =

(
|δ| − 1
|δ|

)e

= 1−
(

e
1

)
|δ|−1 +

(
e
2

)
|δ|−2 − · · ·

1/N = Pyes ∼= e |δ|−1

N ∼=
∣∣pm − rd

∣∣ d

( d
m)(r− 1)m

(43)
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